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Y.S. JAGAN MOHAN REDDY AMARAVATICHIEF MINISTER
ANDHRA PRADESH

MESSAGE
I congratulate  Akademi for starting its activities with printing of textbooks from

the academic year 2021 – 22.

Education is a real asset which cannot be stolen by anyone and it is the foundation
on which children build their future. As the world has become a global village, children
will have to compete with the world as they grow up. For this there is every need for
good books and good education.

Our government has brought in many changes in the education system and more
are to come. The government has been taking care to provide education to the poor
and needy through various measures, like developing infrastructure, upgrading the skills
of teachers, providing incentives to the children and parents to pursue education. Nutritious
mid-day meal and converting Anganwadis into pre-primary schools with English as medium
of instruction are the steps taken to initiate children into education from a young age.
Besides introducing CBSE syllabus and Telugu as a compulsory subject, the government
has taken up numerous innovative programmes.

The revival of the Akademi also took place during the tenure of our government
as it was neglected after the State was bifurcated. The Akademi, which was started on
August 6, 1968 in the undivided state of Andhra Pradesh, was printing text books,
works of popular writers and books for competitive exams and personality development.

Our government has decided to make available all kinds of books required for
students and employees through Akademi, with headquarters at Tirupati.

I extend my best wishes to the Akademi and hope it will regain its past glory.

(Y.S. JAGAN MOHAN REDDY)





Dr. NANDAMURI  LAKSHMIPARVATHi
               M.A., M.Phil., Ph.D.

Chairperson, (Cabinet Minister Rank)
Telugu and Sanskrit Akademi, A.P.

Message of Chairperson, Telugu and Sanskrit Akademi, A.P.

In accordance with the syllabus developed by the Board of Intermediate, State
Council for Higher Education, SCERT etc., we design high quality Text books by recruiting
efficient Professors, department heads and faculty members from various Universities and
Colleges as writers and editors. We are taking steps to print the required number of these
books in a timely manner and distribute through the Akademi’s Regional Centers present
across the Andhra Pradesh.

In addition to text books, we strive to keep monographs, dictionaries, dialect texts,
question banks, contact texts, popular texts, essays, linguistics texts, school level dictionaries,
glossaries, etc., updated and printed and made available to students from time to time.

For competitive examinations conducted by the Andhra Pradesh Public Service
Commission and for Entrance examinations conducted by various Universities, the contents
of  the Akademi publications are taken as standard.  So, I want all the students and
Employees to make use of  Akademi books of high standards for their golden future.

Congratulations and best wishes to all of you.

(NANDAMURI  LAKSHMIPARVATHI)





Higher Education Department
Government of Andhra Pradesh

J. SYAMALA RAO, I.A.S.,
Principal Secretary to Government

MESSAGE

I Congratulate Telugu and Sanskrit Akademi for taking up the initiative of
printing and distributing textbooks in both Telugu and English media within a short
span of establishing Telugu and Sanskrit Akademi.

Number of students of Andhra Pradesh are competing of National Level for
admissions into Medicine and Engineering courses.  In order to help these students
Telugu and Sanskrit Akademi consultation with NCERT redesigned their Textbooks
to suit the requirement of National Level Examinations in a lucid language.

As the content in Telugu and Sanskrit Akademi books is highly informative
and authentic, printed in multi-color on high quality paper and will be made available
to the students in a time bound manner. I hope all the students in Andhra Pradesh
will utilize the Akademi textbooks for better understanding of the subjects to compete
of state and national levels.

(J. SYAMALA RAO)



THE CONSTITUTION OF INDIA
PREAMBLE

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into a
[SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC] and to secure to all
its citizens:

JUSTICE, social, economic and political;

LIBERTY of thought, expression, belief, faith
and worship;

EQUALITY of status and of opportunity; and
to promote among them all

FRATERNITY assuring the dignity of the
individual and the [unity and integrity of the
Nation];

IN OUR CONSTITUENT ASSEMBLY this
twenty-sixth day of November, 1949 do HEREBY
ADOPT,  ENACT AND GIVE TO OURSELVES
THIS CONSTITUTION.
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Foreword

The Government of India vowed to remove the educational dispar it ies and
adopt a common core curr icu lum across the count ry especially at the Intermediate
level. Ever  since the Government of Andhra Pradesh and the Board of Intermediate
Education (BIE) swung into act ion  with the task  of evolving a revised syllabus in
all the Science subjects on par with that of CBSE, approved by NCERT, its chief
in ten tion being enabling the students from Andhra Pradesh to prepare for  the
National Level Common Entrance tests l ike NEET, ISEET etc for  admission into
Inst itu t ions of professional courses in our Country.

For the fi rst  t ime BIE AP has decided to prepare the Science textbook s.
Accor d i n gl y  an  Acad em i c Revi ew Com m i t t ee was con st i t u t ed  w i t h  t h e
Commissioner of In termediate Education, AP as Chairman and the Secretary,
BIE AP; the Director SCERT and the Director Telugu Akademi as members. The
National and State Level Educational luminar ies were involved in the textbook
preparation , who did it  with met icu lous care. The textbooks are pr inted on the
lines of NCERT maintain ing National Level Standards.

The Education Depar tment of Government of Andhra Pradesh has tak en a
decision  to publish and to supply all  the text book s wi th  free of cost  for  the
students of all Government and Aided Junior Colleges of newly formed state of
Andhra Pradesh.

We express our  sincere grat i tude to the Director, NCERT for  according
per mission to adopt  i ts syl labi  and cur r icu lum of Science textbooks. We have
been permit ted to make use of their  textbooks which wil l  be of great advantage
to our student community. I also express my grat itude to the Chairman, BIE and
the honorable Minister  for  HRD and Vice Chairman, BIE and Secretary (SE) for
their  dedicated sincere gu idance and help.

I sincerely hope that the assorted methods of innovation that are adopted
in the preparation  of these textbooks wi l l  be of great  help and gu idance to the
students.

I  wholehear ted l y app r eci at e t h e sin cer e endeavor s of  t he Tex tbook
Development Committee which  has accomplished this noble task .

Construct ive suggestions are solicited for  the improvement of this textbook
from the students, teachers and general  publ ic in  the subjects concerned so
that  next edit ion wil l  be revised du ly incorporating these suggestions.

It  is very much commendable that Intermediate text book s are being pr inted
for the fir st t ime by the Akademi from the 2021-22 academic year.

Sr i . V. Ram ak r ishna I.R.S.
Di r ect or

Telugu and Sansk r it  Akademi,
Andhra Pradesh



Preface
The Board of In termediate Edu cat ion  (AP), has recen t ly revised the syl labus in

Mathemat ics for  the In termediate Cou rse wi th  effect  from the Ak ademic year  2012-13.
Accordingly Telugu  Ak ademi   has prepared the necessary Text  Book s in  Mathemat ics.

In accordance with the cu rrent syllabus, the topics relat ing to  paper I-A : Algebra, Vect or
Algebra and Trigonom et ry  are dealt with in this book. The syl labus is presented in ten chapters.
Algebra part  given in  three chapters : Funct i ons, Mat hem at i cal  Induct i on  and Mat r i ces
Vector Algebra part  given in  two chapters : Addi t i on  of  Vect ors and Product  of  Vect ors.
Trigonometry part  given in  five chapters : Tr igonom et r i c Rat i os upt o Transform at i on ,
Tr i gonom i t r i c Equat i ons, Inverse Tr i gonom et r i c Funct i ons, Hyperbol i c Funct i ons and
Proper t i es of  Tr i angles.

Further, for the benfit  of students in tending to appear for All  India Level Compet it ive
Examinat ions, the Addit ional Reading Material is included in  the Appendix, It  contains fou r
chapters : Set s, Relat i ons, Sequences and Ser i es and Mat hem at i cal  Reason ing. These
topics are for addit ional reading, bu t  not  for examinat ions. No quest i on  wi l l  be set  on  t he
Addi t ional  Reading Mat er ial , i n  t he In t er m ediat e I  Year  Publi c Exam inat i on, Mat hem at ics,
paper- IA.

Every chapter  herein . is divided in to var ious sect ions and su bsect ions, depending on
the con tents discu ssed. These con tents are st r ict ly in  accordance with  the prescribed
syl labus and they reflect  fai th fu l ly, the scope and spi r i t  of the same. Necessary defin i t ions,
theorems, Corol lar ies, proofs and notes are given  in  detai l . Key concepts are given  at  the
end of each  chapter. I l lu st rat ive examples and solved problems are in  plen ty, and these
shall  help the stu den ts in  u nderstanding the su bject  matter.

Every chapter  con tains exercises in  a graded manner  wh ich  enable the stu den ts to
solve them by applying the k nowledge acqu ired. Al l  t hese problems are classified according
to the natu re of their  answers as I  - very  shor t  I I  shor t  an d  I I I -long.  Answers are provided
for al l  the exercises at  the end of each  chapter.

Keeping in view the Nat ional level competit ive examinat ions, some concepts and not ions
are h igh l igh led for  the benefi t  of the stu den ts. Care has been  taken  regarding r igor and
logical  conSistency in  the presen tat ion  of concepts and in  proving theorems. At  the end of
the text  Book , a l isl  of some Refer en ce Book s in  the su bject  mal ter  is fu rn ished.

Th e M embers of t he Mat hem at i cs Su bject  Com mit tee, const i t u ted by Board of
In termediate Edu cat ion, were invi ted to in teract  wi th  the team of the Au thors and Editors.
They pu rsu ed the con ten ts chapter wise and gave some u sefu l  su ggest ions and comments
which  are du ly incorporated. The special featu re of th is Book , brought  ou t  in  a new format,
is that  each  chapter  begins wi th  a thou ght  most ly on  Mathemat ics. th rou gh  a qu otat ion
from a famou s th ink er. It  car r ies a por t rai t  of a noted mathemat ician  wi th  a br ief wr i te-u p.

In  the conclu ding par t  of each  chapter  some relevan t  h istor ical  notes are appended.
Wherever found appropr iate, references are also made of the contr ibu t ions of ancient  Indian
scien t ists to the advancement  of  Methamat ics. The pu rpose is to enable the stu den ts to
have a gl impse in to the h istory of Mathemat ics in  general and the con t r ibu t ions of Indian
mathemat icians in  par t icu lar.

Inspi te of enou gh  care tak en  in  the scru t iny at  var iou s stages in  the preparat ion  of
the  book , er rors might  have crept  in .  The readers are therefore, requ ested to iden t i fy and
br ing them to the not ice of the Ak ademi .  We wi l l  appreciate i f sugget ions to enhance the
qu ali t y of the book  are given. Effor t s wil l  be made to incorporate them in  the su bsequ en t
edit ions.

Pr of . P.V. Ar unach alam
Ch i ef  Coord in at or



Preface t o t he Reviewed Edi t i on

Telugu Akademi is publishing Text books for  Two year Intermediate in

English and Telugu medium since its incept ion , per iodical  review and

revision of these publicat ions has been undertaken as and when there

was an updation of Intermediate syllabus.

In this reviewed Edit ion, now being undertaken by the Telugu Akademi,

Andhra Pradesh the basic content  of i ts ear l ier  Edit ion is considered

and it  is reviewed by a team of exper ienced teachers. Modificat ion by

way of correct ing errors, pr int m istakes, incorporating addit ional content

where necessary to elucidate a concept and /  or  a defin it ion, modificat ion

of exist ing content to remove obscur it ies for  releasing the concept more

easi ly are carr ied out mainly in this review.

Not withstanding the effor t  and t ime spent  by the review team in this

endeavou r, st i l l  a few aspects that  st i l l  need modi f icat ion  or  change

might have been left  unnoticed.

Const ruct ive suggest ions from the academic fratern i ty are welcome

and the Akademi wil l  tak e necessary steps to incorporate them in the

for th coming edit ion.

We app r eci at e t h e en cou r agem en t  and  su ppor t  ext en ded by t he

Academic and Admin ist rat ive staff of the Telugu Ak ademi in fu l fi l l ing

ou r assignment with satisfact ion.

Edi t ors
(Revi ewed Ed i t i on )
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Functions 1

Introduction

All the scientists use mathematics essentially to study

relationships.  Physicists, Chemists, Engineers, Biologists and

Social Scientists, all seek to discern connection among the

various elements of their chosen fields and so to arrive at a

clear understanding of why these elements behave the way

they do.  A  function  is a special case of a relation.

The famous mathematician  Lejeune Dirichlet  (1805 -

1859) defined a function as follows.  A variable is a symbol

which represents any one of a set of numbers;  if two variables

x  and  y  are so related that whenever a value is assigned to  x

there is automatically assigned, by some rule or

correspondence, a value to  y,  then we say  y is a (single

valued) function of  x,  the permissible values that  x  may

assume constitute the domain of definition of the  function,

and the values taken on by   y  constitute the range of values

of the function.

Dirichlet
(1805 - 1859 )

Johann Peter Gustav Lejeune
Dirichlet  was a German

mathematician credited with the

modern “formal” definition of

a function.  He was a student of

Gauss.  After Gauss’s death in

1855, he was appointed as

Gauss’s successor at Gottingen.

“The word function (or its Latin equivalent) seems
to have been introduced into mathematics by Leibnitz
in 1694.  The concept now dominates much of
mathematics and is indispensable in sciences”

−−−−− E.T. Bell



 Mathematics - IA2

The above definition is a very broad one and does not imply anything regarding
the possibility of expressing the relationship between  x  and  y  by some kind of analytic expression. It
stresses the basic idea of a relationship between two sets.  Set theory has naturally extended the concept of
function to embrace relationships between any two sets of elements.

In this chapter we focus our attention on a special type of relation, a function,
that plays an important role in mathematics and its many applications.  Here we study its basic properties and
then discuss several special types of functions.  In order to have various important applications of functions
later, it is essential to get a good grasp of the concepts in this chapter.

1.0 Ordered pairs

Let  A  and  B  be sets.   If Aa ∈  and Bb ∈  then (a, b) is an ordered pair. ‘a’ is called the first
component (coordinate) and ‘b’ is called the second component (coordinate) of the ordered pair (a, b).
For example, the coordinates of a point in a plane are ordered pairs of real numbers.  If 1 1( , )a b  and  2 2( , )a b
are ordered pairs, then

( ) ( )1 1 2 2a , b a , b=  1 2 1 2 and a a b b⇔ = = .

1.0.1  Definition (Cartesian  product)

Let  A  and  B  be two sets. Then { }( , ) | A, Ba b a b∈ ∈  is called the Cartesian product of

A  and  B, and is denoted by A × B  (to be read as  A  cross  B).

1.0.2  Examples

         If    A = { } { }1 2 3 B =, , , x, y  then

A×B = { }(1 ) (1 ) (2 ) (2 ) (3 ) (3 ), x , , y , , x , , y , , x , , y

B A× = { }( 1) ( 2) ( 3) ( 1) ( 2) ( 3)x, , x, , x, , y, , y, , y,

A A× = { }(1 1) (1 2) (1 3) (2 1) (2 2) (2 3) (3 1) (3 2) (3 3), , , , , , , , , , , , , , , , ,

B B× = { }( ) ( ) ( ) ( )x, x , x, y , y, x , y, y

1.0.3  Note

1. If  A  and  B  are distinct non-empty sets then A×B B×A≠ .

2. If one of the sets  A  and  B  is empty, then A×B  is also empty.

3. Some particular notations

       �  or R : set of all real numbers

R+ : set of all positive real numbers : { }0x|x , xR∈ >

Q : set of all rational numbers

Q+ : set of all positive rational numbers

N : set of all natural numbers

Z : set of all integers
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If  a, b R∈ ,  a < b  then

(a, b) = {x R∈  |  a < x < b}

(a, b] = {x R∈  |  a < x ≤  b}

[a, b) = {x R∈  |  a ≤  x < b}

[a, b] = {x R∈  |  a ≤  x ≤  b}

[a,∞ ) = {x R∈  |  a ≤  x}

(a, ∞ ) = {x R∈  |  a < x}

(−∞ , a) = {x R∈  |  x < a}

(−∞ , a] = {x R∈  |  x ≤  a}

1.0.4   Definition  (Relation)

If   A  and  B  are non-empty sets, then any subset of  A ×  B  is called  a relation  from  A
to  B.   In particular,  any relation from  A  to  A  is called a binary relation on  A.

1.0.5   Examples

 If    { } { }A 1 2 3 B, , , ,α β= =  then

( ) ( ) ( ) ( ) ( ) ( ){ }A × B 1 1 2 2 3 3, , , , , , , , , , ,α β α β α β=

 (i)    ( ) ( ) ( ){ }1 2 3f , , , , ,α β α=  is a relation from  A  to  B.

 (ii)  ( ) ( ){ }1 1g , , ,α β=   is a relation from  A  to B.

In fact we can define  26 = 64  relations from  A  to  B  because the number of elements in  A ×  B  is

6  hence there are 26 subsets of  A ×  B.

1.1 Types of Functions - Definitions

1.1.1Definition (Function)

Let  A  and  B  be non-empty sets and   f   be a relation from  A  to  B.   If for each element

Aa ,∈  there exists a unique Bb ∈  such that ( ), ,a b f∈  then  f  is called a  function (or

mapping) from  A  to  B  (or  A  into  B).  It is denoted by  :f A B→ . The set A  is called the
domain of   f  and  B is called the co-domain   of   f.

A function  f  can also be seen  in the following way,  which takes an input  x and  returns an output
f (x).
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For example,  if  A Bf : →   is a function defined as  f(x)  = x + 1  and  A = {1, 2, 3},  then
f (A) = {2, 3, 4}.

1.1.2   Note

A relation   f   from  A  to  B  ( . . A B)i e f ⊆ ×  is a function from  A  to  B  if  for each Aa ∈ , there

exists exactly one Bb ∈  such that ( , )a b f∈  and this ''b  will be denoted by ( )f a .  In other words, for each

Aa ∈ , there exists a unique element ( ) Bf a ∈  such that ( ), ( ) fa f a ∈ .

 1.1.3   Definition  (Image,  Pre-Image)

If A Bf : →   is a function and if ( )f a b= ,  then ' 'b  is called the image of  ' 'a  under  f  or

the  f-image of  a.   The element ' 'a   is called a pre-image or an inverse image of  b under f and

is denoted by f −1(b) .  More generally if  E ⊆  B, f −1(E) = {x| x ∈  A,  f (x) ∈  E} is called the

inverse image of E under f.  Then  f −1(b) = f −1({b}) if b ∈  B.

1.1.4   Examples

1. Example: The relation 2{( , 1) | }= + ∈f x x x R �is a function from  R  to  R+, since every x ∈ R  has

association with unique element 12 +x  in  R+.  The function   f  : R →  R+  is given by 2( ) 1= +f x x .

Observe that (1) 2=f  and ( 1) 2− =f .  Note that the numbers less than 1 have no pre-image under  f.

2. Example: The relation 
1

( , ) | 0 = ≠ ∈ 
 

Rf x x
x

 is not a function from  R  to  R  since there is no  b  in

R  such that ( )0, b f∈ .    But ( )
x

xf
1=  is a function from    R  {0} →  R since  every  x ∈  R  {0}  has

association with a unique element in R .

f

x

f (x)

↓

↓

f (x) = x + 1

A∈x

f(A)

↓

↓
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1.1.5  Definition  ( Range )

If A Bf : →  is a function, then  f(A), the set of all  f - images of elements in  A, is called the

range of   f .    Clearly  ( ) ( ){ }A A Bf f a | a= ∈ ⊆ .

Also { }(A) B | ( ) Af b b f a for some a= ∈ = ∈ .

1.1.6  Examples

1. Example: Let →f : N N  be defined by ( ) 2f n n= .

Then the range of { }( ) 2f f n | n= = ∈ =N N  set of all even natural numbers.

2. Example: Let  :f →R R  be defined by 2( )f x x= .

          Then the range of  { }2( ) | [0, )f f x x= = ∈ = ∞R R  2 0 for all x x ≥ ∈ R� .

1.1.7   Definition  (Injection   or  one - one function)

A   function A Bf : →  is called an injection if distinct elements of  A  have distinct
f - images in  B.   An injection is also called a one-one function.

A Bf : →  is an injection  ⇔  1 2 Aa , a ∈  and 21 aa ≠  implies that 1 2( ) ( )f a f a≠

                                   ⇔  1 2 Aa , a ∈  and 1 2( ) ( )f a f a=  implies that 21 aa =

1.1.8   Examples
1.  Example

Let  { }A a, b, c, d=   and  { }B 1 2 3 4 5, , , ,=

   (i) If  { }( 3) ( 5) ( 1) ( 4)f a, , b, , c, , d ,=  then   f   is a function from  A  into  B  and for different
elements in  A,  there are different  f - images in  B.  Hence  f  is an injection.

  (ii) If { }( 2) ( 2) ( 3) ( 5)g a, , b, , c, , d ,= , then  g  is a function from  A  into  B,  but ( ) ( )g a g b= .
Hence  ‘g’  is not an injection.

2.  Example

Let  :f →R R   be defined by ( ) 2 1f x x= + .  Then '' f  is an injection since for any 1 2,a a ∈ R

and   1 2 1 2 1 2( ) ( ) 2 1 2 1f a f a a a a a= ⇒ + = + ⇒ = .

3.  Example

Let  :f →R R  be defined by ( ) 2xxf = .  Then '' f  is not an injection because ( 1) 1 (1)f f− = = .
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f

4.  Example

Let f : →N N  be defined by 2( )f x x= .  Then '' f  is an injection since for 1 2a , a ∈ N  and

2 2 2 2
1 2 1 2 1 2 1 2 1 2( ) ( ) ( ) 0 ( ) ( ) 0f a f a a a a a a a a a= ⇒ = ⇒ − = ⇒ − + =

                   [ ]1 2 1 2 1 2 1 20 0⇒ − = ∈ ⇒ + > ⇒ =�a a a , a a a a aN .

5.   Example

Let { }A a,b,c,d=  and { }B x, y,z= .  We can’t define an injection from A  to  B  because atleast

two distinct elements in  A  have the same f - image in  B  for any function : A Bf → .

1.1.9  Definition (Surjection)

A  function A Bf : →   is  called  a surjection  if  the range  of   f   is  equal  to the  co-domain

of   f.

   A Bf : →  is a surjection ⇔  range ( )(A) B -f f co domain= =

{ }B ( ) Af a | a⇔ = ∈

⇔  for every Bb ∈  there exists atleast

      one  Aa ∈  such that ( )f a b=

Hence we may conclude that : A Bf →   is a surjection if every element of  B  occurs as the image

of atleast one element of  A  (i.e., every element in  B  has a ‘pre image’ in  A).  A surjection is also called an

onto function.

1.1.10  Examples

1.  Example

Let  A  = {1, 2, 3, 4} and B = {a, b, c}

     (i) If   f   =  {(1, a),  (2, b),  (3, c), (4, c)} then

 f  is a function from  A  to  B  and  range

{ }(A) Bf f a, b, c= = = , the

co-domain.   Hence it is a surjection.

Note that  f  is not an injection.
Fig. 1.1
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   (ii) If  g = {(1, b),  (2, b),  (3, c),  (4, c)} then  g

is a function from  A  to B  but not a surjection

because there is no pre image to the element

Ba ∈ .  Note that  g  is not an injection.

2. Example

Let  A = {-3, -2, -1, 1, 2, 3}  and  B = {1, 4, 9}.  If  A Bf : →   defined by 2( )f x x=  for all Ax ∈

then,  range { }(A) ( 3) ( 2) ( 1) (1) (2) (3)f f f , f , f , f , f , f= = − − − ={ }1 4 9 B, , = .

     : A Bf∴ →  is a surjection.  Note that  f  is not an injection.

3. Example
Let  :f →R R   be  defined  by ( )f x ax b= +  ( ,a b ∈ R  and  0)a ≠ .  Then   f   is  a surjection

since for any y ∈ R  (co-domain) there exists 
y b

x
a

−= ∈ R  (domain) such that

( )
( )

a y b
f x ax b b y

a

−= + = + =   (i.e., every element in the co-domain has a pre-image in the domain).

Note that   f   is an injection too.

4. Example

Let  :f →R R  be defined by  f (x) = x2 + 4 .  Then range of [ )∞= ,4f  �[  for any  x ∈ R  we

have ]440 22 ≥+⇒≥ xx   and it is not equal to co-domain R .  Hence :f →R R   is not a surjection. In

particular there are no pre-images for all real numbers less than 4 in its co-domain R .  Note that  f  is not an

injection.

1.1.11  Definition  (Bijection)

If A Bf : →   is both an injection and a surjection then  f  is said to be a bijection or

one-to-one  from  A  onto  B.

   i.e., A Bf : →  is a bijection  ⇔   f  is both injection and surjection

                      ⇔   (i) If 1 2 Aa , a ∈  and 1 2 1 2( ) ( ) thenf a f a a a= =

                            (ii) for every Bb ∈  there exists atleast one Aa ∈
such that ( )f a b= .

A B

g

Fig. 1.2
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1.1.12  Definition  (Finite set)

If  A  is  empty  or  there exists  n ∈ N  such that there is a bijection from A  onto
{1, 2, 3, ..., n} then  A  is called a finite set.   In such a case we say  that the number of elements
in A is  n  and denote it by  |A|  or n(A).

1.1.13  Remarks

(i) In particular,  if  A  and  B  are two finite sets with  |A| > |B|  then we can’t define an injection from A into

B.  Hence if there is an injection from A to B then   |A| ≤  |B|.   The converse of this also holds good, that

is, if  A  and  B  are finite sets such that |A| ≤  |B|, then we can define an injection  A Bf : → ,  for, if

{ }1 2A na , a , .....,a=  then there exist distinct elements  1 2 Bnb , b ,....,b ∈   (since A Bn = ≤ )  and

the function A Bf : → , defined by ( ) , for 1i if a b i n= ≤ ≤ , is an injection.

(ii) Let  A  and  B  be two finite sets and  |A| < |B|,  then we can’t define a surjection from  A  to  B.   Since

if  A Bf : →   then range (A)f f=  contains atmost  |A|  elements B||≠  (codomain) A B < � .

Hence if there is an onto function from  A  to  B  then  A B≥ .  The converse of this also holds good.

That is if  A and B  are finite sets such that  A B≥ , then we can define a surjection A Bf : → ;  for

if  { }1 2B nb , b ,....,b=   then  A |n |≤  and hence there exist distinct elements 1 2 Ana , a , ........,a ∈

and we can define A Bf : →   by

1

( ) i i

i

b if a a for some i
f a

b if a a for all i

=
=  ≠ ,  which becomes a surjection.

(iii) Note that if there is a bijection '' f  from a finite set A to a finite set B then, since  f  is both injection and

surjection, A B≤  and A B≥  hence |A| = |B|.  Thus for any two finite sets A and B, A B=  if and

only if there is a bijection : A Bf → .

1.1.14  Example

Let  :f →R R  be defined by ( ) 2 3f x x= + , then from example 3 (1.1.10),   f  is a bijection.

However if we change the domain of   f  as N then  f (x) = 2x  + 3 ∈  N  ∀ x ∈  N.  Also,

(i)  If  1 2x ,x ∈ N  (domain), 1 2 1 2 1 2( ) ( ) 2 3 2 3f x f x x x x x= ⇒ + = + ⇒ = .

:f∴ →N N  is an injection.
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(ii) Range { } { }( ) (1) (2) (3) 5 7 9f f f , f , f , ... , , ,...= = = ≠N N . (codomain)

Hence :f →N N   is not a surjection.

Observe that the natural numbers less than 5 and the even natural numbers in the

co-domain  N  of   f   have no pre-images in domain  N.

1.1.15  Definition (Equality of functions)

Let   f  and  g be functions.   We say   f   and   g   are equal and write   f  =  g  if  domain of

f  = domain of  g  and  f(x) =  g(x)  for all  x ∈  domain f.

Problem : On what domain the functions  f (x) = x2 − 2x and g(x) = − x + 6 are equal?

Solution :   f (x)  = g(x)

⇔ x2 − 2x  =  − x + 6

⇔ x2 − x  −  6 = 0

⇔ (x − 3) (x + 2) = 0

⇔ x  = −2, 3

∴   f (x)  and  g(x)  are  equal on the domain {−2, 3}.

1.1.16  Definition (Constant function)

A function  f  : A B→   is said to be a constant function, if the range of   f  contains one

and only one element.  i.e.  f(x) = c   for all  Ax ∈ ,  for some fixed   c ∈  B.  In this case the
constant function  f  will be denoted by ‘c’  itself.

1.1.17  Example

Let  A = {a, b, c, d},  B = {1, 2, 3}  and  f  = {(a, 2),  (b, 2),  (c, 2), (d, 2)} then A Bf : →  is a
constant function.

1.1.18  Definition (Identity function)

Let  A  be a non-empty set.  Then the function A Af : →  defined by  f (x) = x  for all  Ax ∈
is called the identity function on  A  and is denoted by  AI .

1.1.19  Example

If { }A a, b, c= , then { }AI ( ) ( ) ( )a, a , b, b , c, c= .

1.1.20  Solved Problems

1. Problem:  If   :f R  { }0 → R  is defined by   f (x) = 
x

x
1+   then  prove that

( )2 2( ) ( ) (1)f x f x f= + .
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Solution: Since 
1

( )f x x
x

 = +  
2 2 2

2 2

1 1 1
( ) (1) 1 2

1
f x f x x

x x

 + = + + + = + +  

     ( )
2

21
( )x f x

x
 = + =  

.

2. Problem:  If the function  f  is defined by  2

3 2 3

( ) 2 2 2

2 1 3

x ,x

f x x , x

x ,x

− >


= − − ≤ ≤
 + < −

then find the values,  if exist, of   f(4),  f(2.5),  f(−2),  f(−4),  f(0),  f(−7).

Solution:  Note that the domain of  f  is [ ]( 3) 2 2   (3 ), , ,−∞ − ∪ − ∪ ∞ .

(i) Since ( ) 3 2,f x x= −  for 3x > , we have (4) 12 2 10f = − =
(ii) 2.5 does not belong to domain f,  f (2.5) is not defined.

(iii) Since ( ) 2 2, 2 2f x x x= − − ≤ ≤ , we have 2( 2) ( 2) 2 2f − = − − =

(iv) Since ( ) 2 1, 3,f x x x= + < −  we have ( 4) 2 ( 4) 1 7f − = − + = −
(v) Since  f (x) = x2 − 2 when − 2 ≤  x ≤  2, we have  f (0) = 02 − 2 = −2

(vi) Since ( ) 2 1,f x x= +  for x < - 3, we have ( 7) 2 ( 7) 1 13f − = − + = − .

3. Problem:  If  A 0, , , ,
6 4 3 2
π π π π =  

 
  and  : A Bf →   is  a  surjection  defined

  by  ( )f x cos x=   then  find  B.

Solution:  Let  : A Bf →   be a surjection defined by ( ) cosf x x= .

      Then   B = range  f  (A) (0), , , ,
6 4 3 2

f f f f f f
π π π π        = =                 

      cos 0, cos , cos , cos , cos
6 4 3 2

π π π π =  
 

   
3 1 1

1, , , , 0
2 22

  =  
  

.

4. Problem:  Determine whether the function :f →R R  defined by

 ( )
x x

x x

e e
f x

e e

−

−
−=
+

  is  an injection  or a surjection or a bijection.

Solution:  Let  :f →R R   be defined by  ( )
x x

x x

e e
f x

e e

−

−
−=
+

,   then   f   is not an injection as
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0 0

0 0(0) 0
e e

f
e e

−= =
+

  and  
1

( 1) 0
e e

f
e e−

−− = =
+

  and also   f   is not a surjection  since,  for  y = 1

there is no x ∈ R  such that ( ) 1f x = .

If there is such x ∈ R  then  x x x xe e e e− −− = + , clearly 0x ≠
for  x > 0  this equation gives  x xe e− −− =  which is not possible

for  0x <   this equation gives  x xe e−− =  which is also not possible.

5. Problem:  Determine whether the function :f →R R   defined by

2
( )

5 2 2

x if x
f x

x if x

>
=  − ≤

  is an injection or a surjection or a bijection.

Solution:  Since 3 > 2,  we have   f (3) = 3,

     Since 1 < 2, we have  f (1) = 5(1) − 2 = 3
∴  1 and 3 have same ‘f’  image. Hence   f   is not an injection.

Let  y ∈ R    then  2y >   (or)  2y ≤

If  2y >   take x y= ∈ R   so that  ( )f x x y= = .

If  2y ≤   take  2

5

y
x

+= ∈ R   and  
2

1
5

y
x

+= < .

∴  2
( ) 5 2 5 2

5

y
f x x y

+ = − = − =  
.

∴ f   is a surjection.
Since  f   is not an injection, it is not a bijection.

6. Problem:  Find the domain of definition of the function y(x), given by the equation

2 x + 2 y = 2.

Solution: 2x = 2 − 2y < 2          (�  2y > 0)

⇒ log2 2
x < log2 2

⇒         x < 1

∴  Domain = (−∞ , 1).

7. Problem:  If  f : R →R  is defined as   f (x + y) = f (x) + f (y)  ∀ x, y ∈  R  and  f (1) = 7,

then  find  
1

( )
=
∑

n

r

f r .

Solution:  Consider f (2)  = f (1 + 1) = f (1) + f (1) = 2 f (1)

f (3)  = f (2 + 1) = f (2) + f (1) = 3 f (1)

       Similarly  f (r)   = r f (1)

∴     
1

( )
=
∑

n

r

f r    =  f (1) + f (2)  + ..... + f (n)

        =  f (1) + 2 f (1) + ..... + n f (1)
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         =   f (1) (1 + 2 + ..... + n)

        =  
7 ( 1)

.
2

n n +

8.   Problem :  If  
2 4

2 4

cos sin
( )

sin cos

x x
f x x

x x

+= ∀ ∈
+

R   then show that   f(2012) = 1.

Solution:  
2 4

2 4

cos sin
( )

sin cos

x x
f x

x x

+=
+

          
2 4

2 4

1 sin sin

1 cos cos

x x

x x

− +=
− +

          
2 2

2 2

1 sin (1 sin )

1 cos (1 cos )

x x

x x

− −=
− −

          
2 2

2 2

1 sin cos

1 sin cos

x x

x x

−=
−

          = 1.

          ∴   f (2012) = 1.

Exercise 1(a)

I. 1. If the function  f  is defined by 

2, 1

( ) 2 , 1 1

1, 3 1

x x

f x x

x x

+ >
= − ≤ ≤
 − − < < −

, then find the values  of

 (i)   (3)f , (ii) (0)f , (iii) ( 1.5)f − ,

(iv)   (2) ( 2)f f+ − , (v) ( 5)f −

2. If   f  : R  {0} → R is defined by  f (x) = 3
3

1
x

x
− ,  then show that ( ) (1/ ) 0f x f x+ = .

3. If  :f →R R   is defined by  
2

2

1
( )

1

x
f x

x

−=
+

, then show that  (tan �� ��� ��f = .

4. If    f  :  R   {+1} → R   is defined by 
1

( ) log
1

x
f x

x

+=
−

, then show that  2

2
2 ( )

1

x
f f x

x
  = + 

.



Functions 13

5. If { }A 2, 1, 0, 1, 2= − −  and  : A Bf →   is a surjection defined by  2( ) 1f x x x= + + ,  then
find  B.

6. If  { }A 1, 2, 3, 4=  and : Af → R   is  a  function  defined  by

2 1
( )

1

x x
f x

x

− +=
+

, then  find the range of  f.

7. If   f (x + y)  =  f (xy)  ∀ x,  y ∈  R  then prove that  f is a constant  function.

II. 1. If { }A | 1 1x x= − ≤ ≤ , 2 3( ) , ( ) ,f x x g x x= =  which of the following are  surjections?

   (i)  : A Af →  (ii)  : A Ag →

2. Which of the following are injections or surjections or bijections? Justify your answers.

(i) :f →R R   defined by 
2 1

( )
3

x
f x

+=

(ii) : (0, )f → ∞R  defined by ( ) 2xf x =

(iii) : (0, )f ∞ → R  defined by ( ) logef x x=

(iv) [ ) [ ): 0, 0,f ∞ → ∞  defined by 2( )f x x=

(v) [ ): 0,f → ∞R  defined by 2( )f x x=

(vi) :f →R R   defined by 2( )f x x=

3. Is  { }(1,1), (2,3), (3,5), (4,7)g =  a function from { }A 1, 2, 3, 4=  to  { }B 1,3,5,7= ?   If this is

given by the formula ( )g x ax b= + , then find a and b.

4. If the function :f →R R  defined by 3 3
( )

2

x x

f x
−+= , then show that

( ) ( ) 2 ( ) ( )f x y f x y f x f y+ + − = .

5. If the function  :f →R R   defined by 
4

( )
4 2

x

x
f x =

+
, then show that

(1 ) 1 ( )f x f x− = − , and hence deduce the value of  
1 1 3

2
4 2 4

f f f     + +          
.

6. If the function { } { }: 1, 1 0, 2f − → , defined by ( )f x ax b= +  is a surjection, then find
a  and  b.

7. If  ( ) cos (log )f x x= , then show that  ( )1 1 1
0

2

x
f f f f xy

x y y

      − + =           
.



 Mathematics - IA14

1.2   Inverse Functions and Theorems

If   f   is a relation from  A   to  B,  then the relation { }( , ) | ( , )b a a b f∈  is denoted by 1f − .

1.2.1  Theorem

If : A Bf →  is an injection, then 1f −   is a bijection from  f (A)  to  A.

Proof:  Let : A Bf →   be an injection.  clearly 1f −  is a relation from (A)f   to  A.

Let  (A)b f∈ .   Then there exists atleast one Aa ∈  such that ( )f a b= .   Since  f  is an injection  ‘a’  is the

only element of  A  such that  f(a) = b.   Thus given  (A)b f∈ , there is a unique element  a  in A  such that

( , )a b f∈ .   Hence given  (A)b f∈  there is a unique  Aa ∈   such that   1( , )b a f −∈ .  Hence 1f −   is a

function from (A)f   to  A,  and 1 ( )f b a− =   if and only if  ( )f a b= .  Clearly 1f −   is a surjection.  If

1 2, (A)b b f∈   and 1 1
1 2( ) ( ) ( )f b f b a say− −= =   then 1 2( )b f a b= = .  Thus 1f −  is an injection.

1 : (A) Af f−∴ →   is a bijection.

1.2.2  Corollary

If : A Bf →  is a bijection, then 1f −  is a bijection from  B  to  A.

Proof:  This is an immediate consequence of Theorem 1.2.1, since  f (A) = B.

Note : Since ( ) 11f
−−  = f , it follows from 1.2.2 that  1f −  : B A→  is a bijection if and only if  f : A B→  is

a bijection.

1.2.3  Definition (Inverse function)

If : A Bf →  is a bijection, then the relation { }1 ( , ) | ( , )f b a a b f− = ∈  is a function from  B  to

A and is called the inverse of  f.

1.2.4  Examples

1. Example:  If { }A 1, 2, 3 ,=  { }B , ,a b c=   then  { }(1, ), (2, ), (3, )f c b a=  is a bijection from A  to  B

and { }1 ( ,3), ( , 2), ( ,1)f a b c− =  is a bijection from  B  to  A.

2. Example:  If { } { }A 1, 2, 3 , B , , ,a b c d= =  then { }(1, ), (2, ), (3, )f c b a=  is an injection but not a

surjection, { }1 ( , 1), ( , 2), ( , 3)f c b a− =  is a relation from  B  to  A  but not a function because  ' ' Bd ∈   has

no 1f −   image in  A.

3. Example: If { } { }A 1, 2, 3 , B ,a b= = ; then { }(1, ), (2, ), (3, )f a b a=   is a surjection but not an

injection, { }1 ( , 1), ( , 2), ( , 3)f a b a− =  is a relation from  B  to  A  but not a function from  B  to A  because

for  Ba ∈   there are two 1f −  images in  A.



Functions 15

1.2.5   Definition Composite Function

If  : A Bf → ,  : B Cg → , then the relation

( )( )( ){ }, | Aa g f a a∈   is called  composite of  ‘g’

with ‘ f ’ and is denoted as  gof .

1.2.6  Theorem:  Let  : A Bf →   and  : B Cg →   be functions.  Then  gof  is a function from  A  to

C,  and (gof) (a)  =  g ( f ( a ) )  for all  Aa ∈ .

Proof :  Let  Aa ∈ .  Since  f  is a function from  A  to  B then  ( ) Bf a ∈ .  Since  g  is a  function from  B  to

C then ( )( ) Cg f a ∈ .   Hence  gof  is a relation from  A  to C.  Further, given Aa ∈  there is one and only one

element  c  in  C,  namely,  ( )( )g f a ,  such that ( , )a c gof∈ .  Hence gof  is a function from  A  to  C  and

( )( ) ( ) ( )gof a g f a=   for all Aa ∈ .

1.2.7  Theorem:  Let  : A B, : B Cf g→ →  be injections, then : A Cgof →  is an injection.

Proof  :   Let 1 2, Aa a ∈   be such that 1 2( ) ( ) ( ) ( )gof a gof a=

                         ( ) ( )1 2( ) ( )g f a g f a=

                                1 2( ) ( )f a f a=  [since g is an injection]

                                       1 2a a=         [since f  is an injection]

: A Cgof∴ →   is an injection.

1.2.8  Theorem:  Let : A Bf →  and  : B Cg →   be such that  gof  is an injection.  Then  f  is an
injection.

Proof :  Let 1 2, Aa a ∈  be such that 1 2( ) ( )f a f a=   then  ( ) ( )1 2( ) ( )g f a g f a=

           1 2( ) ( )gof a gof a⇒ =

           1 2a a⇒ = . [ gof�  is an injection]

∴   f  is an injection.

1.2.9  Note

   If  : A Bf → ,  : B Cg →  are such that  gof  is injection then  g  need not be injection.  For example,

let { } { } { }A 1, 2 , B , , , C ,a b c d e= = = , { }(1, ), (2, )f a b=  and { }( , ), ( , ), ( , )g a d b e c e= ,  then

{ }(1, ), (2, )gof d e= .

gof

f

g

A B

C
Fig. 1.3
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Hence  gof  is an injection but  g  is not an injection.  However, if  gof  is an injection then necessarily  f
is an injection.

1.2.10   Theorem:  Let : A Bf → ,  : B Cg →   be surjections.  Then : A Cgof →  is a surjection.

Proof :  Let Cc ∈ .   Since : B Cg →  is a surjection then there exists Bb ∈  such that ( )g b c= .  Since

: A Bf →  is a surjection then there exists ' ' Aa ∈  such that ( )f a b= .

( )( ) ( ) ( ) ( )c g b g f a gof a∴ = = = .

∴  for each ' ' Cc ∈  there exists ' ' Aa ∈  such that ( ) ( )gof a c= .

Hence : A Cgof →  is a surjection.

1.2.11  Theorem:  Let  : A B, : B Cf g→ →   be such that  gof   is a surjection.   Then  g  is a surjection.

Proof : Let Cc ∈ .  Since : A Cgof →  is a surjection then there exists Aa ∈  such that ( ) ( )gof a c= , i.e.,

( )( )g f a c= .  Let ( )b f a= . Then ( ) Bf a b= ∈  and ( )g b c= .

g∴  is a surjection.

1.2.12  Note

     If  : A B, : B Cf g→ →   are such that  gof  is a surjection then  f  need not be a surjection.  In Note

1.2.9,  gof  is a surjection but  f  is not a surjection.  However, if  gof  is a surjection then necessarily  ‘g’  is

a surjection.

1.2.13  Theorem:  Let  : A B, : B Cf g→ →   be bijections.  Then  : A Cgof →   is  a bijection.

Proof:  This is a consequence of Theorems 1.2.7 and 1.2.10.

1.2.14  Theorem: Let : A B, : B Cf g→ →  be bijections.  Then ( ) 1 1 1gof f og
− − −= .

Proof:  Since  : A B, : B Cf g→ →   are bijections, so is  gof  from  A  to C  (from Theorem 1.2.13).

Hence  (gof)− 1 is a bijection from  C  to  A.   Further,  1 1: B A; : C Bf g− −→ → are also bijections.

Hence 1 1f og− −  is a bijection from  C  to  A.

∴  The functions 1( )gof −  and 1 1f og− −  are defined on the same domain ‘C’.

Let Cc ∈ .  Since : B Cg →   is a bijection, there exists a unique  Bb ∈   such that ( )g b c=   i.e.,
1 ( )g c b− = .

Now Bb ∈  and  : A Bf →   is a bijection.  Hence there exists a unique Aa ∈  such that ( )f a b=

i.e., 1 ( )f b a− = .
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Thus   ( )( ) ( ) ( ) ( )c g b g f a gof a= = =  (or) 1( ) ( )gof c a− =

Now   1 1 1 1 1( ) ( ) ( ( )) ( )f og c f g c f b a− − − − −= = =

Hence 1 1 1( )gof f og− − −= .

1.2.15  Theorem: The identity function :AI A A→   is a  bijection and  1
A AI I− = .

Proof:  We have { }( , ) | AAI a a a= ∈ .

    Given Aa ∈  we have ( )AI a a= .  Hence IA is a surjection.

     Let  1 2 1 2 1 2, A, ( ) ( )A Aa a I a I a a a∈ = ⇒ = .   Hence IA is an injection.

: A A∴ →AI  is bijection and  1 =A AI I− .

1.2.16   Theorem:  Let  : A B,f →  IA and  IB be identity functions on  A  and  B respectively.  Then

A BfoI f I of= = .

Proof:  Since  : A AAI →   and  : A Bf →  are functions, AfoI  is a function from  A  to  B.   Hence

functions AfoI  and  f  are defined on same domain A.

Let Aa ∈ ,  then ( )( ) ( ) ( ) ( ) [ ( )A A AfoI a f I a f a I a a= = =�  for all A]a ∈

        AfoI f∴ =                  ... (1)

Since  : A B, : B BBf I→ → ,  are functions then BI of  is a function from  A  to  B.

∴  The functions BI of  and  f  are defined on the same domain A.

Let Aa ∈ , then ( )( ) ( ) ( ) ( ) [ : A BB BI of a I f a f a f= = →�  we have ( ) ]f a B∈

           BI of f∴ =                              ... (2)

From (1) and (2) we have A BfoI f I of= = .

1.2.17   Theorem:  Let  : A Bf →   be  a bijection.  Then 1
Bfof I− =  and 1

Af of I− = .

Proof :  Since : A Bf →   is a bijection then 1 : B Af − →  is also a bijection.  Hence 1fof −  is a bijection

from  B  to  B and 1f of−  is a bijection from  A  to  A.   We have that BI  is a bijection from  B  to  B  and AI

is a bijection from  A  to  A.

∴  The functions 1fof −  and BI  are defined on the same domain B.

    Let Bb ∈ .  Since  : A Bf →   is a bijection then there exists a unique Aa ∈  such that

    ( )f a b=   i.e.,  1( )f b a− = .
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      Thus  ( )1 1( ) ( ) ( ) ( )Bfof b f f b f a b I b− −= = = =

                      1
Bfof I−∴ =

The functions 1f of−  and AI  are defined on the same domain.

   We have ( )1 1 1( ) ( ) ( ) ( )Af of a f f a f b a I a− − −= = = =

                        1
Af of I−∴ = .

1.2.18  Theorem:  Let : A Bf →   be a function.  Then  f   is a bijection if and only if there exists a

function : B Ag →  such that Bfog I=  and Agof I=  and, in this case, 1g f −= .

Proof:  Let : A Bf →   be a bijection. Then 1 : B Af − →  is a bijection [from Corollary 1.2.2].  Take 1g f −= .

Then from Theorem 1.2.17, Bfog I=  and Agof I= .

Conversely, if there exists a function : B Ag →  such that Bfog I=  and Agof I=  then   Agof I=  is an

injection, we get from Theorem 1.2.8 that  f  is an injection.  Also, since Bfog I=  is a surjection, we get from

Theorem 1.2.11 that  f  is a surjection.

: A Bf∴ →  is a bijection.  Hence 1 : B Af − →  is a bijection. We also have : B Ag → .

1f −∴  and  g  are defined on the same domain  B.

Let Bb ∈ .  Since : A Bf →   is a bijection then there exists a unique ' ' Aa ∈  such that ( )f a b=  or
1( )f b a− = .   Now

               ( )1( ) ( ) ( ) ( ) ( ) ( )Af b a I a gof a g f a g b− = = = = =
1g f −∴ = .

1.2.19  Theorem:  Let : A Bf → , : B Cg →  and : C Dh → .  Then ( ) ( )ho gof hog of= , that is,
composition of  functions is associative.

Proof:  Since   f  :  A →  B,   g  :  B →  C  and : C Dh → ,

      gof  :  A →  C  and  h  :  C →  D      ( ) : A D⇒ →ho gof .  Further

 : A Bf →   and  hog  :  B →  D  ( ) : A D⇒ →hog of .

Thus ( )ho gof  and ( )hog of  have the same domain  A .   Let  ‘a’  be any element of  A. Now

[ ] ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )ho gof a h gof a h g f a hog f a hog of a= = = =

                                        ( ) ( )ho gof hog of∴ = .
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1.2.20  Solved Problems

1. Problem:  If  : :f g→ , →R R R R   are defined by ( ) 4 1f x x= −  and 2( ) 2g x x= + then find

   (i)  ( ) ( )gof x           (ii)  
1

( )
4

a
gof

+ 
  

 (iii)   ( )fof x            (iv) ( )(0)go fof .

Solution

 (i) ( ) 2 2) ( ) ( ) ( ) (4 1) (4 1) 2 16 8 3gof x g f x g x x x x= = − = − + = − +                ... (1)

(ii) from (1) we have 
2

21 1 1
( ) 16 8 3 2

4 4 4

a a a
gof a

+ + +     = − + = +          
         (iii) ( )( ) ( ) ( ) (4 1) 4 (4 1) 1 16 5fof x f f x f x x x= = − = − − = −                ... (2)

         (iv) from (2) we have ( ) (0) 0 5 5fof = − = −

( )( ) (0) (0) ( 5) 25 2 27go fof g fof g∴ = = − = + = .

2. Problem:  If [ ] [ ]: 0,3 0,3f →  is defined by ( ) 1 , 0 2

3 , 2 3

x x
f x

x x

+ ≤ ≤
=  − < ≤

 , then show that

[0, 3] [0, 3]f ⊆   and  find  fof.

Solution: 0 ≤  x ≤  2 ⇒ 1 ≤  1 + x ≤  3    ... (1)

2 < x ≤  3 ⇒ −  3 ≤  −  x <  −  2

⇒ 3 − 3 ≤  3 −  x < 3 − 2

⇒ 0 ≤  3 − x < 1    ... (2)

           From (1) and (2),   f [0, 3] ⊆  [0, 3].

When 0 ≤  x ≤  1 we have

( ) [ ]( ) ( ) ( ) (1 ) 1 1 2 . 1 1 2fof x f f x f x x x x= = + = + + = + ≤ + ≤�

When 1 2x< ≤  we have

   ( ) [ ]( ) ( ) (1 ) 3 (1 ) 2 . 2 1 3fof x f f x f x x x x= = + = − + = − < + ≤�

When 2 3x< ≤ we have

   ( ) [ ]( ) ( ) (3 ) 1 3 4 . 0 3 1fof x f f x f x x x x= = − = + − = − ≤ − <�

       

2 , 0 1

( ) ( ) 2 , 1 2

4 , 2 3

x x

fof x x x

x x

+ ≤ <
∴ = − < ≤
 − < ≤
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3.  Problem:  If  f , g : R→R  are defined by 
0 if

( )
1 if

x
f x

x

∈
=  ∉

Q

Q

and 
1 if

( )
0 if

x
g x

x

− ∈
=  ∉

Q

Q
 then  find  ( fog) (π)  + (gof )(e).

Solution: ( fog) (π)  =   f (g(π))  =  f(0) = 0

(gof ) (e)   =  g( f (e))  = g(1) = −1

∴   ( fog) (π)  + (gof ) (e)  = −1.

4.  Problem:  Let { } { } { }A 1,2,3 , B , , , C , ,a b c p q r= = = . If : A B, : B Cf g→ →  are defined by

{ } { }(1, ), (2, ), (3, ) , ( , ), ( , ), ( , )f a c b g a q b r c p= =  then show that 1 1 1( )f og gof− − −= .

Solution:  Given that { }(1, ), (2, ), (3, )f a c b=  and { }( , ), ( , ), ( , )g a q b r c p=  then

                               { } { }1(1, ), (2, ), (3, ) ( ) ( ,1), ( , 2), ( ,3)gof q p r gof q p r−= ⇒ = .

 { } { }1 1( , ), ( , ), ( , ) , ( ,1), ( , 2), ( ,3)g q a r b p c f a c b− −= =  then

  { }1 1 ( ,1), ( ,3), ( , 2)f og q r p− − = .

       1 1 1( )gof f og− − −∴ = .

5. Problem:  If  :f →Q Q  is defined by ( ) 5 4f x x= +  for all x ∈ Q , show that  f  is a bijection and

find 1f − .

Solution:  Let 1 2 1 2 1 2 1 2, , ( ) ( ) 5 4 5 4x x f x f x x x x x∈ = ⇒ + = + ⇒ =Q .

f∴  is an injection.

Let y ∈ Q .  Then 
4

5

y
x

−= ∈ Q  and

4 4
( ) 5 4

5 5

y y
f x f y

− −   = = + =      
.

f∴  is a surjection and hence   f  is a bijection.

1 :f −∴ →Q Q  is a bijection.

We have 1 ( ) ( )fof x I x− =

      ( )1 ( )f f x x− =

     15 ( ) 4f x x− + =

1 4
( )

5

x
f x− −=  for all x ∈ Q .
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Exercise 1(b)

 I. 1. If ( ) xf x e=  and ( ) logeg x x= , then show that fog gof=  and find 1f −  and 1g− .

2. If  
2 2

( ) , ( )
1 1

y y
f y g y

y y
= =

− +
 then show that ( ) ( )fog y y= .

3. If :f →R R  and :g →R R  are defined by 2( ) 2 3f x x= +  and ( ) 3 2g x x= − , then find

( ) ( ) ( )( ) ( ), (i ) ( ), (0ii ii ),ifog x gof x fof ( ) (v ) (3)i go fof .

4. If : , :f g→ →R R R R  are defined by 2( ) 3 1, ( ) 1f x x g x x= − = + , then find

( ) ( ) ( )2( 1), (2),i ii iii (2 3)fof x fog gof a+ − .

5. If 
1

( ) , ( )f x g x x
x

= =  for all ( )0,x ∈ ∞ , then find ( ) ( )gof x .

6. If  
1

( ) 2 1, ( )
2

x
f x x g x

+= − =  for all x ∈ R ,  then find ( ) ( )gof x .

7. If 2( ) 2, ( ) , ( ) 2f x g x x h x x= = =  for all x ∈ R , then find ( )( ) ( )fo goh x .

8. Find the inverse of the following functions.

(i) , , :a b f∈ →R R R   defined by ( ) ( 0)f x ax b a= + ≠ .

(ii) :f → (0,∞)R  defined by ( ) 5xf x = .

(iii) : (0, )f ∞ → R  defined by 2( ) logf x x= .

9. If  f (x) = 1 + x + x2 + .....  for  | x | < 1  then show that 1 1
( )− −= x

f x
x

.

10. If   f  : [1, ∞ ) →  [1, ∞ ) defined by  f (x) = 2x(x − 1) then find  f −1(x).

II. 1. If 1
( ) , 1,

1

x
f x x

x

−= ≠ ±
+

 then verify 1 ( )fof x− = x.

2. If { } { } { }A 1,2,3 , B , , , C , ,p q rα β γ= = =  and : A B, : B Cf g→ →  are defined by

{ } { }(1, ), (2, ), (3, ) , ( , ), ( , ), ( , )f g q r pα γ β α β γ= = ,

then show that  f  and  g  are bijective functions and 1 1 1( )gof f og− − −= .

3. If : , :f g→ →R R R R   defined by 2( ) 3 2, ( ) 1f x x g x x= − = + , then find

( ) ( ) ( )1i ii( ) 2 , ( ) ( 1)gof gof x− − .

4. Let { }(1, ), (2, ), (4, ), (3, )f a c d b=  and { }1 (2, ), (4, ), (1, ), (3, )g a b c d− = ,

then show that 1 1 1( )gof f og− − −= .
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5. Let : , :f g→ →R R R R  be defined by 3( ) 2 3, ( ) 5f x x g x x= − = +   then find 1( ) ( )fog x− .

6. Let 2( ) , ( ) 2= = xf x x g x  . Then solve the equation ( ) ( ) ( ) ( )fog x gof x= .

7. If 
1

( ) ( 1)
1

x
f x x

x

+= ≠ ±
−

 then find ( ) ( )fofof x  and ( ) ( )fofofof x .

1.3 Real valued functions  (Domain, Range and Inverse)

If  X  is any set, : Xf → R  then   f   is called a real valued function. For example let

X , , ,
a b

a b c d
c d

   = ∈  
   

R , define : Xf → R   by (A)f = det  A  for all A X∈ ,

then   f  is a real valued function.

In this section a function  f  is defined through a formula, without mentioning the domain and the range

explicitly.  In such cases, the domain of   f   is taken to be the set of all real  x  for  which the formula is

meaningful.  The range of  f  is the set { ( ) |f x x   is in the domain of   f }.

1.3.0 (a) :  nth  root of a non-negative real number

Let  x  be a non-negative real number and  n  be a positive integer.   Then there exists a unique non-

negative real number  y  such that ny x= .  The proof is beyond the scope  of this book.   This number y is

called the nth root  of x and is denoted as 1/nx  (or) n x .

When 22,n x=  is called the square root of 2.x x  is written simply as x .

If x is any real number and n is an odd positive integer there exists a unique real number y such that

yn = x so that we write  ny x=  or 
1
nx .

1.3.0 (b): ax  when 1 0a≠ >  and  x  is a rational number:

If  1 0a≠ >   and  
m

x
n

=  where m, n are integers and n > 0 we define ( )
1

x m na a= .

1.3.1  Examples

1. Example:  The domain of the real valued function 2 2( ) ( 0)= − >f x a x a  is [ ],a a− .

[Since 
2 2 2 2 2 2, ( 0) 0 ]a x a a x x a x a a x a− ∈ > ⇔ − ≥ ⇔ ≤ ⇔ ≤ ⇔ − ≤ ≤R .

2. Example:  The domain of the real valued function 
1

( )
2 1

f x
x

=
+

 is R 
1

2
 − 
 

.

 
1 1

Since 2 1 0
2 1 2

x x
x

 ∈ ⇔ + ≠ ⇔ ≠ − + 
R
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1.3.2   Algebra of real valued  functions

If  f  and  g  are real valued functions with domains A  and  B  respectively, then both

f  and  g  are defined on A B∩  when A B∩ φ≠ .

(i) Let : Af → R  and : Bg → R .  Suppose that A B φ∩ ≠ , we define

,f g f g+ −  and fg  on A B∩  as ( ) ( ) ( ) ( )f g x f x g x± = ±  and

( ) ( ) ( ) ( )fg x f x g x= .

Let : Af → R  and  c  be a constant function defined on  A.  Then from the

above definition ( ) ( ) ( )f c x f x c+ = +  and ( ) ( ) ( )cf x cf x=  for all Ax ∈ .

The function ( 1) f−  is denoted by − f.

(ii) Let { }E A B ( ) 0x g x φ= ∈ ∩ ≠ ≠ .  We define  
f

g
  on  E  by

( )
( )

( )

f f x
x

g g x

 
= 

 
 for all Ex ∈ .  Note that if ( ) 0g x = , then 

( )

( )

f x

g x
 is not

defined.

(iii) Let : Af → R  and n ∈ N .  We define f  and nf  on  A by ( ) ( )f x f x=

and ( )( ) ( )
nnf x f x=  for all Ax ∈ .

(iv)  If { }E A ( ) 0x f x φ= ∈ ≥ ≠ , then we define f  on E  by

( ) ( )f x f x= ,   for all Ex ∈ .

In view of the above, we can conclude that  if   f,  g  are defined  on their
respective  domains then

domain ( f + g)  =  domain  of  f  ∩  domain of g

domain  ( fg)       =  domain of  f   ∩   domain of g

domain  
 
 
 

f

g    =  domain of   f  ∩    domain of g ∩  {x : g(x) ≠  0}

domain  ( )f   = domain of   f   ∩   {x : f (x)  >  0}
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1.3.3   Solved Problems

1. Problem:  Find the domains of the following real valued functions.

(i) f (x)  =  2

1

6 5x x− − (ii)     f (x)  =  
2 2

1
( 0)a

x a
>

−
(iii) f (x)  =  ( 2) ( 3)x x+ − (iv)    f (x)  = ( ) ( )(0 )x xα β α β− − < <

(v) f (x)  =  2 1x x− + + (vi)    f (x)  =  
2

2

1
1

3 2
x

x x
− +

− +

(vii) f (x)  =  
1

x x−
(viii)   f (x) =  x x−

Solution

(i) 2

1 1
( ) ( 1) (5 ) 0

6 5 ( 1) (5 )
f x x x

x x x x
= = ∈ ⇔ − − ≠

− − − −
R

          1,5x⇔ ≠
           ∴  Domain of   f  is  R  {1, 5}.

(ii) 2 2

2 2

1
( ) 0f x x a

x a
= ∈ ⇔ − >

−
R

                  ( ) ( ) 0x a x a⇔ − + >
                                 x a⇔ < −  (or) x a>
                                 ( , ) ( , )x a a⇔ ∈ −∞ − ∪ ∞

       ∴  Domain of   f  is ( , ) ( , )a a−∞ − ∪ ∞ = R  [ ],a a− .

(iii) ( ) ( 2) ( 3) ( 2) ( 3) 0f x x x x x= + − ∈ ⇔ + − ≥R

                       2x⇔ ≤ −  or  3x ≥
                                                         ( ] [ ), 2 3,x⇔ ∈ −∞ − ∪ ∞ = R  (−2, 3)

       ∴  Domain of  f  is ( ] [ ), 2 3,−∞ − ∪ ∞ = R  (−2, 3).

(iv)  ( ) ( ) ( ) ( ) ( ) 0f x x x x xα β α β= − − ∈ ⇔ − − ≥R

                           ( )xα β α β⇔ ≤ ≤ <�

                           [ ],x α β⇔ ∈
       ∴  Domain of  f  is [ , ]α β .

(v) ( ) 2 1f x x x= − + + ∈ R  2 0x⇔ − ≥   and  1 0x+ ≥

                     2 x⇔ ≥  and 1x ≥ −
                     1 2x⇔ − ≤ ≤

                     [ ]1,2x⇔ ∈ −
        ∴ Domain of  f  is [ −1, 2].
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(vi) 2 2

2

1
( ) 1 1 0

3 2
f x x x

x x
= − + ∈ ⇔ − ≥

− +
R   and  2 3 2 0x x− + >

 ( 1) ( 1) 0x x⇔ + − ≥  and ( 1) ( 2) 0x x− − >

 ( ] [ ), 1 1,x⇔ ∈ −∞ − ∪ ∞  and ( ,1) (2, )x ∈ −∞ ∪ ∞ .

 (x⇔ ∈ R  (−1, 1) ∩  (R  [1, 2])).

 x⇔ ∈ R  ( ) [ ]{ }1,1 1,2− ∪

 x⇔ ∈ R  ( ] ( ] ( )1,2 , 1 2,− = −∞ − ∪ ∞ .

∴  Domain of  f  is ( ], 1 (2, )−∞ − ∪ ∞ = R  ( ]1,2− .

(vii)
1

( ) 0f x x x x x
x x

= ∈ ⇔ − > ⇔ >
−

R

           ( ,0)x⇔ ∈ −∞ .

  ∴  Domain of  f  is ( , 0)−∞ .

(viii)  ( ) 0= − ∈ ⇔ − ≥Rf x x x x x , which is true for all ∈ Rx .

 ∴ Domain of  f  is R .

2. Problem:  If { }(4,5), (5,6), (6, 4)f = −  and { }(4, 4), (6,5), (8,5)g = −  then find

 (i)   f + g (ii)   f − g (iii)  2f + 4g  (iv)   f + 4

 (v)  fg (vi)  f / g (vii) | f | (viii) f

(ix)  f  2 (x)   f 3

Solution:  Domain of { }A 4,5,6f = = ,  Domain of { }B 4,6,8g = = .

                 Domain of  { }A B 4, 6± = ∩ =f g .

(i) { } { }(4,5 4), (6, 4 5) (4,1), (6,1)f g+ = − − + =  and

(ii) { } { }(4,5 4), (6, 4 5) (4,9), (6, 9)f g− = + − − = − .

(iii) Domain of { }2 A 4, 5, 6 ,f = =   Domain of { }4 B 4,6,8g = = .

  { } { }2 (4,10), (5,12), (6, 8) , 4 (4, 16), (6,20), (8,20)f g∴ = − = − .

Domain of { }2 4 4,6f g+ =

               { } { }2 4 (4,10 16), (6, 8 20) (4, 6), (6,12)f g∴ + = − − + = − .
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(iv) Domain of   { }4 A 4,5,6f + = =

      { } { }4 (4,5 4), (5,6 4), (6, 4 4) (4,9), (5,10), (6,0)f + = + + − + = .

(v) Domain of   { }A B 4,6fg = ∩ =

  ( ) ( ){ } { }4, (5) ( 4) , 6, ( 4) ( 5) (4, 20), (6, 20)fg = − − − = − .

(vi) Domain of    { }4,6
f

g
= .

        
5 4

4, , 6,
4 5

f

g

 − −   ∴ =         
.

(vii) Domain of     { }A 4,5,6f = = .

       { }(4,5), (5,6), (6,4)f∴ = .

(viii) Domain of { }4,5f = .

      { }(4, 5), (5, 6)f∴ = .

(ix) Domain of  { }2 A 4,5,6f = = .

      { }2 (4,25), (5,36), (6,16)f∴ = .

(x) Domain of  { }3 A 4,5,6f = = .

     { }3 (4,125), (5,216), (6, 64)f∴ = − .

3. Problem:  Find the domains and ranges of the following real valued functions.

( ) ( ) ( ) 2
2

2
( ) (i ii iii) ( ) 9

2 1

x x
f x f x f x x

x x

+= = = −
− +

Solution

(i)
2

2 0 2
2

x
x x x

x

+ ∈ ⇔ − ≠ ⇔ ≠ ⇔ ∈
−

R R  {2}.

∴  Domain of  f  is R  {2}.

Let  
2 2 ( 1)

( ) ,
2 ( 1)

x y
f x y y x

x y

+ −= ⇒ = ⇒ =
− +

 clearly,  x  is not defined for

1 0y + =  i.e., when 1y = − .   ∴  range of   f = R  {−1}.

(ii)   
2

( )
1

x
f x x

x
= ∈ ⇔ ∈

+
R R  is defined for all x ∈ R , since x2 + 1 ≠ 0  for x ∈ R .

∴  Domain of  f  is R .

If  x = 0  then  f (x) = 0,  If x ≠ 0 then f (x) ≠  0.
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Let  
2

2
2

1 1 4
( ) 0

1 2

yx
y f x x y x y x

x y

± −
= = ⇒ − + = ⇒ =

+
 is a real number

iff   21 4 0 (1 2 ) (1 2 ) 0;y y y− ≥ ⇔ + − ≥

             
1 1

,
2 2

y
− ⇒ ∈   

∴  range of   
1 1

,
2 2

f
− =   

.

(iii) 2 2( ) 9 9 0f x x x= − ∈ ⇔ − ≥R

          [ ](3 ) (3 ) 0 3,3x x x⇔ + − ≥ ⇔ ∈ − .

  ∴  domain of  [ ]3,3f = − .

Clearly   f (x)  29 [0, 3]x= − ∈ .     Suppose    [0, 3]y ∈ .

 Then 29 [0, 3]x y= − ∈   and   2( ) 9 (9 )f x y y= − − = .

∴  range of   [ ]0,3f = .

1.3.4  Some more types of functions

1.   Even and odd functions :  Let  A  be a nonempty subset of  R  such that Ax− ∈   for  all Ax ∈   and

: Af → R .

(i) If ( ) ( )f x f x− =  for every  x  in  A  then  f  is called an even function.

(ii) If ( ) ( )f x f x− = −  for every  x  in A then  f  is called an odd function.

Examples

(i) 2( ) , ( ) cos , ( ) ( )f x x g x x h x x x= = = ∈ R  are all even functions.

(ii) ( ) , ( )f x x x= ∈ R  is an odd function.

g (x) = tan x  is an odd function on  R 
2 1

,
2

n
nπ+ ∈ 

 
Z .

(iii) 2 3( ) , ( ) cos sinf x x x g x x x= + = +  are neither even nor odd.

Every real valued function defined on a nonempty subset A of R such that A Ax x∈ ⇒ − ∈ can be
written as sum of an even and odd functions.

Consider 
( ) ( )

( )
2

f x f x
g x

+ −=   and 
( ) ( )

( )
2

f x f x
h x

− −=  then  g  is even and  h  is odd since

g (x) = g (− x)  and  h (x) = − h (− x).  Clearly

( ) ( ) ( )f x g x h x= + .
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2.  Polynomial function :   If  n  is a non negative integer, 0 1 2, , , ...., na a a a  are real numbers (at least

one 0ia ≠ ) then the function  f  defined on R  by
2

0 1 2( ) .... n
nf x a a x a x a x= + + + +   for all x ∈ R  is called a polynomial function.

Examples

(i) ( ) ( , )f x ax b a b= + ∈ R  is  a   polynomial function.

(ii) 4 2( ) 7 3 2g x x x= − + +  is   a   polynomial function.

(iii) ( ) (0 )h x k k= ≠ ∈ R  is   a   polynomial function.

3.  Rational function :  If   f   and   g   are polynomial functions and ( ) 0g x ≠  for all x ∈ R  then  the

function  
f

g
  defined by  ( )

( )
( )

f f x
x

g g x

 
= 

 
  is called a rational function.

Examples: 1.  
2

2

3 2

1

x x

x

− +
+

 is a rational function.

2. 1
( ) ,f x x

x
= ∈ R   {0}  is a rational function.

Fig.  1.4 Graph of 
1

( )f x
x

= .

4.   Algebraic function:  Operations like addition, subtraction, multiplication, division and extraction

of square root etc., are called algebraic operations.   A function obtained by applying a finite number

of algebraic operations on polynomial functions is called an algebraic function.

Examples :  ( ) [ ]
2 23 9

( ) , ( 3,3
2

i
x x

f x x
x

+ −= ∈ −   {0}).

( ) 2 2( ) 7 , (i 0), (i f x x a x a x= − + > ∈ R   ( , ))a a− .

X0

Y



Functions 29

5. Exponential function:  The function ax when 1 ≠  a > 0 and  x  is rational, is already defined in this
chapter.  This can be extended to real  x  as well, inheriting all the exponential properties.  We do not
present a formal definition of  ax (x ∈ R ) but assume the existence of such a (unique) function.  This
function is called an exponential function.  Even though the definition presented in chapter 9 is
slightly different, these two are equivalant.  The domain of the function ax is  R and  the range is R+.

Fig. 1.5 graph of  ax

6. Logarithmic function:  If  a > 0, a ≠ 1, given y > 0 there is a unique x ∈ R   such that  ax = y.
The function defined on R+ by  f(y) = x,  where ax = y, is called the logarithmic  function  to  the

base  ‘a’.   This function is denoted by loga.  Thus loga y  = x  iff  ax = y.   The logarithmic function to

the base  e  is called  the natural logarithmic function and is denoted by ‘log’ and also ln.  Thus

log y = lny = x  iff   ex  = y.   Clearly the domain of  loga  function is (0, )∞ .  Further its range is  R.

Fig.  1.6 Graph of loga x

7. Greatest Integer function:  For any real number  x, we denote by [ ]x , the greatest integer less than or

equal to  x.   For example [1.72] 1,[ 3.41] 4,= − = − [0.22] 0,=  [ ]0.71 1− = − .

Y

0

y = ax, (a = 1)

Y

y = ax, (a > 1)

0 X

Y

y = ax, (0 < a < 1)

0

Y

X

y = loga
   x, (a > 1)

Y

X

y = loga
   x, (0 < a < 1)

XX

0
0
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The function :f →R R  defined by [ ]( )f x x=  for all x ∈ R  is called the greatest integer

function.   The domain of the greatest integer function is R  and the range is the set Z  of all integers.

Fig. 1.7 Graph  of greatest integer function

8. Modulus function :  The  function   f : R →R defined by f (x) = |x| for  each x ∈ R  is called
modulus function.  For each non-negative value of x,  f (x)  is equal to x.  But for negative values of

x,  the value of   f (x) is the negative of the value of x   i.e.,

, 0
( )

, 0

x x
f x

x x

≥
=  − <

The graph is

Fig. 1.8   f (x) = | x |

Y

X0

y = |x |

Y

X0 1 2 3−3 −2 −1

1

2

−3

−2

−1
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9. Signum function: The function f  : R →R defined by

1, >0
| |

( ) ( ) 0, =0

1, 0

x
x

sgn x f x x
x

x


= = =
 − <

   is called signum function.  The domain is R and range is

{−1, 0, 1}.

Fig. 1.9  Graph of Signum function

1.3.5  Solved Problems

1. Problem:   If 2( )f x x=  and ( )g x x= ,  find the following functions.

2(i) (ii) (iii) (iv), , , 2 (v) (vi), , 3f g f g fg f f f+ − +

Solution:  Given that 2 , 0
( ) , ( )

, 0

x x
f x x g x x

x x

≥
= = =  − <

, domain f  =  domain g =  R.  Hence the domain

of  all the functions (i) through (vi) is R.

(i)
2

2

2

, 0
( ) ( ) ( ) ( )

, 0

x x x
f g x f x g x x x

x x x

 + ≥+ = + = + =
− <

(ii)
2

2

2

, 0
( ) ( ) ( ) ( )

, 0

x x x
f g x f x g x x x

x x x

 − ≥− = − = − =
+ <

(iii)
3

2

3

, 0
( ) ( ) ( ) ( )

, 0

x x
fg x f x g x x x

x x

 ≥= = = 
− <

(iv) 2(2 ) ( ) 2 ( ) 2f x f x x= = .

(v) ( )22 2 2 4( ) ( ) ( )f x f x x x= = = .

(vi) 2( 3) ( ) ( ) 3 3f x f x x+ = + = + .

2. Problem:  Determine whether the following functions are even or odd.

   (i) ( ) sinx xf x a a x−= − + ,
1

( )
1

(ii)
x

x

e
f x x

e

 −=  
+ 

,

0

1

−1

y = 1

y = − 1

X

Y

X′

Y′
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 2( ) log ( 1i )(i i) f x x x= + +

Solution: Clearly in all the cases domain  f   =   R

  (i)   We have  ( ) sinx xf x a a x−= − +

    ( ) sin ( ) sin ( sin ) ( )x x x x x xf x a a x a a x a a x f x− − −∴ − = − + − = − − = − − + = − .

f∴  is an odd function.

 (ii)  
1

( )
1

 −=  + 

x

x

e
f x x

e

       
1 1 1

( ) ( ) ( )
1 1 1

x x x

x x x

e e e
f x x x x f x

e e e

−

−

     − − −− = − = − = =     
+ + +     

.

f∴  is an even function.

(iii)   2 2( ) log ( 1) ( ) log ( 1)= + + ⇒ − = − + +f x x x f x x x

 ( )
2 2

2

( 1) ( 1)
log

( 1)

x x x x
f x

x x

 + + − + +∴ − =  
+ +  

    
2 2

2 1

2

1
log log( 1)

1

x x
x x

x x

− + −= = + + 
+ + 

 2( ) log ( 1) ( )f x x x f x∴ − = − + + = − .

f∴  is an odd function.

3. Problem:  Find the domains of the following real valued  functions.

(i)  
[ ] [ ]2

1
( )

2
f x

x x
=

− −
         (ii)  [ ]( )( ) logf x x x= −

(iii) 10

3
( ) log

x
f x

x

− =   
         (iv)  

10

1
( ) 2

log (1 )
f x x

x
= + +

−

(v) 3 3
( )

x x
f x

x

+ + −=
Solution

  (i)  
[ ] [ ]

[ ] [ ]2

2

1
( ) 2 0

2
f x x x

x x
= ∈ ⇔ − − >

− −
R

                [ ]( ) [ ]( )1 2 0x x⇔ + − >

    [ ] 1x⇔ < −   (or)  [ ] 2x > .
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    But  [ ] [ ]1 2, 3, 4............ 1x x x< − ⇒ = − − − ⇒ < −

   [ ] [ ]2 3,4,5,.......... 3x x x> ⇒ = ⇒ ≥

∴  Domain of ( ) [ ), 1 3,f = −∞ − ∪ ∞ = R  [−1, 3).

   (ii)   [ ]( ) [ ] [ ]( ) log 0f x x x x x x x= − ∈ ⇔ − > ⇔ >R

               ⇔  x  is a non-integer

∴  Domain of  f  is R  Z.

  (iii)   10 10

3 3
( ) log log 0

x x
f x

x x

− −   = ∈ ⇔ ≥      
R  and 

3
0

x

x

− >

       03
10 1

x

x

−⇔ ≥ =   and 3 0, 0x x− > >

       3 x x⇔ − ≥  and 0 3x< <
       3 / 2x⇔ ≤  and 0 3x< <

       
3 3

, (0, 3) 0,
2 2

x
   ⇔ ∈ −∞ ∩ =     

∴  Domain of  f  is 
3

0,
2

 
  

.

  (iv)   
10

1
( ) 2 2 0

log (1 )
f x x x

x
= + + ∈ ⇔ + ≥

−
R  and 1 0x− >  and 1 1x− ≠

     2x⇔ ≥ −  and  1 x>   and 0x ≠

     [ )2, ( ,1)x⇔ ∈ − ∞ ∩ −∞ { }0 [ )2,1x⇔ ∈ − { }0

∴  Domain of   f  is [−2, 1)  { }0 .

   (v)    3 3
( ) 3 0, 3 0, 0

x x
f x x x x

x

+ + −= ∈ ⇔ + ≥ − ≥ ≠R

         3 3, 0x x⇔ − ≤ ≤ ≠

         [ ]3,3x⇔ ∈ −  { }0

∴  Domain of  f  is [ ]3,3−  { }0 .
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Exercise 1(c)

I. 1.  Find the domains of the following real valued functions.

 (i) f (x)  =  2

1

( 1) ( 3)x x− +
(ii) f (x)  =  

22 5 7

( 1) ( 2) ( 3)

x x

x x x

− +
− − −

     (iii) f (x)  =  
1

(2 )log x−
(iv) f (x)  =  3x −

     (v) f (x)  =  24x x− (vi) f (x)  =  
2

1

1 x−

     (vii) f (x)  =  
3

1

x

x +
(viii) f (x)  =  2 25x −

     (ix) f (x)  =  [ ]x x− (x) f (x)  =  [ ]x x−

2.  Find the ranges of the following real valued functions.

 ( ) 2i 4log x− ( ) [ ]ii x x− ( ) [ ]
[ ]2

1
iii

sin x

x+

π

( )
2

2
v

4
i

x

x

−
− ( ) 2v 9 x+

3.   If  f  and  g  are real valued functions defined by ( ) 2 1f x x= −  and  2( )g x x=   then find

 ( (3 2 ) ( )i) f g x−       (ii) (( ) )fg x        (iii) ( )
f

x
g

 
   

(iv) 2) )( (f g x+ +

4.  If { }(1,2), (2, 3), (3, 1)f = − −  then find

 2(i) (ii) (iii)2 (i2 v)f f f f+

II. 1. Find the domains of the following real valued functions.

  (i)   2( ) 3 2f x x x= − +          (ii)  2i) ( ) ( 4 3)f x log x x= − +

(iii)   
2 2

( )
x x

f x
x

+ + −=         (iv)  
( )

3
4

1
v ( )

( 2) 10x

f x
x log −

=
−

 (v)   [ ]
24

( )
2

x
f x

x

−=
+

        (vi)  2
0 3i ( ) ( ).f x log x x= −

    (vii)   
1

( )f x
x x

=
+
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2. Prove that the real valued function ( ) 1
1 2x

x x
f x

e
= + +

−
 is an even function on

R  {0}.

3. Find the domain and range of the following functions.

[ ]
[ ] 2

(i) (ii) (iii
tan

( ) ( ) ( )) 1
2 31 sin

x x
f x f x f x x x

xx x
= = = + +

− + +  

π
π

Key Concepts

� If : A Bf →  is a function then { }(A) ( ) | Af f a a= ∈  is called the range  f.   It is a subset of  B,

and is denoted by Range f.

� : A Bf →  is an injection ⇔ 1 2 1 2, A, ( ) ( )∈ =a a f a f a  imply 1 2=a a .

� : A Bf →  is a surjection ⇔  range f = codomain B ⇔  for any Bb ∈  there exists atleast one

Aa ∈  such that ( )f a b= .

� : A Bf →  is a bijection ⇔  f  is both an injection and a surjection.

� If : A Bf →  is a bijection then the relation { }1 ( , ) | ( , )f b a a b f− = ∈  is a bijection from B to A

and is called the inverse function of  f.

� Let : A Bf → , : B Cg →  be functions then ( ) : A Cgof →  is a function and

( )( ) ( ) ( )gof a g f a=  for all  a ∈  A.

� If : A Bf → , : B Cg →  are bijections so is ( ) : A Cgof →  and 1 1 1( )gof f og− − −= .

� If : A Bf →  is a bijection, then 1
Bfof I− =  and 1

Af of I− = .

� If : A Bf → , : B Cg →  are such that ,A Bgof I fog I= =  then  f  is a bijection and 1g f −= .

� Let  A  be a nonempty subset of  R such that Ax− ∈  for all Ax ∈  and : Af → R .

(i) If ( ) ( )f x f x− =  for all Ax ∈  then  f  is called an even function.

(ii) If ( ) ( )f x f x− = −  for all Ax ∈  then  f  is called an odd function.
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Historical Note

The history of the term “Function” furnishes an interesting example of the enthusiasm in

mathematicians to modify, refine and generalize their concepts.

The word “Function” seems to have been known to Descartes (1596 - 1650) in 1637,

who employed the term simply to mean some positive integral powers, ,nx  of a variable x.  Somewhat

later, Leibnitz (1646 - 1716) employed the term to denote any quantity connected with a curve,

such as the coordinates of a point on the curve, the slope of the curve etc.  Johann Bernoulli

(1667 - 1748) regarded a function as any expression made up of a variable and some constants and

Euler (1707 - 1783) gave a symbolic representation as f(x) to a function.  Euler’s concept remains

unchanged till  Fourier (1768 - 1830) has modified the earlier definition of a function in his

investigations of trigonometric series.  These series involve a more general type of relationship between

variables that had previously been studied and have become instrumental in his attempt to furnish the

present definition of function broad enough to encompass such relationships by Lejeune Dirichlet

(1805 - 1859).

Answers

Exercise 1(a)

I. 1. (i)  5 (ii)  2 (iii) −2.5 (iv) 1         (v)  Not defined

5. {3, 1, 7}

6. 
1 7 13

,1, ,
2 4 5

 
 
 

II. 1. (i)   f  is not a surjection (ii)  g  is a surjection

2. (i)  bijection (ii) bijection

(iii) bijection (iv) bijection

(v) not an injection but a surjection (vi) neither injection nor surjection

3. a = 2;  b = −1 5.    2 6. a = ± 1, b = 1
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Exercise 1(b)

I. 1.  1 1( ) log , ( ) x
ef x x g x e− −= =

3.   (i)   218 24 11x x− + (ii) 26 7x + (iii)  21

     (iv)  2653

4.   (i)   29 5x + (ii)  14 (iii) 236 120 101a a− +

5.   
1

x
6. x 7.   2

8.  (i) 
x b

a

−
(ii) 5log x  (iii) 2x

10.  21 4log

2

x+

II. 3. (i)  
25

9
(ii)  29 30 26x x− + 5.  

1/3
7

2

x − 
  

6. 0, 2x = 7.  ( ),f x x

Exercise 1(c)

I. 1. (i) R  {−1, 1, −3} (ii)   R  {1, 2, 3}

(iii) ( ), 2−∞ { }1 (iv)  R

(v) [0,4] (vi)  (−1, 1)

(vii) R  {−1} (viii) R  (−5, 5,)

(ix) R (x)  Z

2.   (i) R (ii)  {0}

(iii) {0} (iv)  R  {4}

 (v) [3, ∞ )

3.   (i)  22 6 3x x− + − (ii)  3 22x x−

(iii) 
2

2 1x

x

− (iv)  2( 1)x +
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4. (i)    { }(1,4), (2, 6), (3, 2)− − (ii)   { }(1,4), (2, 1), (3,1)−

(iii)  { }(1,4), (2,9), (3,1) (iv)  { }(1, 2)

II. 1.  (i)   R  (1,2) (ii) R  [1, 3]

(iii) [−2, 2]  {0} (iv) ( ), 4−∞   {2, 3}

(v)   [ ]( , 2) 1,2−∞ − ∪ − , (vi) (0,1)

(vii) (0, ∞ )

3. (i) Domain R ,  range {0}

(ii) Domain R  
2

3
 
 
 

,  Range R  
1

3

− 
 
 

(iii) Domain R , range [1, )∞
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 Introduction

A famous Italian Mathematician, Peano

defined a function  f : →N N  as ( ) 1f n n= +
which is known as Peano successor function.  He

obtained some algebraic properties of the set N of all

natural numbers by using this function  f  in his

axiomatic approach.  One of his axioms is known as

Inductive axiom or Induction Theorem.

To understand the basic principles of

mathematical induction consider the following simple

example.

Suppose a set of bicycles are placed, very

closely adjacent to each other.

When the first bicycle is pushed in a particular

direction,  all the bicycles will fall in that direction.

Laplace
(1749 - 1827)

Pierre Simon de Laplace was a
French mathematician and
astronomer whose work was pivotal
to the development of mathematical
astronomy.   His most outstanding
work was done in the fields of
celestial mechanics, probability,
differential equations, and geodesy.
His five volume work on celestial
mechanics earned him the title of the
Newton of France.

“Analysis and natural philosophy  owe  their most
important  discoveries to this fruitful means,
which is called induction”

 −−−−− Laplace
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To be absolutely sure that all the bicycles will fall,  it is sufficient to know that

(a) the first bicycle falls and

(b) in the event that any bicycle falls, its successor necessarily falls.

This is the underlying principle of mathematical induction.

Mathematical Induction is a powerful tool frequently used to establish the validity of statements that

are given in terms of the natural numbers.

The inductive aspect is concerned with the search for facts by observation and experimentation.

For example,  we all know the fact that “Sun rises in the east”.  How can we say this happens always ? By

observing this phenomenon from ages,  we conclude that this goes on.  Thus,  we arrive at a conjecture for

a general rule by inductive reasoning.

2.1    Principles of Mathematical Induction & Theorems

Here under we state the well-ordering principle of the positive integer,  which can be used for the

proof of principle of finite mathematical induction.  However, we do not attempt to prove these theorems

at this stage.  Students who aspire to choose mathematics as major subject at the degree level have an

opportunity to learn the proof of both these theorems, the well-ordering principle and the principle of finite

mathematical induction.

2.1.1  Well - Ordering principle

Any non-empty set of positive integers has a least element.

2.1.2   Principle of finite mathematical induction

Let  S  be a subset of  N  such that

         1.  1 S∈
         2.  For any k ∈ N ,   S + 1 Sk k∈ ⇒ ∈ .

  Then  S  =  N.

2.1.3  Equivalent forms of principle of finite mathematical induction

Principle of finite mathematical induction has a good number of equivalent forms which are used in

appropriate occasions.  Three of them are stated here in 2.1.4, 2.1.5 and 2.1.6.  We present proof for

2.1.5 as it is an immediate consequence of  2.1.2, the principle of finite mathematical induction and  leave

the others as exercises.
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2.1.4  Statement : For each n ∈ N ,  let  P(n) be a statement.  Suppose that

(i) P(1) is true.

(ii) for any k ∈ N ,  if  P(k) is true, then  P(k + 1) is true.

   Then  P(n)  is true for all  n ∈ N .

2.1.5   Principle  of complete mathematical induction

Let  S  be a subset of  N such that

(i)   1 S∈

(ii)   for any  { }, 1, 2, 3,..., S 1 Sk k k∈ ⊆ ⇒ + ∈N

Then  S  =  N.

Proof: Let T = {m ∈  N : 1, 2, ..., m ∈  S}

Then 1 ∈  S ⇒  1 ∈  T  and

n ∈  T ⇒  1, 2, ..., n ∈  S

⇒  (n + 1) ∈  S

⇒  (n + 1) ∈  T

By the principle of finite induction (2.1.2), it follows that T = N.

∴   N = T ⊆  S.  But by hypothesis S ⊆  N.

Accordingly  S = N.

2.1.6 Statement : For each n ∈ N ,  let  P(n)  be a statement.  Suppose that

(i) P(1)  is true

(ii) for any k ∈ N ,  if  P(1),  P(2), ... , P(k)  are true,  then  P(k + 1) is true.

Then  P(n) is true for all n ∈ N .

It may happen that statements  P(n) are false for certain natural numbers but they are true for all

0n n≥  for some particular n
0
.

For example, the statement P(n) = (n − 1) (n − 3) (n − 5) is a positive integer is true for all 6n≥  but

not true when  n = 1  or  n = 3  or  n = 4  or  n = 5.  However it is true for  n = 2 also.  The principle of

mathematical induction can be modified to deal with this situation.  We will formulate the modified

principle, without proof.
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2.1.7   Principle of mathematical induction (Modified version)

Let 0n ∈ N  and let  P(n) be a statement for each natural number 0n n≥ . Suppose that

 (i)  The statement 0P ( )n  is true.

(ii)  For all 0k n≥ ,  P(k)  is true  ⇒   P(k  + 1)  is true.

Then  P(n)  is true for all 0n n≥ .

2.1.8   Steps to prove a statement using the principle of mathematical induction

The starting point or basis of induction is usually 1, but could be negative integer, positive integer or

zero.  Normally we expect to prove that  P(k) ⇒  P(k + 1).  So there are 3 steps to prove a statement

using the principle of mathematical induction.

1. Basis of induction : Show that P (1)  is true.

2. Inductive hypothesis : For  1k ≥ ,  assume that  P (k) is true.

3. Inductive step : Show that  P (k  +  1)  is true on the basis of

the inductive hypothesis.

Let us consider an example from which we observe that the principle of mathematical induction is

only a method of proof for a known or guessed or predicted formula and it is not a tool for finding such

formula.

2.1.9   Example

Let   S(n)  =  1 + 2 + 3 + ...  + n.

Let us examine a few values for  S(n) and list them in the following table:

n 1 2 3 4 5 6 7 8 9 01 11

(S n) 1 3 6 01 51 12 82 63 54 55 66

To guess a formula for S(n) may not be an easy task.  But we can observe the following pattern :

2 S(1)  =   2  =  1.2

2 S(2)  =   6  =  2.3

2 S(3)  = 12  =  3.4

2 S(4)  = 20  =  4.5 ,  and so on.

This leads us to conjecture that

2 S(n)  =  n(n + 1)  so that  S(n)  =  
( )1

2

n n +
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i.e.,  ( 1)...1 2 3
2

n n
n

++ + + + = .

Now let us use mathematical induction to prove the above formula.

Let  P(n) be the statement :  The sum S(n) of the first  n  positive integers is equal to 
( 1)

2

n n +
.

1.  Basis of induction  :  Since S(1)  =  1 =  
1 (1 1)

2

+
,  the formula is true for 1n = .

2.  Inductive hypothesis :  Assume the statement  P(n)  is true for n k= .

i.e., 
( 1)...S( ) 1 2 3

2

k k
k k

+= + + + + =  .

3. Inductive step :  To show that the formula is true for 1n k= + .

i.e., to show that 
( 1) ( 2)

S ( 1)
2

k k
k

+ ++ =  .

We observe that ...S ( 1) 1 2 3 ( 1)k k k+ = + + + + + +
       S ( ) ( 1)k k= + +

                      Since    
( 1)

S( )
2

k k
k

+=  , by the inductive hypothesis,

           we have 
( 1)

S ( 1) ( 1)
2

k k
k k

++ = + +

                   
( 1) ( 2)

2

k k+ +=

Therefore the formula holds for n = ( 1)k + .

∴  By the principle of mathematical induction, P(n)  is true for all n ∈ N .

i.e., the formula, 
( 1)...1 2 3

2

n n
n

++ + + + =   is true for all  n ∈ N .

2.2 Applications of  Mathematical Induction

Mathematical induction is very useful in proving many theorems and statements. For example, it is

useful in proving Binomial theorem, Leibnitz  theorem for finding nth order derivative of the product of two

functions and  evaluation of some integrals etc.

We now illustrate the utility of mathematical induction in proving some statements.

2.2.1 Solved Problems
1. Problem:  Use mathematical induction to prove the statement,

2 2
3 3 3 3 ( 1)...1 2 3 , .

4

n n
n n

++ + + + = ∀ ∈ N
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Solution:  Let P(n) be the statement :

  
2 2

3 3 3 3 ( 1)...1 2 3
4

++ + + + = n n
n

Since 
21 (1 1)

1 ,
4

+=  the formula is true for n = 1.

Assume that  statement P(n) is true for n = k, k > 1

i.e., 
2 2

3 3 3 3 ( 1)...1 2 3
4

++ + + + = k k
k .

We show that the formula is true for  n = k + 1,

i.e., we show that 
2 2( 1) ( 2)

S( 1)
4

k k
k

+ ++ =  (where S(k) =  13 + 23 + ... + k3)

We observe that  3 3 3 3 3...S( 1) 1 2 3 ( 1)k k k+ = + + + + + +
      

3S( ) ( 1)k k= + + .

     Since,     
2 2( 1)

S( )
4

k k
k

+= ,

we have  3S ( 1) S( ) ( 1)k k k+ = + +

       
2 2

3( 1)
( 1)

4

k k
k

+= + +

        
2

2( 1)
4 ( 1)

4

k
k k

+  = + + 

        
2 2( 1) ( 2)

4

k k+ +=

∴    The formula holds for n = k + 1.

∴    By the principle of mathematical induction,  P(n) is true for all  n ∈ N .

i.e., the formula 
2 2

3 3 3 3 ( 1)...1 2 3
4

n n
n

++ + + + =  is true for all n ∈ N .

2. Problem:  Use mathematical induction to prove the statement,

2

1

(2 1) (2 1)
(2 1)

3

n

k

n n n
k

=

− +− =∑   for all n ∈ N .

Solution:  Let  P(n)  be the statement :

2 2 2 2 (2 1) (2 1)...1 3 5 (2 1)
3

− ++ + + + − = n n n
n .

Let S(n) be the sum 12 + 32 + ... + (2n − 1)2.
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Since 
1 (2 1) (2 1)

S(1) 1
3

− += = , the formula is true for  n = 1.

Assume that the statement   P(n) is true for n = k, k > 1.

i.e., 2 2 2 2 (2 1) (2 1)...S ( ) 1 3 5 (2 1)
3

k k k
k k

− += + + + + − =  .

We show that the formula is true for  n = k + 1,

i.e., we show that 
( 1) (2 1) (2 3)

S( 1)
3

k k k
k

+ + ++ = .

We observe that    
2 2 2 2 2...S( 1) 1 3 5 (2 1) (2 1)k k k+ = + + + + − + +

        2S ( ) (2 1)k k= + +

             Since 
(2 1) (2 1)

S ( )
3

k k k
k

− += ,

we have  ( ) ( ) ( )2
S 1 S 2 1k k k+ = + +

         
2(2 1) (2 1)

(2 1)
3

k k k
k

− += + +

          
(2 1)

(2 1) (2 1)
3

k k
k k

− = + + +  

         
22 5 3

(2 1)
3

k k
k

 + += +  
 

        
(2 1) ( 1) (2 3)

3

k k k+ + +=

            ∴   
( 1) (2 1) (2 3)

S( 1)
3

k k k
k

+ + ++ = .

∴  The formula holds for n =  k + 1.

∴  By the principle of mathematical induction, P(n) is true for all n∈ N .

i.e., the formula 2

1

(2 1) (2 1)
(2 1)

3

n

k

n n n
k

=

− +− =∑   is true for all n ∈ N .

3. Problem:  Use mathematical induction to prove the statement,

2 ...2 3.2 4.2+ + +  upto  n  terms  =  . 2nn ,  n∀ ∈ N .

Solution:  Let  P(n)  be the statement :

( )2 1...2 3.2 4.2 1 2 .2−+ + + + + =n nn n

Let S(n) be the sum 2 + 3.2 + 4.22 + ... + (n + 1) 2n−1.

Since 1S(1) 2 1. 2= = ,  the formula is true for  n = 1.
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Assume that the statement   P(n)  is true for  n = k, k > 1.

i.e., 2 1...S( ) 2 3.2 4.2 ( 1) 2 .2k kk k k−= + + + + + =

We  show that the formula is true for  n = k + 1

i.e.,  we show that    1S ( 1) ( 1) .2 .kk k ++ = +

We observe that  S( 1)k +  2 1...2 3.2 4.2 ( 1) 2 ( 2) 2k kk k−= + + + + + + +

                 S ( ) ( 2) 2 .kk k= + +

Since , S(k) = k 2k, we have, S( 1) S( ) ( 2) 2kk k k+ = + +

     2 ( 2) 2= + +. k kk k

     2 ( 2)k k k= + +

     1( 1) 2 .kk += +
∴  The formula holds for  n  =  k  +  1.

∴  By the principle of mathematical induction, P(n) is true for all n ∈ N .

i.e., the formula 2 1...2 3.2 4.2 ( 1) 2 2n nn n−+ + + + + =  is true for all n ∈ N .

4. Problem: Show that, n∀ ∈ N , 
1 1 1 ...

1.4 4.7 7.10
+ + +  upto n terms

3 1

n

n
=

+
.

Solution:   1, 4, 7, ... are in Arithmetic Progression whose nth  term is   3n −  2.

      4, 7, 10, ... are also in Arithmetic Progression whose  nth term is   3n + 1.

            ∴  The nth term in the given series is 
1

(3 2) (3 1)n n− +
.

  Let  P(n) be the statement :

1 1 1 1...
1.4 4.7 7.10 (3 2) (3 1) (3 1)

n

n n n
+ + + + =

− + +
and let S(n) be the sum on the left hand side.

Since ( ) 1 1
S 1

1.4 3.1 1
= =

+
 , the formula is true  for  n = 1.

Assume that the statement  P(n) is true for  n = k, k > 1.

i.e., 
1 1 1 1...S( )

1.4 4.7 7.10 (3 2) (3 1) 3 1

k
k

k k k
= + + + + =

− + +
.

We show that the formula is true for n = k + 1,

i.e., we show that  1
S ( 1)

3 4

k
k

k

++ =
+

.

We observe that
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1 1 1 1 1...S( 1)
1.4 4.7 7.10 (3 2) (3 1) (3 1) (3 4)

k
k k k k

+ = + + + + +
− + + +

        
1

S( )
(3 1) (3 4)

k
k k

= +
+ +

.

     Since S( )
3 1

k
k

k
=

+
  we have, 

1
S( 1) S( )

(3 1) (3 4)
k k

k k
+ = +

+ +

 
1

(3 1) (3 1) (3 4)

k

k k k
= +

+ + +

 
(3 4) 1

(3 1) (3 4)

k k

k k

+ +=
+ +

 
( 1) (3 1)

(3 1) (3 4)

k k

k k

+ +=
+ +

 
1

3 4

k

k

+=
+

.

∴  The formula holds for n = k + 1.

∴  By the principle of mathematical induction, P(n) is true for all n ∈ N .

5. Problem:  Use mathematical induction to prove that 2n − 3 < 2n−2  for all n > 5, n ∈  N.

Solution:   Let P(n) be the statement : 2n − 3 <  2n−2, 5, .n n∀ ≥ ∈ N

Here we note that the basis of induction is 5.

Since  2.5 − 3 < 25−2,   the statement is true for n  = 5.

Assume the statement is true for n = k,   k > 5.

i.e., 2k − 3 < 2k−2, for k > 5.

We show that the statement is true for  n = k + 1, k > 5

i.e., [2(k + 1) − 3] < 2(k + 1) − 2 , for  k > 5.

We observe that       [2(k + 1) − 3] =  (2k − 3) + 2

<  2k − 2 + 2,    (By inductive hypothesis)

<  2k−2 + 2k−2 for k > 5

=  2.2k−2

=  2(k + 1) − 2

∴   The statement P(n) is true for n = k + 1, k > 5.

∴   By the principle of mathematical induction, the statement is true for all n > 5, n ∈  N.
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6. Problem:  Use mathematical induction to prove that (1 + x)n > 1 + nx for  n >2, x > −1, x ≠  0.

Solution:   Let the statement  P(n) be :  (1 + x)n > 1 + nx.

Here we note that the basis of induction is 2 and that  x ≠  0,  x > − 1

⇒  1 + x > 0.

Since (1 + x)2 = 1 + 2x + x2 > 1 + 2x,  the statement is true for n = 2.

Assume that the statement is true for  n = k,    k > 2.

i.e.,  (1 + x)k > 1 + k x for  k > 2

We show that the statement is true for n = k + 1,

i.e.,  (1 + x)k+ 1 > 1 + (k + 1)x.

We observe that  (1 + x)k + 1 =  (1 + x)k . (1 + x)

>  (1 + k x) . (1 + x),    (By inductive hypothesis)

=  1 + (k + 1)x + kx2

>  1 + (k + 1)x,  (since kx2 > 0)

∴ The statement is true for n = k + 1.

∴ By the principle of mathematical induction, the statement P(n) is true for all  n > 2.

i.e.,    (1 + x)n > 1 + nx, ∀ n > 2,  x > −1,  x ≠  0.

2.3    Problems on divisibility

In the following problems, we illustrate the method of using mathematical induction to prove the
statements on divisibility.

2.3.1 Solved  Problems

1. Problem:  If  x  and  y  are natural numbers and  x ≠  y,  using mathematical induction, show that
n nx y−  is divisible by  x −   y,  for all n ∈ N .

Solution:  Let  P(n) be the statement :

n nx y−   is divisible by  x −  y.

Since 1 1x y x y− = −  is divisible by  x −  y,  the statement is true for  n = 1.

Assume that the statement P(n) is true for  n = k, k > 1.

i.e., k kx y−  is divisible by  x −  y.

Then k kx y−  = (x −  y) p,  where  p  is the quotient  when k kx y−  is divided

by  x −  y.      ... (1)
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We show that the statement is true for  n = k + 1,

i.e.,  we show that 1 1k kx y+ +−  is divisible by  x −  y.

From (1), we have k kx y−   =  (x  −  y) p

   ∴    ( ) .k kx x y p y= − +

  ∴  1 ( )k kx x y p x y x+ = − + .

∴   1 1 1( )k k k kx y x y p x y x y+ + +− = − + −

    ( ) ( ).kx y p x y x y= − + −

    ( ) ( )kx y p x y= − +

1 1k kx y+ +∴ −  is divisible by  x −  y.

∴  The statement P(n) is true for  n = k + 1.

∴  By the principle of mathematical induction, P(n) is true for all n ∈ N

i.e.,  n nx y−  is divisible by  x −  y  for all n ∈ N .

 2. Problem:  Using mathematical induction, show that m mx y+  is  divisible by  x + y,  if  m  is an
odd natural number and  x,  y  are natural numbers.

Solution:  Since  m  is an odd natural number, there exists a non negative integer n  such that
m = 2n + 1.

       Let  P(n) be the statement : 2 1 2 1n nx y+ ++  is divisible by  x + y.

Since  1 1x y x y+ = +  is divisible by  x + y, the statement is true for n = 0  and

2.1 1 2.1 1 3 3 2 2( ) ( )x y x y x y x x y y+ ++ = + = + − +  is divisible by  x + y,  the statement is true for

n = 1.

Assume that the statement P(n) is true for n = k, k > 1.

i.e.,    2 1 2 1k kx y+ ++  is divisible by  x + y.

Then  2 1 2 1k kx y+ ++  = (x + y) p,  where  p  is the expression in x, y and is the quotient when
2 1 2 1k kx y+ ++  is divided by   x + y.       ... (1)

We show that the statement is true for  n = k + 1,

i.e., we show that 2 3 2 3k kx y+ ++  is divisible by  x + y.

From (1), we have 2 1 2 1 ( )k kx y x y p+ ++ = +
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                        2 1 2 1( )k kx x y p y+ +∴ = + −

                  2 1 2 2 2 1 2( )k kx x x y p x y x+ +∴ = + −. .

            2 3 2 2 1 2( )k kx x y p x y x+ +∴ = + − .

                      2 3 2 3 2 2 1 2 2 3( )k k k kx y x y p x y x y+ + + +∴ + = + − +.

               2 2 1 2 2( ) ( )kx y p x y x y+= + − −

               2 2 1( ) ( ) ( )kx y p x y x y x y+= + − + −

               2 2 1( ) ( ) ,kx y p x y x y+ = + − − 
2 3 2 3k kx y+ +∴ +  is divisible by  x + y.

∴  The statement P(n) is true for  n = k + 1.

∴  By the principle of mathematical induction, P(n) is true for all n.

i.e.,  2 1 2 1n nx y+ ++  is divisible by  x y+ , for all non-negative integers n.

i.e.,  m mx y+  is divisible by  x + y, if  m  is an odd natural number.

  Note :  The above problem need not hold when m is an even natural number.

For example, if  m = 2,  x = 1,  y = 2  then  2 2x y+  =  2 21 2 5+ =   is not divisible

by  x + y  =  1 + 2 = 3.

3. Problem: Show that 49 16 1n n+ −  is divisible by 64 for all positive integers  n.

Solution:  Let  P(n) be the statement :

         49 16 1n n+ −  is divisible by 64.

 Since  149 16.1 1 64+ − =  is divisible by 64,  the statement is true for n = 1.

Assume that the statement P(n) is true for n = k, k > 1.

i.e., 49 16 1k k+ −  is divisible by 64.

          Then 49 16 1k k+ −  = 64t ,  for some t ∈ N .      ... (1)

We show that the statement P(n) is true for  n = k + 1,

i.e., we show that 149 16 ( 1) 1k k+ + + −   is divisible by 64.

From (1), we have  49 16 1 64k k t+ − =
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49 64 16 1k t k∴ = − +

49 49 (64 16 1) 49k t k∴ = − +. .
149 16 ( 1) 1 (64 16 1) 49 16 ( 1) 1k k t k k+∴ + + − = − + + + −.
149 16 ( 1) 1 64 (49 12 1) ,k k t k+∴ + + − = − +

                 here    49 12 1t k− +  is an integer.

 
149 16 ( 1) 1k k+∴ + + −  is divisible by 64.

∴   The statement is true for  n = k + 1.

∴   By the principle of mathematical induction, P(n) is true for all n ∈ N ,

i.e., 49 16 1n n+ −  is divisible by 64, n∀ ∈ N .

4. Problem :  Use mathematical induction to prove that ( ) ( )2 1 3 12 4 3n n+ ++.  is divisible by 11,

n∀ ∈ N.

Solution :   Let  P(n) be the statement  :

      ( ) ( )2 1 3 12 4 3n n+ ++.   is divisible by 11.

Since ( ) ( )2 1 1 3 1 1 3 42 4 3 2 4 3 209 11 19+ ++ = + = = ×. .. .  is divisible by 11,  the statement

P(n) is true for n = 1.

Assume that the statement  P(n) is true for n = k, k > 1.

i.e.,   ( ) ( )2 1 3 12 4 3k k+ ++. ..  is divisible by 11.

Then ( ) ( )2 1 3 12 4 3k k+ ++. ..   =  11 t , for some integer  t.              ... (1)

We show that the statement P(n) is true for  n = k + 1.

i.e., we show that 2 3 3 42 4 3k k+ ++.  is divisible by 11.

From (1), we have  ( ) ( )2 1 3 12 4 3 11k k t+ ++ =.

      ( ) ( )2 1 3 12 4 11 3k kt+ +∴ = −.

            
( ) ( )( )2 1 3 12 22 4 4 11 3 4k kt+ +∴ = −. . .

 
( ) ( ) ( )( ) ( )2 3 3 4 3 1 3 42. 4 3 11 3 16 3 .k k k kt+ + + ++ = − +

    ( ) ( )3 1 3 411 16 3 16 3k kt + += − +. .

    ( )3 1 311 16 3 3 16kt +  = + − . .

    ( )3 111 16 3 (11)kt += +. .

    
( )3 111 16 3 ,kt + = + .
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here ( )3 116 3 kt ++  is an integer.

     ( ) ( )2 3 3 42.4 3k k+ +∴ +  is divisible by 11.

     ∴   The statement P(n) is true for n = k + 1.

     ∴   By the principle of mathematical induction, P(n) is true for all n ∈ N .

    i.e., ( ) ( )2 1 3 12. 4 3n n+ ++  is divisible by 11 for all n ∈ N .

Note:  While proving the statements using the principle of mathematical induction, the two steps :  Basis of

induction and Inductive hypothesis are important.   Careless use of the principle of mathematical induction

can lead to obviously absurd conclusions.  There are statements that are true for many natural numbers but

are not true for all of them as can be seen from the following examples.

2.3.2 Examples

(i) The formula 2P ( ) : 41n n n− +  gives a prime number for  n = 1, 2, 3, ...,40.  But P(41) = 412 is

obivously divisible by 41.  Therefore, it is not a prime number.

(ii) For n ∈ N , let  P(n) be the statement

2... ..."1 3 5 (2 1) ( 1) ( 2) ( 10)"n n n n n+ + + + − = + − − −

Then  P(1), P(2),  ... , P(10) are all true.

But    P(11) is not true.

Exercise 2(a)

Using mathematical induction, prove each of the following statements, for all n ∈ N .

1.
2 2 2 2 ( 1) (2 1)...1 2 3

6

n n n
n

+ ++ + + + = .

2. 2 . 3  +  3 . 4  +  4 . 5  + ...   upto  n  terms  = 
2( 6 11)

3

n n n+ +
.

3.
1 1 1 1...

1 3 3 5 5 7 (2 1) (2 1) 2 1

n

n n n
+ + + + =

− + +. . . .

4. 3 3 3 ...4 8 12+ + +  upto  n  terms = 2 216 ( 1)n n + .

5. ( ) ( ) ...2a a d a d+ + + + +   upto  n  terms  [ ]2 ( 1)
2

n
a n d= + − .
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6. 2 ...a a r a r+ + +   upto  n  terms  ( 1)
, 1

( 1)

na r
r

r

−= ≠
−

.

7.
(5 1)...2 7 12 (5 3)

2

n n
n

−+ + + + − = .

8. 2
2

3 5 7 2 1
1 1 1 ..... 1 ( 1)

1 4 9

n
n

n

+       + + + + = +               .

9. (2n + 7) < (n + 3)2.

10. 12 + 22 + ... + n2 > 
3

3

n
.

11. 4 3 1n n− −  is divisible by 9.

12. 2 1 3 13 5 2n n+ ++.  is divisible by 17.

13. ...1.2.3 2.3.4 3.4.5+ + +  upto  n  terms  
( 1) ( 2) ( 3)

4

n n n n+ + += .

14.
3 3 3 3 3 31 1 2 1 2 3 ...
1 1 3 1 3 5

+ + ++ + +
+ + +

 upto  n  terms 22 9 13
24

n
n n = + +  .

15. 2 2 2 2 2 2 ...1 (1 2 ) (1 2 3 )+ + + + + +  upto  n  terms  
2( 1) ( 2)

12

n n n+ += .

Key Concepts

   � Principle of finite mathematical induction:
Let  S  be a subset of  N  such that

(i)  1 ∈  S

(ii)  For any  k ∈  N,  k ∈  S  ⇒   k + 1 ∈  S.

Then  S =  N.

   � Principle of complete mathematical induction:

Let  S be a subset of N such that

(i)  1 ∈  S

(ii) For any { }, 1, 2, 3, ... S + 1 Sk k k∈ ⊆ ⇒ ∈N .

Then  S  =  N.

  ��   Steps to prove a statement using the principle of mathematical induction:

(i) Basis of induction : Show that P(1)  is true.

(ii) Inductive hypothesis : For 1k ≥ ,  assume that  P(k) is true.
(iii) Inductive step : Show that P(k + 1) is true on the basis of the

inductive hypothesis.
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Historical Note

Unlike other concepts and methods, proof by mathematical induction is not the invention of a

particular individual at a particular moment.  It is said that the principle of mathematical induction

was known to the Phythagoreans.

The French mathematician Blaise Pascal (1623 - 1662) is credited with the origin of the

principle of mathematical induction.

The name ‘induction’ was used by the English mathematician John Wallis (1616-1703).

Later the principle was employed to provide a proof of the binomial theorem.

De Morgan (1806 - 1871) had many accomplishments in the field of mathematics on many

different subjects.  He was the first person to define ‘mathematical induction’ and developed De

Morgan’s rule in set theory and wrote a treatise on formal logic.

Giuseppe Peano (1858 - 1932) undertook the task of deducing the properties of natural

numbers from a set of explicitly stated assumptions, now known as Peano’s axioms.  The principle

of mathematical induction is a restatement of one of Peano’s axioms.
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Arthur Cayley
(1821 - 1895)

 Introduction

We have learnt about Matrices and their

determinants in high school classes. An arrangement

of  numbers in a rectangular array comprising of rows

and columns is known as a matrix.  m × n  (read as

m by n),  where m  is the number of rows  and  n is

the number of columns, is known as the order of the

matrix. In high school classes our study was limited to

2 ×  2 matrices.

In this chapter we deal with higher order

matrices in general and  3 ×  3 matrices in particular.

For the sake of completeness, we shall start with

defining a matrix etc... and go on to extend our study

of the algebra of matrices and then use the theory to

find the solutions of simultaneous linear equations.

Arthur Cayley was a British
mathematician. Cayley worked as a
lawyer for 14 years. While he was a
lawyer he published about 250
research papers in mathematics, and
later, while working as Sadleirian
Professor at Cambridge,  published
another 650. It was Cayley who first
introduced matrix multiplication. He
was consequently able to prove the
Cayley-Hamilton theorem - that every
square matrix is a root of its own
characteristic polynomial.

"The search  for truth is more precious than
its possession"

 - Albert Einstein
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 3.1  Types of matrices

In this section, we define a matrix, its order and various types of matrices.

3.1.1 Definition (Matrix)

An ordered rectangular array of elements is called a matrix.

We confine our discussion to matrices whose elements are real or complex numbers; or real or
complex valued functions. Matrices are generally enclosed by brackets.

We denote matrices by capital letters A,B, C...
The following are some examples of matrices.

         
1 2 4 1 2

A B
3 0 6 4 3

   
= =   − −   

         

21 1 3

C 3 2 sin

7 sin 4 3 sin 2

x x

x

x x

 + −
 
 = −
 

+ +  

                   1st column  2nd column  3rd column

In the above examples, the horizontal lines of elements are said to constitute the rows of the matrix
and the vertical lines of elements are said to constitute the columns of the matrix. Thus  A  has 2 rows and
3 columns,  B  has 2 rows and 2 columns, while  C has  3 rows and 3 columns.

3.1.2  Definition (Order of Matrix)

 A matrix having m rows and n columns is said to be of order  m ×  n, read as m cross n  or
m by n.

In the above examples,  A is of order 2×3,  B is of order 2×2 and C is of order 3×3.

In general, a matrix having m rows and n columns is represented as follows.

11 12 1 1

21 22 2 2

1 2

1 2

A

.
. . . . . .
. . . . .

j n

j n

i i ij in

m m mj mn

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 

=  
 
 
 
 
 
 

� �

� �

� � � � � �

� �

� � �

� �

� �

→ 1st row

→    2
nd row

→    3
rd row

↓↓↓
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In the above matrix every element is specified by its position in terms of the row and column in
which the element is present. The first and second suffices of an element indicate respectively the row and

column in which the element is present.  For example 23a  is the element present in the second row and the

third column.

     In compact form the above matrix is denoted by

     A = [ ] where  1 i and  1 j .ij m na m n× ≤ ≤ ≤ ≤

  Throughout this chapter, we generally consider matrices of order m × n, where

{1, 2, 3} and {1, 2, 3, 4}.m n∈ ∈

3.1.3  Types of matrices

1.  Square matrix

A matrix in which the number of rows is equal to the number of columns, is called a square
matrix.

A = [ ]ij m na ×  is a square matrix if  m = n.  In this case  we say that  A  is a square matrix of order
m. For example,

[2] is a square matrix of order 1.

1 1
is a square matrix of order 2

0 4

− 
 
 

,

        and

2 0 1

4 1 2 is a square matrix of order 3.

7 6 9

 
 − 
  

If A = [ ]ija  is a square matrix of order n, the elements 11 22, , ..., nna a a  are said to constitute its

Principal diagonal or simply the diagonal.  Hence ija  is an element of the diagonal or non-diagonal

according as  or .i j i j= ≠
The sum of  the elements of  the diagonal of  a square matrix  A  is called the trace of  A  and is

denoted by  Tr (A).

If A = [ ]ija  is a square matrix of order n, then 
1

Tr (A) .
n

ii
i

a
=

= ∑

For example, if   

2 0 1

A = 4 1 2

7 6 9

 
 − 
  

,  then Tr (A) = 2 + (−1) + 9 = 10.

2.  Diagonal matrix

If each non-diagonal  element of a square matrix is equal to zero, then the matrix is called  a
diagonal matrix.
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For example,  

2 0 0
0 0

, 0 1 0
0 2

0 0 1

 
   −       

  are diagonal matrices.

If A = [ ]ij n na × is a diagonal matrix, it is sometimes denoted as  diag  [ 11 22, , ..., nna a a ].

3.  Scalar matrix

If each non-diagonal element of a square matrix is zero and all diagonal elements are equal to

each other, then it is called a scalar matrix.

For example, 
2 0

,
0 2

 
 
 

      

1 0 0
0 0

, 0 1 0
0 0

0 0 1

− 
   −      − 

 are all scalar matrices.

4.  Unit (Identity) matrix

If each non-diagonal element of a square matrix is equal to zero and each diagonal element is

equal to 1, then that matrix is called a Unit matrix  or  Identity matrix.

We denote the unit matrix of order  n  by In , or simply by  I,  when there is no ambiguity about the

order.

For example,  1I [1]= ,  2 3

1 0 0
1 0

I , I 0 1 0
0 1

0 0 1

 
   = =       

 are unit matrices.

               [ ]ij n na ×   is a unit matrix

             1 if  and 0 if  ij ija i j a i j⇔ = = = ≠

5.  Null matrix or Zero matrix

If each element of a matrix is zero,  then it is called  a Null matrix or Zero matrix. It is
denoted by Om n×  or simply by O.

For example, 2 3 2

0 0
0 0

O , O 0 0
0 0

0 0
×

 
   = =       

 are null matrices.

6.  Row matrix and Column matrix

A matrix with only one row is called a Row matrix (or row vector) and a matrix with only one

column is called a Column matrix (or column vector).
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For example,  [ 1   3   −2]  is a row matrix (order 1 × 3),

                
2

1

 
 
 

  is a column matrix (order 2 × 1).

7.  Triangular matrices

A  square matrix A = [ ]ija  is said to be  Upper Triangular if  0 .ija for all i j= >

A  is said to be Lower Triangular if  0 ija for all i j= < .

For example,  

2 4 0
3 1

0 3 2 ,
0 4

0 0 1

− 
−  −       

 are upper triangular matrices while

     
1 0 0

1 0
0 1 0 ,

2 3
2 0 1

 
  
      

  are lower triangular matrices.

Observe  that  I3 and  O3  are both upper and lower triangular matrices.

A = [ ]ij n na × , is

Upper Triangular if   0 for .ija all i j= >
Lower Triangular if  0 forija all i j= <

3.1.4  Definition (Equality of matrices)

Matrices A and B are said to be equal if A and B are of the same order and the
corresponding elements of A and B are the same.

Thus   11 12 13 11 12 13

21 22 23 21 22 23
A = and B =

a a a b b b

a a a b b b

   
   
   

       are equal if   for 1, 2 and 1, 2, 3.ij ija b i j= = =

3.1.5  Definition (Sum of two matrices)

Let A and B be matrices of the same order. Then the sum of A and B, denoted by A + B, is
defined as the matrix of the same order in which each element is the sum of the corresponding
elements of  A  and  B.

     If     A = [ ] and B = [ ] ,ij m n ij m na b× ×

     then A + B = [c ] where cij m n ij ij ija b× = +
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    For example, if   
3 2 1 1 2 7

A = and   B = 
4 3 1 3 2 1

− −   
   − −   

 then

                          
3 1 2 ( 2) 1 7 4 0 6

A + B =
4 3 3 2 1 ( 1) 7 1 0

+ + − − +   
=   + − + + − −   

.

3.1.6  Properties of Addition of matrices

Let A = [ ], B = [ ], C = [ ]ij ij ija b c   be matrices of the same order. Then the addition of matrices

satisfies the following properties :

(i)  Commutative Property

A + B  =  B + A

               Now    A + B = [ ] [ ]ij ija b+

                               

[ ]

[ ]

[ ] [ ]

B + A

ij ij

ij ij

ij ij

a b

b a

b a

= +

= +

= +

=

(ii) Associative Property

      

( )

( )

A + ( B+ C ) = ( A + B) + C

Now    (A + B) + C  = [ ] [ ] [ ]

[ ] [ ]

[ ( ) ]

[ ( ) ] (why?)

[ ] [ ]

[ ] [ ] [ ]

A ( B C)

ij ij ij

ij ij ij

ij ij ij

ij ij ij

ij ij ij

ij ij ij

a b c

a b c

a b c

a b c

a b c

a b c

+ +

= + +

= + +

= + +

= + +

= + +

= + +

(iii) Additive identity

 If   A is a  m × n  matrix  and O is the (m × n)  null matrix,

A + O  =  O + A  =  A.   We call  O the additive indentity in the set of all  m × n matrices.

(iv) Additive inverse

 If   A is an  (m × n)  matrix then there is a unique m × n matrix  B such that

 A + B  =  B + A  =  O,  O being the m × n null matrix.

Addition of matrices is commutative.
i.e.,  A + B = B + A

Addition of matrices obeys
Associative  Property
i.e., A + ( B + C) = (A + B) +C
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 This B is denoted by −A and is called the additive inverse of  A. Infact if  A [ ],ija=  then

B [ ]ija= − .

3.2   Scalar multiple of a matrix and multiplication of matrices

This section is devoted to the study of multiplication of a matrix (i)  by a scalar and (ii) by a matrix.
We also study the properties of multiplication.

3.2.1  Definition  (Scalar multiple of a matrix)

Let A be a matrix of order  m ×  n  and k be a scalar (i.e., real or complex number).  Then the
m ×  n matrix obtained by multiplying each element of A by k is called a scalar multiple of A and
is denoted by k A.

  If A = [ ] then  A [ ]ij m n ij m na k ka× ×=

For example if  k = 2  and   
3 2 1

A =  
4 3 1

− 
 − 

 then

2 3 2 2 2 ( 1) 6 4 2
A = 2A = 

2 4 2 ( 3) 2 1 8 6 2
k

× × × − −   
=   × × − × −   

.

3.2.2  Note

( −1) A = −A  because A + ( −1) A = O.

3.2.3  Properties of scalar multiplication of a matrix

Let  A and  B be matrices of the same order and  ,α β  be scalars. Then

(i)    � ���� ���� � �� ����= (ii)   (�������� ����� ��

(iii)  � �� ��	� � � � 	α α             (iv)   �
�� 


(v)  0A = O

Consider (ii)   Let  A = [ ]ij m xna

         (��������� �� �� � �ija+

   = [(� �� �ija+   ..... by definition 3.2.1

   =  [� � �ij ija a+  ..... by distributive law of numbers

  =  [� � �� �ij ija a+

  =  �� � �� �ij ija a+

  =  �� ��+
Verification of properties (i),  (iii),  (iv) and  (v) is left to the student as an exercise.
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3.2.4  Solved Problems

1. Problem: If  
2 3 1

  A =
7 8 5

− 
 
 

  and  
1 0 1

B =
2 4 1

 
 − − 

  then  find  A + B.

Solution :   A + B is defined since A and B are of same order.

       
2 3 1 1 0 1

A + B
7 8 5 2 4 1

−   
= +   − −   

      
2 1 3 0 1 1

7 2 8 4 5 1

+ + − + 
=  + − − 

      
3 3 0

9 4 4

 
=  

 
.

2. Problem :   If  
1 2 5 1 2

0 2 2 0 2

1 1 1 1 1 1

x y x y

z

a

− − − −   
   =   
   − + −   

 then find the values

of  x, y, z and a.

Solution :   From the equality of matrices

            1 1 ; 5 ; 2; 1 1x x y y z a− = − − = − = + = .
5

Hence 1; ; 2; 0
2

x y z a= = = = .

3. Problem : Find the trace of  A  if  

1
1 2

2

A = 0 1 2

1
2 1

2

 − 
 
 − 
 
 −
  

.

Solution : The elements of the Principal diagnonal of A are 1, −1, 1.  Hence the trace
      of  A   is 1 + ( −1) + 1 = 1.

4. Problem :  If   
4 5

A =
2 3

− 
 − 

  then find  −5A.

Solution:  By the definition of scalar multiplication of matrix

4 5 ( 5)4 ( 5)( 5) 20 25
5A = ( 5)

2 3 ( 5)( 2) ( 5)3 10 15

− − − − −     
− − = =     − − − − −     

.
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5. Problem:  Find the additive inverse of  A  where

     

0 1

A = 0 2

1 1 5

i

i

 
 − 
 − 

.

Solution :  The additive inverse of A is −A = ( −1)A.

         Hence the additive inverse of the given matrix

 −A  

0 1 0 1

= ( 1) 0 2 0 2

1 1 5 1 1 5

i i

i i

− −   
   − − = −   
   − − −   

.

6. Problem :   If   
2 3 1

A =
6 1 5

 
 − 

  and  
1 2 1

B =
0 1 3

− 
 − 

  then find the matrix X such that

A + B − X = 0.  What is the order of the matrix X ?

Solution:   A and  B are matrices of  the same order 2 × 3.  If  A + B − X  is to be defined, the order of
X also must be  2 × 3.

A B X O X A B+ − = ⇔ = +

2 3 1 1 2 1
 X =

6 1 5 0 1 3

−   
∴ +   − −   

         
3 5 0

6 2 8

 
=  − 

.

7. Problem  : If 

0 1 2

A 2 3 4

4 5 6

 
 =  
  

  and  

1 2 0

B = 0 1 1

1 0 3

− 
 − 
 − 

  then find   A−B

and  4B − 3A.

Solution:   

0 1 1 ( 2) 2 0

A B = 2 0 3 1 4 ( 1)

4 ( 1) 5 0 6 3

− − − − 
 − − − − − 
 − − − − 

 

1 3 2

2 2 5

5 5 3

− 
 =  
  

              

1 2 0

4B 3A 4 0 1 1

1 0 3

− 
 − = − 
 − 

0 1 2

3 2 3 4

4 5 6

 
 −  
  

      

4 8 0 0 3 6

0 4 4 6 9 12

4 0 12 12 15 18

−   
   = − −   
   −   
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4 11 6

6 5 16

16 15 6

− − 
 = − − − 
 − − − 

.

8. Problem :  If   
1 2 3 8

A , B
3 4 7 2

   
= =   

   
 and  2X + A = B  then find  X.

Solution :   2X + A = B    2X  =   B A⇒ −

       
3 8 1 2

7 2 3 4

   
= −   

   

      
2 6

4 2

 
=  − 

        
2 6 1 31

Hence X
4 2 2 12

   
= =   − −   

.

9.  Problem : Two factories I and II produce three varieties of pens namely, Gel, Ball and Ink pens.

The sale in rupees of these varieties of pens by both the factories in the month of September and

October in a year are given by the following matrices A and B.

     September sales (in Rupees)

        Gel      Ball      Ink

1000 2000 3000 Factory I
A

5000 3000 1000 Factory II

 
=  

 
      October sales (in Rupees)

        Gel      Ball      Ink

500 1000 600 Factory I
B

2000 1000 1000 Factory II

 
=  

 

(i) Find the combined sales in September and October for each factory in each variety.

(ii) Find the decrease in sales from September to October.

Solution : (i)  Combined sales in September and October for each factory in each variety is given by

    Gel      Ball      Ink

1500 3000 3600 Factory I
A+B

7000 4000 2000 Factory II

 
=  

 



Matrices 65

(ii) Decrease in sales from September to October is given by

               Gel      Ball      Ink

500 1000 2400 Factory I
A B

3000 2000 0 Factory II

 
− = 

 

10.  Problem : Construct a 3 ×  2 matrix whose elements are defined by aij = 
1

| 3 |
2

i j− .

Solution : In general a  3 ×  2 matrix is given by

       

11 12

21 22

31 32

A

a a

a a

a a

 
 =  
  

Now  aij = 
1

| 3 |
2

i j−    i = 1, 2, 3 and  j = 1, 2.

   a11   =  
1

|1 (3 1) | 1
2

− × = a12   =  
1 5

|1 (3 2) |
2 2

− × =

   a21   =  
1 1

| 2 (3 1) |
2 2

− × = a22   =  
1

| 2 (3 2) | 2
2

− × =

   a31   =  
1

| 3 (3 1) | 0
2

− × = a32   =  
1 3

| 3 (3 2) |
2 2

− × =

 
∴

   

5
1

2
1

A 2
2

3
0

2

 
 
 
 =  
 
 
  

 Exercise 3(a)

I. 1. Write the following as a single matrix.

  (i)  [ ] [ ]2 1 3 0 0 0+              (ii)    

0 1

1 1

1 0

−   
   +   
   −   

(iii)  3 9 0 4 0 2

1 8 2 7 1 4

   
+   −   

     (iv)   

1 2 0 1

1 2 1 0

3 1 2 1

−   
   − + −   
   − −   
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2. If  1 2

3 4

1 3 2 1
A = , B =  , X =

4 2 3 5

x x

x x

−     
    −     

 and  A + B = X   then find the values of

1 2 3 4, , and .x x x x

3. If  

1 2 3 1 2 5 2 1 2

A = 1 2 4 , B =  0 2 2 and C = 1 1 2

2 1 3 1 2 3 2 0 1

− − − −     
     −     
     − −     

then find  A + B + C.

4. If 

3 2 1 3 1 0

A = 2 2 0 , B =  2 1 3

1 3 1 4 1 2

− − −   
   −   
   −   

 and  X = A + B  then find X.

5. If  
3 2 8 5 2

2 6 2 4

x y

z a

− −   
=   + − −   

 then find the values of  x, y, z and a.

   II. 1. If  

1 2 5 1 2 3

0 1 7 0 4 7

1 0 5 1 0 0

x y

z

a

− −   
   − =   
   −   

  then find the values of  x, y, z and a.

2. Find the trace of   

1 3 5

2 1 5

2 0 1

− 
 − 
  

.

3. If 

0 1 2 1 2 3

A 2 3 4 and B 0 1 0

4 5 6 0 0 1

−   
   = =   
   − −   

 find B − A and 4A − 5 B.

4. If  
1 2 3 3 2 1

A and B
3 2 1 1 2 3

   
= =   

   
 find  3B − 2A.

3.2.5  Multiplication of matrices

We say that matrices A and B are conformable for multiplication in that order (giving

the product  AB)  if  the number of columns of  A  is equal to the number of  rows of  B.
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3.2.6  Definition  (Product of two matrices)

Let A = [ ] and    B [ ] ,ik m n kj n pa b× ×=  be two matrices.  Then the matrix  C [ ]ij m pc ×=

where  
1

n

ij ik kj
k

c a b
=

= ∑  is called the product of A and B  and is denoted by AB.

Observe that when the orders of  A and B are m × n and n × p,  the order of the product matrix
AB is m × p. Every element of  AB  is in the form of a sum of products of certain elements of A and of  B.

For example, in C=AB [ ]ij m pc ×=

     23 2 3 21 13 22 23 23 33 2 3
1

.....
n

k k n n
k

c a b a b a b a b a b
=

= = + + + +∑

         =  the sum of the products of the elements of second row of A  with the

     corresponding elements of the 3rd column of  B

A useful method to understand and to remember matrix multiplication is illustrated in the following
example.

Let  2 3
2 3 1

A
0 1 5×

 
=  − 

 and   3 4

1 3 4 2

B 1 0 3 5

0 4 7 6
×

− 
 = − 
 − 

Let the rows of  A  be R1, R2  and the columns of  B  be C1, C2, C3, C4.  When  A2×3 is multiplied

with  B3×4,  the order of the product matrix  C =  AB  is  2×4.

          
11 12 13 14

21 22 23 24
Let C  = .

c c c c

c c c c

 
∴  

 

  
1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

R C R C R C R C
Then  C = .

R C R C R C R C

 
 
 

     c11 =  R1C1   = sum of the products of the 1st row  elements of  A  with the
      corresponding  elements of the 1st column of  B.
  =  2(1) + 3(−1) + 1(0) = −1.

       c12 =  R1C2  =  sum of the products of the 1st row  elements of  A  with the
      corresponding  elements of the 2nd column of  B
    =   2(3) + 3(0) + 1(4) = 10.

3.2.7  Examples

1. Example

Consider the matrices  
2 3 0 4

A = and   B =
1 2 1 2

   
   −   

.

Clearly A, B as well as B, A are conformable.
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Further 
2 3 0 4

AB =
1 2 1 2

   
   −   

 
2(0) 3( 1) 2(4) 3(2)

1(0) 2( 1) 1(4) 2(2)

+ − + 
=  + − + 

3 14

2 8

− 
=  − 

.

         Now    
0 4 2 3

BA
1 2 1 2

   
=    −   

 0(2) 4(1) 0(3) 4(2)

1(2) 2(1) 1(3) 2(2)

+ + 
=  − + − + 

4 8

0 1

 
=  

 
.

Hence the products  AB  and  BA  are not necessarily equal.

2. Example

A certain bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen

economics books.  Their selling prices are Rs. 80, Rs. 60 and Rs. 40 each respectively.  Using

matrix algebra, find the total value of the books in the shop.

Solution:  Number of books
        Chemistry    Physics     Economics

10 12 8 12 10 12
A

120 96 120

× × × 
=  = = = 

       Selling price (in rupees)

80 Chemistry

B 60 Physics

40 Economics

 
 =  
  

Total value of the books in the shop.

AB =  [120     96 120]  80

60

40

 
 
 
  

=  [120 ×  80 + 96 ×  60 + 120 ×  40]

=  [9600 + 5760 + 4800]

=  [20160] (in rupees).

3.2.8  Note

Matrix multiplication is not commutative. If A and B are matrices conformable for multiplication,
AB exists, but BA may not exist; even if BA exists, AB and BA  may not have the same order and even if
they have the same order they may not be equal.

1. If the orders of A and B are 2 × 3 and 3 × 4  respectively then the order of  AB is 2 × 4, but BA
does not exist.  (The number of columns of  B is not equal to the number of rows of  A, that is B and
A  are not conformable for multiplication).
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2. If the orders A and B are 2 × 3 and 3 × 2 respectively, then the order of AB is 2 × 2 , while the

order of BA is 3 × 3.  Hence AB and BA can not be equal.

3. For the matrices A and B of example 1, 3.2.7, AB and BA have the same order but AB ≠  BA.

This does not mean however, that  AB≠  BA  for every pair of matrices A, B  for which AB and  BA

are defined and are of same order.

For instance, 
1 0 3 0 3 0

A and B = then  AB = BA = 
0 2 0 4 0 8

     
=      

     
.

Verify whether every pair of  diagonal matrices of same order commute or not!

Also, verify by an example whether a pair of square matrices of same order, whose product is a

scalar matrix, commute or not!

3.2.9   Note

Let   
0 1 3 5

A and B =
0 2 0 0

−   
=    

   
  then   AB = BA =  O.

We know that  in case of  real numbers  a,b  if  ab = 0 then a = 0  or b = 0.  But in matrices, the
product of  two non-zero matrices could be a zero matrix, as seen from the above example.

3.2.10  Note
 If  AB = AC and A ≠  O, then it is not necessary that B = C.

 For example, if  
1 0 0 0 0 0

A , B = and C =
2 0 3 4 5 6

     
=      

     
         we have  AB = O  =  AC,  but   B ≠  C .

3.2.11  Properties of multiplication of matrices

Multiplication of matrices possesses the following properties, which we state without proof.

1. The Associative Law

    For any three matrices A, B and C, we have (AB)C = A (BC)  in the sense that whenever

one side of the equality is defined, then the otherside is also defined and the equality holds.

2. The Distributive Law

For any three matrices A, B and C, we have

(i)   A(B + C) = AB + AC  (Left Distributive Law)

(ii)  (A+B)C = AC + BC  (Right Distributive Law)

in the sense that whenever one side of the equation is defined, then the otherside is also defined

and the equality holds.
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3. Existence of multiplicative identity

If  I  is the identity matrix of order n, then for every square matrix A of  order n

IA = AI = A.

3.2.12 Note

(i) For any square matrix  A, we denote A . A by  A2.  In general, for any positive integer n, n >1,

the product A. A. A ... A (taken n times) is denoted by An.

(ii) If A and B are matrices of orders  m × n  and  n × p  respectively and ,α β  are scalars, then

               A). (�	���� ���	�(� � ( ) = ( ��� 	� ( ) = A. ( ��	� .

(iii)  If � is a scalar, A  is a square matrix and  n  is a positive integer,  then

         (��� � � �� �� ������n n n= =

We now verify all the properties of multiplication, in the following solved problems.

3.2.13  Solved Problems

1. Problem

If   

0 1 2 1 2

A 1 2 3  B = 1 0

2 3 4 2 1

and

−   
   = −   
   −   

  then  find  AB  and BA.

Solution : The number of columns of  A = 3 = the number of rows of  B.  Hence AB is defined and

0 1 2 1 2

AB 1 2 3 1 0

2 3 4 2 1

−   
   = −   
   −   

       

0.1 1.( 1) 2.2 0.( 2) 1.0 2.( 1) 3 2

1.1 2.( 1) 3.2 1.( 2) 2.0 3.( 1) 5 5

2.1 3.( 1) 4.2 2.( 2) 3.0 4.( 1) 7 8

+ − + − + + − −   
   = + − + − + + − = −   
   + − + − + + − −   

Since the number of columns of B is not equal to the number of rows of  A,  BA  is not defined.

2. Problem:  If 
1 2 3 1 0 2

A = 2 3 1    B = 0 1 2

3 1 2 1 2 0

and

−   
   −   
   −   

  then examine whether

 A and B commute with respect to multiplication of matrices.
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Solution:  Both  A  and  B  are square matrices of order 3.  Hence both  AB  and BA are defined and are

matrices of order 3.

     

1.1 ( 2).0 3.1 1.0 ( 2).1 3.2 1.2 ( 2).2 3.0

AB = 2.1 3.0 ( 1).1 2.0 3.1 ( 1).2 2.2 3.2 ( 1).0

( 3).1 1.0 2.1 3.0 1.1 2.2 3.2 1.2 2.0

+ − + + − + + − + 
 

+ + − + + − + + − 
 − + + − + + − + + 

4 4 2

= 1 1 10

1 5 4

− 
 
 
 − − 
1 0 2 1 2 3 5 0 7

BA = 0 1 2 2 3 1 4 5 3

1 2 0 3 1 2 5 4 1

− −     
     − = −     
     −     

which shows that AB ≠  BA.

Therefore  A  and  B  do not commute with respect to multiplication of matrices.

3. Problem  :  If   
0

A =
0

i

i

 
 − 

then show that A2 = − I.

Solution :  
2

2
2

00 0
A =

00 0

i i i
i i i

    
=     − −     

      
1 0 1 0

( 1) I
0 1 0 1

−   
= = − = −   −   

.

4. Problem:  If 
cos � ��� �

A =
sin � ��� �

 
 − 

then show that for all the postive integers n,

   
cos � ��� �

A =
sin � ��� �

n n n

n n

 
 − 

.

Solution :  We solve this problem by using the principle of mathematical induction.

Consider the statement P(n) : 
cos � ��� �

A =
sin � ��� �

n n n

n n

 
 − 

                    Since  
cos � ��� �

A =
sin � ��� �

 
 − 

, P(n)  is true for n = 1.

Suppose that the given statement P(n) is true for n = k,  k ≥ 1.



 Mathematics - IA72

     Then 
cos � ��� �

A =
sin � ��� �

k k k

k k

 
 − 

         Consider  1 cos � ��� � ��� � ��� �
A A .A =

sin � ��� � ��� � ��� �

k k k k

k k
+    

=    − −   

 
cos ������� ��� ����� � ��� ����� � ����� ������

sin ������� ���� ���� � ��� ����� � ��� ������

k k k k

k k k k

− 
=  − − − + 

cos ( � ��� ��� � � ���

sin ( � ��� ��� � � ���

k k

k k

 
=  − 

( cos(A +B)= cos A.cos B sin A.sin B;

sin(A + B)= sin A.cos B+cos A.sin B )

−�

cos ( 1)� ��� � ���

sin ( 1)� ��� � ���

k k

k k

+ + 
=  − + + 

       Therefore P(n) is true for n = k +1.

Hence, by mathematical induction, P(n) is true for all positive integral values of n.

5. Problem :  If   
1 2 2

A = 2 1 2

2 2 1

 
 
 
  

  then show that   A2 − 4A − 5I  =  O.

Solution :      A2  =   A . A    
1 2 2 1 2 2 9 8 8

= 2 1 2 2 1 2 8 9 8

2 2 1 2 2 1 8 8 9

     
     =     
          

   

1 2 2 4 8 8

4A = 4 2 1 2 8 4 8

2 2 1 8 8 4

   
   =   
      

     

1 0 0 5 0 0

5I = 5 0 1 0 0 5 0

0 0 1 0 0 5

   
   =   
      

Hence

2

9 8 8 4 8 8 5 0 0

A 4A 5I 8 9 8 8 4 8 0 5 0 O.

8 8 9 8 8 4 0 0 5

     
     − − = − − =     
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Exercise 3(b)

 I. 1. Find the following products wherever possible

(i)  [ ]
5

1 4 2 1

3

 
 

−  
 
 

(ii)

1
2 1 4

2
6 2 3

1

 
   
   −   

 

(iii)   
3 2 4 1

1 6 2 5

− −   
   
   

(iv)

2 2 1 2 3 4

1 0 2 2 2 3

2 1 2 1 2 2

− −   
   

−   
   −   

(v)  

3 4 9
13 2 0

0 1 5
0 4 1

2 6 12

 
−  

−   
  

 

(vi)

1
2 1 4

2
6 2 3

1

 
  

−    −  
 

(vii)   1 1 1 1

1 1 1 1

−   
   
−   

(viii)

2

2

2

0

0

0

c b a ab ac

c a ab b bc

b a ac bc c

 − 
  
 − 
  −     

2. If  

2 3
1 2 3

A and B 4 5
4 2 5

2 1

 
−   

= =   −   
 

, do AB and BA  exist? If they exist,

find them.  Do  A and B commute with respect to multiplication ?

3. Find A2, where  
4 2

A
1 1

 
=  

− 
.

4. If  
0

A
0

i

i

 
=  

 
,  find A2.

5. If  
0 0 1 0

A , B and  C
0 1 0 0

i i

i i

−     
= = =     

−     
and I is the unit matrix of order 2, then show

that

(i)  A2  =  B2 = C2 = − I

(ii) AB = −BA  =     − C.

6. If  
2 1 3 2 0

A and B
1 3 1 0 4

   
= =   

   
, find AB.  Find BA, if it exists.
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7. If  
2 4

A
1 k

 
=  

− 
 and  A2 = O, then find the value of k.

II. 1. If  

3 0 0

A 0 3 0

0 0 3

 
 

=  
 
 

,  then find A4.

2. If  

1 1 3

A 5 2 6

2 1 3

 
 

=  
 − − − 

,  then find A3.

3. If  

1 2 1

A 0 1 1

3 1 1

− 
 

= − 
 − 

   then find A3 − 3A2 − A − 3I, where I is unit matrix of order 3.

4. If  3 3 21 0 0 1
I and  E then show that ( I E) I+3 E,

0 1 0 0
a b a a b

   
= = + =   

   
 where I is unit matrix

of order 2.

III. 1. If A = diag[a1,a2, a3], then for any integer 1n ≥  show that 1 2 3A diag[ , , ]n n n na a a= .

2. If  �
2

πφ− = ,   then show that

     

2 2

2 2

cos � ��� ���� � ��� ��� ���
O

cos ���� � ���������� � ��� ��� ����������

φ φ φ

φ φ φ

   
=   

      
.

3. If 
3 4

A
1 1

− 
=  

− 
  then show that 

1 2 4
A =

1 2
n n n

n n

+ − 
 

− 
 for any integer 1n ≥ , by using

mathematical induction.

4. Give examples of  two square matrices  A  and  B  of  the same order  for which   AB = O,  but

BA ≠  O.

5. A trust fund has to invest Rs. 30,000 in two different types of bonds.  The first bond pays 5%

interest per year, and the second bond pays 7% interest per year.  Using matrix multiplication,

determine how to divide Rs. 30,000 among the two types of bonds,  if the trust fund must

obtain an annual total interest of (a) Rs. 1800 (b) Rs. 2000.
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3.3   Transpose of a matrix

In this section we define the Transpose of a martrix and study its properties. We also define
symmetric and skew symmetric matrices.

3.3.1  Definition (Transpose of a matrix)

If = [ ]ijA a   is an  m × n matrix, then the matrix obtained by interchanging the rows and

columns of  A  is called the transpose of A.  Transpose of the matrix  A  is denoted by

A' or AT.  In other words, if  = [ ]ij m nA a × ,  then = [ ]ji n mA a ×′ .

For example if
3 2

A 4 1

0 7

 
 

=  
 
 

       then  
3 4 0

'A =
2 1 7

 
 
  

.

3.3.2  Properties of transpose of matrices

We now state the following properties of transpose of matrices without proof.  These may be
verified by taking suitable examples.

For any two matrices A, B of suitable orders, we have

(i)   (A ) A′ ′ = (ii)   ( A) Ak k′ ′=

(iii)  (A + B) A B′ ′ ′= + (iv)  (AB) B A′ ′ ′=

3.3.3  Example

If  
1 4 7 3 4 0

A  = B =
2 5 8 4 2 1

and
−   

   
− −   

Verify that  (i) (A ) A′ ′ =    (ii)  (A + B) A B′ ′ ′= +   (iii)  (5B) 5(B)′ ′=

Solution

(i) We have   
1 4 7

A = 
2 5 8

 
 
 

           ⇒       

1 2

A 4 5

7 8

 
 

′ =  
 
 

      
1 4 7

(A ) A
2 5 8

 
′ ′⇒ = = 

 
.
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(ii)    
1 4 7 3 4 0

A + B
2 5 8 4 2 1

−   
= +   

− −   

   
2 8 7

6 3 7

− 
=  

 

   

2 6

(A + B) 8 3

7 7

− 
 

′∴ =  
 
 

               

1 2 3 4 2 6

A B 4 5 4 2 8 3 (A + B)

7 8 0 1 7 7

− −     
     

′ ′ ′+ = + − = =     
     −     

.

(iii)  We have  
3 4 0

5B = 5
4 2 1

− 
 

− − 

   
15 20 0

=
20 10 5

− 
 

− − 

    

15 20

(5B) = 20 10

0 5

− 
 

′ − 
 − 

       also 

15 20

5B = 20 10

0 5

− 
 

′ − 
 − 

 Thus    ( )5B = 5B′ ′ .

3.3.4  Example

   If 

1 2
2 1 2

A =    B= 3 0
1 3 4

5 4

and

− 
−   

−   −   
 

 then verify that  ( )AB = B A′ ′ ′ .
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Solution

We have  

1 2
2 1 2 15 4

AB = 3 0
1 3 4 28 18

5 4

− 
−    

− =    − − −    
 

       ( )
15 28

AB
4 18

− 
∴ ′ =  

− 

       Now  

2 1
1 3 5

A 1 3 and B
2 0 4

2 4

 
−  

′ = − ′ =    −  − 

     

2 1
1 3 5 15 28

B A 1 3
2 0 4 4 18

2 4

 
− −    

∴ ′ ′ = − =    − −    − 
     Hence ( )AB = B A′ ′ ′ .

3.3.5   Definition (Symmetric matrix)

A square matrix A is said to be symmetric  if  A = A′ .

3.3.6  Note

(i) The zero matrix On n× ,  any diagonal matrix and the unit matrix In n×  are symmetric.

(ii) If  A is a symmetric matrix, then the ( , )thi j  element of  A is the same as the ( , )thj i

          element of  A.

Let 

11 12 13

21 22 23

31 32 33

1 2 0

A = 2 3 1

0 1 4

a a a

a a a

a a a

   
   

= − −   
   −  

Observe that  12 21 13 31 23 322, 0 and 1.a a a a a a= = = = = = −   So A is symmetric.

(iii) If  A  is a square matrix, then  A + A′  is a symmetric matrix.

3.3.7  Definition (Skew-symmetric matrix)

A square matrix A is said to be skew-symmetric if  A A′ = − .

For example, 

0 1 2
0 1

and 1 0 4
1 0

2 4 0

− 
−   

−   
   − 

  are skew - symmetric matrices.
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3.3.8  Note

(i) The zero matrix On n×  is skew-symmetric.

(ii)  If  A  is a skew-symmetric matrix, then the ( , )thi j  element of  A  is the same as the negative of

the ( , )j i th  element of   A.

 Let  

11 12 13

21 22 23

31 32 33

0 1 2

A = 1 0 4

2 4 0

a a a

a a a

a a a

−   
   

= −   
   −  

 Observe that  12 21 13 31 23 321 , 2 and 4 ,a a a a a a= =− = − =− = = −

since the diagonal elements 11 22 33, anda a a  do not change while transposing the  given matrix, if

A = ij n n
a

×
    is a skew symmetric matrix, then  ii iia a=−  so  that 0 ( =1, 2,... ).iia i n=

(iii)  If A is a square matrix, then A A− ′  is a skew-symmetric matrix.

(iv)  If A is a symmetric (or skew-symmetric) matrix, then kA is also symmetric (or skew-symmetric) for
any scalar  k.

3.3.9  Solved Problems

1. Problem :  If   

1 2
2 1 0

= = 4 3
3 4 5

1 5

A and B

 
−   

   −   − 

  the find  A + B′  .

Solution :    
2 1 0 1 4 1

A+B
3 4 5 2 3 5

− −   
′= +   

−   
 

1 5 1

5 7 0

− − 
=  

 
.

2. Problem: If 
1 2

 .  
0 1

A then find A A Do A and A
− 

= ′ ′ 
 

commute with respect tomultiplication

of matrices?

Solution :     
1 0

A
2 1

− 
′ =  

 

 
1 2 1 0 ( 1).( 1) 2.2 ( 1).0 2.1 5 2

AA
0 1 2 1 0.( 1) 1.2 0.0 1.1 2 1

− − − − + − +       
′ = = =       

− + +       
.

         
1 0 1 2 ( 1).( 1) 0.0 ( 1).2 0.1 1 2

A A
2 1 0 1 2.( 1) 1.0 2.2 1.1 2 5

− − − − + − + −       
′ = = =       

− + + −       
.

      Since  AA A A, A  and A′ ≠ ′ ′  do not commute.
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3. Problem: If   

0 4 2

4 0 8

2 8

A

x

− 
 

= − 
 − 

 is a skew symmetric matrix, find the value of  x.

Solution :  A  is a skew symmetric matrix and  x  is an element of the diagonal.  Hence  x = 0.

4. Problem : For any n n×  matrix  A, prove that  A can  be uniquely expressed as a sum of a
symmetric matrix and a skew symmetric matrix.

Solution :  A + A′  is symmetric and  A A− ′   is a skew-symmetric matrix  and

1 1
A (A A ) (A A )

2 2
= + ′ + − ′

To prove uniqueness, let  B be a symmetric matrix and  C  be a skew symmetric matrix such
that  A  =  B + C.

        Then A (B+C) B +C B C= = = −′ ′ ′ ′

       and  hence  
1

B (A A )
2

= + ′

            and 
1

C (A A )
2

= − ′ .

Exercise 3(c)

 I. 1.
2 0 1 1 1 0

If A and B  then find (AB )
1 1 5 0 1 2

′−   
= = ′   

− −   
.

2.

2 1
2 3 1

If A 5 0 and B  then find 2A + B and 3B A.
4 0 2

1 4

− 
−  

= = ′ ′−  
  − 

3.
2 4

If A  then find A + A and AA .
5 3

′− 
= ′ 

− 

4.

1 2 3

If A 2 5 6

3 7x

− 
 

=  
 
 

  is a symmetric matrix, then find x.

5.  

0 2 1

 If A 2 0 2

1 0x

 
 

= − − 
 − 

  is a skew symmetric matrix, then find x.
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6.  Is  

0 1 4

1 0 7

4 7 0

 
 
− 

 − − 

 symmetric or skew symmetric?

II. 1. If  
cos sin

A = ,  show that AA A A I.
sin cos

α α

α α

 
′ = ′ = 

− 

2.

1 5 3 2 1 0

If A = 2 4 0  and   B= 0 2 5 then find 3A 4B .

3 1 5 1 2 0

−   
   

− − ′   
   − −   

3.

7 2 2 1

If A = 1 2  and  B= 4 2 then find AB and BA .

5 3 1 0

− − −   
   
− ′ ′   

   −   

4. For any square matrix  A,  show that AA′  is symmetric.

3.4    Determinants

Consider the system of two linear equations in two variables,

1 1 1

2 2 2

a x b y c

a x b y c

+ =
+ =

where    1 20 or 0c c≠ ≠ .

We have learnt in lower classes that this system has a unique solution or not according as

1 2 2 1a b a b− is not  zero or  zero.  In other words, a1b2 − a2b1 determines whether the system  has a

unique solution or not and hence it is called the 'determinant' of the system.  Hence  we associate the

value 1 2 2 1a b a b−  to the matrix  
1 1

2 2

a b

a b

 
 
  

 and call it the determinant (simply determinant) of the matrix.

The determinant of  1 × 1 matrix  is defined as its element.

In this section, we define the determinant of a 3 × 3 matrix, study its properties and the methods of

evaluation of certain determinants.
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3.4.1  Definition  (Minor of an element)

Consider a square matrix  

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
 
 

The minor of an element in this matrix is defined as the determinant of  the 2 ×2  matrix,
obtained after deleting the row and the column in which the element is present.

For example  the minor of a2 is the det. of  
1 1

1 3 3 1
3 3

b c
b c b c

b c

 
= − 

  

and the minor of  b3 is the det. of  
1 1

1 2 2 1
2 2

.
a c

a c a c
a c

 
= − 

  

3.4.2  Definition  (Cofactor of an element)

The cofactor of an element in the ith row and the jth column of a  3×3  matrix is defined as

its minor multiplied by ( 1)i j+− .

We denote the cofactor of  aij by Aij .

For example, consider the matrix in 3.4.1.

Since  a2  is in  2nd  row and  1st  column, we have

    2 1
2 2 1 3 3 1A  cofactor of ( 1) ( )a b c b c+= = − −
 1 3 3 1( )b c b c= − −

 3 1 1 3b c b c= −

Since b3  is in  3rd row and  2nd column, we have

    3 3B  cofactor of b=

          3 2
1 2 2 1( 1) ( )a c a c+= − −

            2 1 1 2a c a c= − .

3.4.3  Example

     In the matrix

1 0 2

3 1 2

4 5 6

− 
 

− 
 
 

we list out here under, the minors and cofactors of  all the elements.
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3.4.4  Definition  (Determinant)

Let  

1 1 1

2 2 2

3 3 3

A

a b c

a b c

a b c

 
 

=  
 
 

. The sum of the products of elements of the first

row with their corresponding cofactors is called the determinant  of  A.

The determinant of the matrix 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
 
 

 is written as 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

.

We also denote the determinant of the matrix  A by det  A or  |A|.

element element Minor Cofactor
ija present in of ija of ija

row i, column j

1 1       1
1 2

16
5 6

−
= − 1 1( 1) ( 16) 16+− − = −

0 1       2
3 2

10
4 6

=                  1 2( 1) (10) 10+− = −

     −2 1       3
3 1

19
4 5

−
= 1 3( 1) (19) 19+− =

3 2       1
0 2

10
5 6

−
= 2 1( 1) (10) 10+− = −

     −1 2       2
1 2

14
4 6

−
= 2 2( 1) (14) 14+− =

2 2       3
1 0

5
4 5

=                    2 3( 1) (5) 5+− = −

4 3       1
0 2

2
1 2

−
= −

−
3 1( 1) ( 2) 2+− − = −

5 3       2
1 2

8
3 2

−
= 3 2( 1) (8) 8+− = −

6 3       3
1 0

1
3 1

= −
−

3 3( 1) ( 1) 1+− − = −
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det  1 1 1 1 1 1A A B Ca b c= + +

So far we have defined the concept of determinant for square matrices of order n for n = 1, 2, 3.
The concept can be extended to the case n ≥  4  also using the principle of mathematical induction.  Let

n ≥  4 and suppose that we know the definition of determinant for square matrices of order n -- 1.  Let

A = [ ]ij n na × . Then the determinant of  A  is defined as  1 1
1

A ,
n

j j
j

a
=
∑  where  A1j is the cofactor of  a1j.

3.4.5  Example

Let us find the determinant of  

1 0 2

A = 3 1 2

4 5 6

− 
 

− 
 
 

 det  A  =  sum of  the products of elements of the first row with their
       corresponding cofactors

  =  1 (cofactor of 1) + 0 (cofactor of 0) + (−2) cofactor of (−2)

  =  1(−16) + (−2) (19)

  = −16−38 = −54.

3.4.6   Note

The definition of the determinant is formulated by using the elements of the first row and the
corresponding cofactors only.  However the process can be adopted for the elements of any row or
column and the corresponding cofactors. We thus have

                   det  
1

A A for 1 .
n

ij ij
j

a i n
=

= ≤ ≤∑
Here the sum on the right hand side is independent of  i.

 If  

1 1 1

2 2 2

3 3 3

A =

a b c

a b c

a b c

 
 
 
 
 

then  observe that  det  1 1 1 1 1 1A =  A B Ca b c+ +  expansion  along  first  row

similarly    det 2 2 2 2 2 2A A B Ca b c= + +  expansion  along second row

3 3 3 3 3 3A B Ca b c= + +   expansion  along third row

1 1 2 2 3 3A A Aa a a= + +  expansion  along first column

1 1 2 2 3 3B B Bb b b= + +    expansion  along second column

1 1 2 2 3 3C C Cc c c= + +    expansion  along third column

For instance, consider

1 1 2 2 3 3A A Aa a a+ +
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2 2 1 1 1 11 1 2 1 3 1
1 2 3

3 3 3 3 2 2

( 1) ( 1) ( 1)
b c b c b c

a a a
b c b c b c

+ + += − + − + −

1 2 3 3 2 2 1 3 3 1 3 1 2 2 1( ) ( ) ( )a b c b c a b c b c a b c b c= − − − + −

1 2 3 3 2 1 2 3 3 2 1 2 3 3 2( ) ( ) ( )a b c b c b a c a c c a b a b= − − − + −

1 1 1 1 1 1A B C det Aa b c= + + = .

3.4.7  Examples

1. Find the determinant of  
1 1

A =
3 1

− 
 
− 

.

Solution:      det  A = 1 . 1 −(−3) (−1) = 1 − 3 = −2.

2. Find the minors of −1 and 3 in the matrix  

2 1 4

0 2 5

3 1 3

− 
 

− 
 − 

.

Solution:   Minor of    
0 5

1 0.3 ( 3).5 15
3 3

− = = − − =
−

.

Minor of     
2 1

3 2.( 2) 0 ( 1) 4.
0 2

−
= = − − ⋅ − = −

−

3. Find the cofactors of the elements  2, −5 in the matrix  

1 0 5

1 2 2

4 5 3

− 
 

− 
 − − 

.

Solution :  The element  2 is  (2, 2)th  element of the given matrix.

Hence cofactor of   2 2 1 5
2 ( 1)

4 3
+ −

= −
−

        ( 1) 3 ( 4) 5= − ⋅ − − ⋅

        3 20 17= − + = .

The element −5  is  (3, 2)th  element of the given matrix.

    Hence cofactor of  3 2
1 5

5 ( 1)
1 2

+ −
− = −

−

        [( 1) ( 2) 1 5]= − − ⋅ − − ⋅

        (2 5) 3.= − − =
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4. Find the determinant of  the matrix  

1 1 2

3 0 4

4 2 5

− 
 
 
 − − 

.

Solution:   Cofactor of    1      1 1 0 4
( 1) 8

2 5
+= − =

−
.

   Cofactor of −1    1 2 3 4
( 1) 31.

4 5
+= − = −

−

   Cofactor of    2    1 3 3 0
( 1) 6

4 2
+= − = −

− −
.

      

1 1 2

Now  3 0 4 1 8 ( 1) ( 31) 2 ( 6) 8 31 12 27

4 2 5

−

= ⋅ + − ⋅ − + ⋅ − = + − =

− −

.

3.4.8  Properties of determinants

(i) If each element of a row (or column) of a square matrix is zero, then the determinant of that
matrix is zero.

The value of the determinant of such a matrix can be easily found to be zero by expanding it along
a row (column) containing zeros.

(ii) If  two rows (or columns) of a square matrix are interchanged, then the sign of the determinant
changes.

Let  

1 1 1

2 2 2

3 3 3

A =

a b c

a b c

a b c

 
 
 
 
 

  and  

2 2 2

1 1 1

3 3 3

B =

a b c

a b c

a b c

 
 
 
 
 

( B is obtained by interchanging first and second rows of  A )

det 2 1 2 2
1 2 3 3 2 1 2 3 3 2B = ( 1) ( ) ( 1) ( )a b c b c b a c a c+ +− − + − −

                                        
2 3

1 2 3 3 2( 1) ( )c a b a b++ − −
         1 2 3 3 2 1 2 3 3 2 1 2 3 3 2[ ( ) ( ) ( )]a b c b c b a c a c c a b a b= − − − − + −

 det  A.= −
(iii) If each element of a row (or column) of a square matrix is multiplied by a number k, then the

determinant of the matrix obtained is k  times the determinant of the given matrix.

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

Let   A = , B =

a b c ka b c

a b c ka b c

a b c ka b c

   
   
   
   
   

( B is obtained by multiplying the elements of first column of  A by k )
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If the cofactors of 1 2 3, ,a a a  in  A are 1 2 3A , A , A  then the cofactors of 1 2 3, ,ka ka ka  in B are
also 1 2 3A , A , A  respectively. Hence

1 1 2 2 3 3det B = A A Aka ka ka+ +
         1 1 2 2 3 3( A A A )k a a a= + +

                                (det A)k= .

(iv) If  A  is square matrix of order 3 and  k is a scalar, then  | kA |  = k3|A|.  By applying property
(iii), three times, we get the result.

(v) If  two rows (or columns) of a square matrix are identical, then the determinant of that matrix is
zero.

1 1 1

2 2 2

2 2 2

Let   A =

a b c

a b c

a b c

 
 
 
 
 

(second and third rows are identical)

 Then   det  A  =  1 1 1 1 1 1A B Ca b c+ +
            1 1 1(0) (0) (0) 0a b c= + + = .

(vi) If the corresponding elements of two rows (or columns) of a square matrix are in the same ratio,
then the determinant of that matrix is zero.

       

1 1 1

1 1 1

3 3 3

Let   A =

a b c

ka kb kc

a b c

 
 
 
 
 

Then

        

1 1 1

1 1 1

3 3 3

det  A =

a b c

ka kb kc

a b c

           

1 1 1

1 1 1

3 3 3

a b c

k a b c

a b c

=   by  property (iii)

          =  k (0)                 by property (v)
          =  0.

(vii) If each element in a row (or column) of a square  matrix is the sum of two numbers, then its
determinant can be expressed as the sum of the determinants of two square matrices as shown
below.

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

Let A = ,  B= ,  C =

a x b c a b c x b c

a x b c a b c x b c

a x b c a b c x b c

+     
     

+     
     +     
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If  in  A, the cofactors of  1 1 2 2 3 3 1 2 3, , are A ,A , Aa x a x a x+ + + then the cofactors of

1 2 3 1 2 3 1 2 3, ,  in B and of , ,  in C are also A , A , Aa a a x x x  respectively.

Now,

 det  A  =  ( ) ( ) ( )1 1 1 2 2 2 3 3 3A A Aa x a x a x+ + + + +

         1 1 2 2 3 3 1 1 2 2 3 3( A A A ) ( A A A )a a a x x x= + + + + +

          =   det B + det C.

   ∴           

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

a x b c a b c x b c

a x b c a b c x b c

a x b c a b c x b c

+

+ = +

+
.

(viii) If each element of a row (or column) of a square matrix is multiplied by a number k and added to

the corresponding element of another row (or column) of the matrix, then the determinant of the

resultant matrix is equal to the determinant of the given matrix.

1 1 1 1 1 1

2 2 2 2 1 2 1 2 1

3 3 3 3 3 3

Let A =  and B = 

a b c a b c

a b c a ka b kb c kc

a b c a b c

   
   

+ + +   
   
   

( B is obtained from  A  by multiplying each element of the 1st row of  A by k and then adding

them to the corresponding elements of the 2nd row of  A )

           

1 1 1 1 1 1

2 2 2 1 1 1

3 3 3 3 3 3

det B = 

a b c a b c

a b c ka kb kc

a b c a b c

+   by property (vii)

           

1 1 1

2 2 2

3 3 3

= 0

a b c

a b c

a b c

+     by property (vi)

                    

1 1 1

2 2 2

3 3 3

= det A.

a b c

a b c

a b c

=

(ix) The sum of the products of the elements of a row (or column) with the cofactors of the
corresponding elements of another row (or column) of a square matrix is zero.
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1 1 1

2 2 2

3 3 3

Let A = 

a b c

a b c

a b c

 
 
 
 
 

.

Consider the sum of the products of the elements of the second row with the cofactors of the
corresponding elements of the first row.,

               2 1 2 1 2 1i.e., A B Ca b c+ +

               
2 2 2 2 2 2

2 2 2
3 3 3 3 3 3

b c a c a b
a b c

b c a c a b
= − +

                

2 2 2

2 2 2

3 3 3

0

a b c

a b c

a b c

= =     by property (v).

(x) If the elements of a square matrix are polynomials in x and its determinant is zero when

, then x a x a= −  is a factor of the determinant of the matrix.

         

1 1 1

2 2 2

3 3 3

( ) ( ) ( )

 Let A( ) = ( ) ( ) ( )

( ) ( ) ( )

f x g x h x

x f x g x h x

f x g x h x

 
 
 
 
 

.

Now det [A(x)] is a polynomial in x.

If  det  [A( a )] = 0  then  by  Remainder  theorem, x a−  is a factor of det  [A(x)].

(xi) For any square matrix  A, det  A  =  det (A').

            

1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

Let A = ,  then A  =

a b c a a a

a b c b b b

a b c c c c

   
   
   
   
   

′ .

The values of the cofactors of  1 1 1, , ,a b c  are same in both A and A'.

Hence det 1 1 1 1 1 1A A B C = det A .a b c= + + ′

(xii) Det (AB) = (det A) (det B) for matirces A, B of order 2.

Consider the matrices  
11 12 11 12

21 22 21 22

A , B ,
a a b b

a a b b

   
= =   

      
    11 22 21 12 11 22 21 12det A = ; det B = .a a a a b b b b− −

           
11 12 11 12

21 22 21 22

Now AB
a a b b

a a b b

   
=    
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11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

a b a b a b a b

a b a b a b a b

+ + 
=  

+ +  

            ( )( ) ( )( )11 11 12 21 21 12 22 22 21 11 22 21 11 12 12 22det (AB) a b a b a b a b a b a b a b a b= + + − + +

                           11 21 11 12 11 22 11 22 12 21 12 21 12 22 21 22a a b b a a b b a a b b a a b b= + + +

                11 21 11 12 12 21 11 22 11 22 12 21 12 22 21 22a a b b a a b b a a b b a a b b− − − −

            11 22 11 22 12 21 12 21 12 21 11 22 11 22 12 21a a b b a a b b a a b b a a b b= + − −

          ( ) ( )11 22 11 22 12 21 12 21 11 22 12 21a a b b b b a a b b b b= − − −

                       ( )( )11 22 12 21 11 22 12 21a a a a b b b b= − −

    (det A) (det B)= .

If  A and B are matrices of  order three then also in a similar manner we can show that

   det(AB) (det A) (det B)= .

This is true in general, for all matrices of order  n;  the proof of this is beyond the scope  of this

book.

(xiii) For any positive integer  n, det(A ) (det A)n n= .

(xiv) If A is a triangular matrix (upper or lower), then determinant of  A is the product of  the diagonal

elements.

3.4.9  Notation

While evaluating determinants, we use the following notations.

(i) 1 2R R↔ , to mean that the rows  R1 and R2  are interchanged.

(ii) 1 1R Rk→ , to mean that the elements of  R1 are multiplied by k.

(iii) 1 1 2R R Rk→ +  to mean that the elements of  R1 are added with k times the corresponding
elements of R2.

   Similar notation is used for other rows and columns.

3.4.10  Solved Problems

1. Problem :   Show that  

2

2

2

1

1 ( )( )( )

1

a a

a b a b b c c a

a c

= − − − .
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Solution :          

2

2

2

1

L.H.S. 1

1

a a

b b

c c

=

On applying 2 2 1 3 3 1R (R R ); R (R R )→ − → −  on LHS we get

        

2

2 2

2 2

1

L.H.S. 0

0

a a

b a b a

c a c a

= − −

− −

On expanding the det. along the first column, we get

             
2 2

2 2
1.

b a b a

c a c a

− −=
− −

  ( )( )( ) R.H.Sa b b c c a= − − − = .

2. Problem : Without expanding the determinant show that

  2

b c c a a b a b c

c a a b b c b c a

a b b c c a c a b

+ + +

+ + + =

+ + +

.

Solution :

L.H.S. =

b c c a a b

c a a b b c

a b b c c a

+ + +

+ + +

+ + +

       

2( ) 2( ) 2( )a b c a b c a b c

c a a b b c

a b b c c a

+ + + + + +

= + + +

+ + +

(by applying 1 1 2 3R R R R→ + + )

    2

a b c a b c a b c

c a a b b c

a b b c c a

+ + + + + +

+ + +=
+ + +

            
2

a b c a b c a b c

b c a

c a b

+ + + + + +

= − − −

− − −

(by applying 2 2 1R R R→ −

1 3 3 1and  R R R→ − )
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2

a b c

b c a

c a b

= − − −

− − −

                        
2( 1)( 1) 2 R.H.S.

a b c a b c

b c a b c a

c a b c a b

= − − = =

3. Problem :   Show that  

2 3

2 3

2 3

1

1 ( )( )( ) ( )

1

a a

a b b c c a ab bc cab b

c c

= − − − + + .

Solution :

  

2 3

2 3

2 3

1

L.H.S. = 1

1

a a

b b

c c

  

2 2 3 3

2 2 3 3

2 3

0

= 0

1

a c a c

b c b c

c c

− −

− −

             

2 2

2 2

2 3

0

= ( )( ) 0  

1

a c a ac c

a c b c b c b bc c

c c

+ + +

− − + + +

             

2 2

2 2

2 3

0

= ( )( ) 0

1

a c a ac c

a c b c b a b a bc ac

c c

+ + +

− − − − + −

             

2 2

2 3

0

= ( )( ) ( ) 0 1

1

a c a ac c

a c b c b a c a b

c c

+ + +

− − − + +

            

2 2

= ( )( ) ( )
1

a c a ac c
a c b c b a

a b c

+ + +
− − −

+ +

             = ( )( ) ( ) ( ) R.H.S.a b b c c a ab bc ca− − − + + =

(by applying 1 1 2 3R R R R→ + + )

(by applying 2 2 1R R R→ −  )

(by applying 1 1 3R R R→ − ; 2 2 3R R R→ − )
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4. Problem : If ω  is complex (non real) cube root of 1 then show that  

2

2

2

1

1 0

1

ω ω

ω ω

ω ω

= .

Solution : Method  1

2

2

2

1

L.H.S. = 1

1

ω ω

ω ω

ω ω

     

2 2 2

2
1 1 2 3

2

1 1 1

1 by applying R R R R

1

ω ω ω ω ω ω

ω ω

ω ω

+ + + + + +

= → + +

      
2 2

2

0 0 0

= 1 0 R.H.S. ( 1 0).

1

ω ω ω ω

ω ω

= = + + =�

Method  2

     

2 3 2 2

2 2 2

2 2 2

1 1

1 1 1 0

1 1 1

ω ω ω ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω ω

= = = .

5. Problem:  Show that  3

2 2

2 2 ( ) .

2 2

a b c a a

b b c a b a b c

c c c a b

− −

− − = + +

− −

Solution:  

2 2

L.H.S. = 2 2

2 2

a b c a a

b b c a b

c c c a b

− −

− −

− −

     1 1 2 32 2 applying R R R R

2 2

a b c a b c a b c

b b c a b

c c c a b

+ + + + + +

= − − → + +

− −

      

1 1 1

( ) 2 2

2 2

a b c b b c a b

c c c a b

= + + − −

− −
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1 0 0

( ) 2 0

2 0

a b c b b c a

c c a b

= + + − − −

− − −

                   
30

( ) ( ) R.H.S.
0

b c a
a b c a b c

c a b

− − −
= + + = + + =

− − −

6. Problem:    Show that  the determinant of skew- symmetric matrix of order three is always zero.

Solution :     Let us consider a skew-symmetrc matrix of order three, say -

               

0

A 0

0

c b

c a

b a

− − 
 

= − 
 
 

     ⇒   

0

A 0

0

c b

c a

b a

− −

= −

        =  +c(0 + ab) − b(ca − 0)  =  abc −  abc = 0.

 Hence A 0= .

Observe that the determinant of skew-symmetric matrix of order two need not be zero.

For example  
0 2

A
2 0

 
=  

− 
 is skew symmetric matrix of order 2, and det A 0≠ .

7. Problem :   Find the value of x if  

2 2 3 3 4

4 2 9 3 16 0

8 2 27 3 64

x x x

x x x

x x x

− − −

− − − =

− − −

.

Solution :  

2 2 3 3 4

4 2 9 3 16

8 2 27 3 64

x x x

x x x

x x x

− − −

− − −

− − −

    ( ) ( )2 2 1 3 3 1

2 2 3 3 4

2 6 12 applying R R R ,  R R R

6 24 60

x x x− − −

= − − − → − → −

− − −

     

2 2 3 3 4

( 2) ( 6) 1 3 6

1 4 10

x x x− − −

= − −

Now given that  

2 2 3 3 4

1 3 6 0

1 4 10

x x x− − −

= .

2 2 1applying C C C ,→ −

      3 3 1C C C→ −
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Expanding the determinant along the elements of first row, we have

         ( 2) (30 24) (2 3) (10 6) (3 4) (4 3) 0x x x− − − − − + − − =

i.e., 6( 2) 4(2 3) (3 4) 0x x x− − − + − =

i.e., 4 0. Hence = 4x x− = .

Exercise 3(d)

 I. 1. Find the determinants of the following matrices.

(i)
2 1

1 5

 
 

− 
(ii)

4 5

6 2

 
 
− 

(iii)
0

0

i

i

 
 

− 
(iv)

0 1 1

1 0 1

1 1 0

 
 
 
 
 

(v)

1 4 2

2 1 4

3 7 6

 
 

− 
 − 

(vi)

2 1 4

4 3 1

1 2 1

− 
 

− 
 
 

(vii)  

1 2 3

4 1 7

2 4 6

− 
 

− 
 − 

(viii)

a h g

h b f

g f c

 
 
 
 
 

(ix)

a b c

b c a

c a b

 
 
 
 
 

(x)

2 2 2

2 2 2

2 2 2

1 2 3

2 3 4

3 4 5

 
 
 
 
  

2. If   

1 0 0

A 2 3 4 and det A 45 then find  .

5 6

x

x

 
 

= = 
 − 
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II. 1. Show that 

1

1 ( ) ( ) ( )

1

bc b c

ca c a a b b c c a

ab a b

+

+ = − − −

+

.

2. Show that 3 3 3 3

b c c a a b

a b b c c a a b c abc

a b c

+ + +

+ + + = + + − .

3. Show that 4

y z x x

y z x y xyz

z z x y

+

+ =

+

.

4. If   

2 3 2

2 3 2

2 3 2

1 1

1 0  and 1 0 then show that 1

1 1

a a a a a

b b b b b abc

c c c c c

+

+ = ≠ = −

+
.

5. Without expanding the determinant, prove that (i)  

2 2 3

2 2 3

2 2 3

1

1

1

=

a a bc a a

b b ca b b

c c ab c c

.

(ii)  
2 2 2

1 1 1

ax by cz a b c

x y z x y z

yz zx xy

=        (iii)   

2

2

2

1 1

1 1

1 1

bc b c a a

ca c a b b

ab a b c c

+

+ =

+
.

6. If 

2
1 1 1 1 2 2 2 1 3 3 3

2
1 1 2 1 2 2 2 3 3

2
3 1 3 2 3

a b c a a b c a a b c

b b c b c b b c

c c c c c

+ + + + + +

∆ = + + +  and

   

1 1 1

2 2 2 2

3 3 3

a b c

a b c

a b c

∆ = , then  find the value of  
1

2

∆
∆ .
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7. If  1

1 cos cos

cos 1 cos

cos cos 1

α β

∆ = α γ

β γ

, 2

0 cos cos

cos 0 cos

cos cos 0

α β

∆ = α γ

β γ

 and 1 2∆ = ∆ , then show that

cos2 α  + cos2 β + cos2 γ = 1.

III. 1. Show that  3

2

2 2( )

2

a b c a b

c b c a b a b c

c a c a b

+ +

+ + = + +

+ +

.

2. Show  that
2 2 2 2

2 2 2 3 3 3 2

2 2 2

2

2 ( 3 )

2

a b c bc a c b

b c a c ac b a a b c abc

c a b b a ab c

−

= − = + + −

−

.

3. Show that  

2

3

2 2 1 1

2 1 2 1 ( 1)

3 3 1

a a a

a a a

+ +

+ + = − .

4. Show that  2 2 2

3 3 3

( ) ( ) ( )

a b c

a b c abc a b b c c a

a b c

= − − − .

5. Show that  

2

2 4( ) ( ) ( )

2

a a b c a

a b b b c a b b c c a

c a c b c

− + +

+ − + = + + +

+ + −

.

6. Show that  0

a b b c c a

b c c a a b

c a a b b c

− − −

− − − =

− − −

.

7. Show that  2

2

1

1 0

1

a a bc

b b ca

c c ab

2 −

− =

−

 .

8. Show that 2( 2 ) ( )

x a a

a x a x a x a

a a x

= + − .
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3.5    Adjoint and Inverse of a Matrix

In this section, we define the concepts of invertibility of a matrix and the multiplicative inverse of an

invertible matrix and study certain properties of inverses and provide a method of finding the

multiplicative inverse of a given invertible matrix.

3.5.1  Definition (Singular and Non-singular matrices)

A  square matrix is said to be singular if its determinant is zero. Otherwise it is said to be

non-singular.

For example, 
3 2

6 4

 
 
 

 is a singular matrix while 
3 2

6 4

− 
 
 

 is non-singular.

3.5.2   Definition  (Adjoint of a matrix)

The transpose of the matrix formed by replacing the elements of a square matrix A (of

order greater than one) with the corresponding cofactors is called the  Adjoint of  A  and is

denoted by Adj  A.

1 1 1

2 2 2

3 3 3

Let  A  =  

a b c

a b c

a b c

 
 
 
 
 

 and A , B , Ci i i  be the cofactors of , ,i i ia b c   respectively.

T
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

A B C A A A

Then Adj A A B C B B B

A B C C C C

   
   

= =   
   
   

.

3.5.3  Definition (Invertible matrix)

    Let A  be a square matrix. We say that A is invertible if a  matrix B exists such that

AB = BA = I,  where I  is the  unit matrix of the same order as A and B.

3.5.4  Note

(i) For the products  AB and BA  to be both defined and equal, it is necessary that A and B are both

square matrices of the same order. Thus, non-square matrices are not invertible.
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(ii) If  A  is invertible, then  A  is non-singular, hence det A ≠  0.

[Let  A  be invertible.  Then there exsists a  matrix  B such that  AB = I.

Hence  (det A)  (det B) = det (AB) = det I = 1.  Hence det A ≠  0].

(iii) If  B exists; such that  AB = BA = I, then such a  B  is unique and is denoted by  A-1 and is called

the multiplicative inverse or inverse of  A.

[For, if  B and C  are inverses of  A, then by definition  AB = BA = I  and

 AC = CA = I.  Then  B = BI = B (AC) = (BA)C = IC = C].

3.5.5  Theorem

Let  A  and  B  be invertible matrices.  Then 1A− , A' and  AB  are invertible. Further

  (i)  1 1(A ) A− − =

 (ii)  1 1(A ) (A )' '− −=

(iii)  1 1 1(AB) B A− − −= .

Proof: (i) 1 Let A C. Then CA = CA = I− = .

 By 3.5.4 (ii), C  is invertible and the multiplicative inverse of  C  is A

 1i.e.,  C A− =

 1 1i.e.,  (A ) A− − = .

 (ii)  Consider

 1 1(A )(A ) (A A) = I I' ' ' '− −= = . ... (1)

 Similarly,

 1 -1(A ) (A ) (AA ) = I I' ' ' '− = = . ... (2)

 From (1) and (2)

   1 1(A )(A ) (A ) (A ) I' ' '− −= =′ .

∴  By definition A' is invertible and the multiplicative inverse of A' is (A-1)'.

  1 -1i.e.,  (A ) = (A )' − ′ .
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(iii)  Since A and B are invertible, we have

1 1AA A A I− −= = ... (1)

and 1 1BB B B = I.− −= ... (2)

Now
1 1(AB) (B A )− −

                 1 1A (BB ) A− −= ,  by Associative law

                1A(I) A−= ,  by (2)

                1(A I) A−=

                1AA I−= = ,  by (1).

Similarly

 1 1 1 1(B A ) (AB) = B (A A) B− − − −  1B (I) B−=

                1B (IB)−=  1B B = I−= .

1 1 1 1We have (AB)( B A ) = ( B A ) (AB) = I− − − −∴ .

Hence by definition  AB is invertible and the multiplicative inverse of 1 1AB is B A− − .

1 1 1i.e., (AB) B A− − −= .

3.5.6  Theorem

If 

1 1 1

2 2 2

3 3 3

A =

a b c

a b c

a b c

 
 
 
 
 

 is a non-singular matrix then A is invertible and 
1 AdjA

A
det A

− = .

Proof :    By definition,

             

1 2 3

1 2 3

1 2 3

A A A

Adj A = B B B

C C C

 
 
 
 
 

.

           

1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

A A A

B B BNow A (Adj A) =

C C C

   
   
   
   
   

�

a b c

a b c

a b c
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1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

A B C A B C A B C

A B C A B C A B C

A B C A B C A B C

a b c a b c a b c

a b c a b c a b c

a b c a b c a b c

+ + + + + + 
 

= + + + + + + 
 + + + + + + 

            

det A 0 0

0 det A 0

0 0 det A

 
 

=  
 
 

      

1 0 0

det A 0 1 0

0 0 1

 
 

=  
 
 

      (det A) I.=

AdjA
 Now, since det  A 0, we have A I

det A
.≠ = .

Similarly, we can show that 
AdjA

A I
det A

. = .

AdjA
Let B Then AB = BA = I

det A
.= .

Hence  A  is invertible and 
1 AdjA

A B =
det A

.− =

3.5.7  Solved Problems

1.  Problem:    Find the adjoint and the inverse of the matrix 
1 2

A =
3 5

 
 

− 
.

Solution   
1 2

det A = 1.( 5) 3.2 5 6 11 0.
3 5

= − − = − − = − ≠
−

Hence  A  is invertible.

The cofactor matrix of  
5 3

A =
2 1

− − 
 
− 

                  
5 3 5 2

Adj A =
2 1 3 1

′− − − −   
∴ =   

− −   
.
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1

5 2
5 2AdjA 1 11 11

A
det A 11 3 1 3 1

11 11

−

 
 − − 
 ∴ = = = − − −  
  

.

2. Problem :    Find the adjoint and the inverse of the matrix 

1 3 3

A 1 4 3

1 3 4

 
 

=  
 
 

.

Solution:  
4 3 1 3 1 4

det A = 1 3 3
3 4 1 4 1 3

− +

    1(16 9) 3(4 3) 3(3 4) 7 3 3 1 0= − − − + − = − − = ≠ .

Therefore  A  is invertible.

The cofactor matrix of  A  is  B =  

7 1 1

3 1 0

3 0 1

− − 
 
− 

 − 

                        

7 3 3

Adj A = B 1 1 0

1 0 1

− − 
 

′∴ = − 
 − 

                    
1

7 3 3
AdjA

A 1 1 0 ( det A = 1)
det A

1 0 1

−

− − 
 

∴ = = − 
 − 

�
.

3. Problem:    Show that   

1 2 1

A 3 2 3

1 1 2

 
 

=  
 
 

  is non - singular and find 1A− .

Solution :   
2 3 3 3 3 2

det A =1 2 1 1 6 1 4 0
1 2 1 2 1 1

− + = − + = − ≠ .

Hence  A  is a non-singular matrix.
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The cofactor matrix of  A is B  = 

1 3 1

3 1 1

4 0 4

− 
 
− 

 − 
The transpose of  B is the adjoint of  A.

                      

1 3 4

Adj A = B 3 1 0

1 1 4

− 
 

′∴ = − 
 − 

                   

1

1 3
1

4 41 3 4
AdjA 1 3 1 0A 3 1 0
det A 4 4 4

1 1 4 1 1 1
4 4

−

 −− 
−   

   ∴ = = − = −   −    −   
− −  

.

Exercise 3(e)

 I 1. Find the adjoint and the inverse of the following matrices.

(i) 2 3

4 6

− 
 
 

(ii)
cos sin

sin cos

α α

α α

− 
 
 

(iii)

1 0 2

2 1 0

3 2 1

 
 
 
 
 

(iv)

2 1 2

1 0 1

2 2 1

 
 
 
 
 

2. If  2 2 2 2A , 1
a ib c id

a b c d
c id a ib

+ + 
= + + + = 

− + − 
  then find the inverse of  A.

3. If   A = 

1 2 3

0 1 4

2 2 1

− 
 

− 
 − 

,  then find (A') −1.
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4. If   A =

1 2 2

2 1 2

2 2 1

− − − 
 

− 
 − 

, then show that the adjoint of  A  is  3A'.  Find  A −1.

5. If   abc ≠  0,  find the inverse of 

0 0

0 0

0 0

a

b

c

 
 
 
 
 

.

II 1. If  A  = 

0 1 1
1

1 0 1 and B =
2

1 1 0

b c c a b a

c b c a a b

b c a c a b

+ − −   
   

− + −   
   − − +   

, then show that

ABA−1 is a diagonal matrix.

2. If  3A =  
1

1 2 2

2 1 2 , then show that A A

2 2 1

−

 
 

− = ′ 
 − − 

.

3. If  A = 
1 3

3 3 4

2 3 4 , then show that A A .

0 1 1

−

− 
 

− = 
 − 

4. If  AB = I  or  BA = I, then prove that  A  is invertible and  B = A −1.

3.6    Consistency and Inconsistency of system of
 Simultaneous Equations - Rank of a Matrix

We devote this section for the study of the rank of a matrix, existence and the nature of solutions of

a system of linear equations - homogeneous and non-homogeneous, in two and three variables.

Consider the following system of simultaneous non-homogeneous linear equations (two equations

in two variables):

1 1 1

2 2 2

..... I
a x b y c

a x b y c

+ = 


+ = 
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These equations can be represented as a matrix equation as A X  =  D,  where

    
1 1

2 2

A =
a b

a b

 
 
  

  is called the coefficient matrix.

    X
x

y

 
=  

 
is called the variable matrix,

     and     
1

2

D
c

c

 
=  

  
 is called the constant matrix.

 AX  =   D is the matrix representation of the equations given in system I, for

1 1 1 1

2 2 2 2

AX =
a b a x b yx

a b a x b yy

+    
=    

+       

1 1 1

2 2 2

AX = D becomes 
a x b y c

a x b y c

+   
=   

+      

and corresponding elements of  two equal  matrices are equal.

The coefficient matrix augmented with the constant column matrix, is called the Augmented matrix,

generally denoted by [A D].  Hence, the augmented matrix of system  I  is

         
1 1 1

2 2 2

[A D] =
a b c

a b c

 
 
  

.

We listed the various systems of equations, along with the corresponding matrix equations and

matrices involved in the following tabular form.
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0
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c
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c
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=
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=
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≠
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X
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 O
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0 0
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x
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a
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=
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a
b
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1
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0 0
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b
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1
1

1
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a
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d
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c

a
b

c

a
b

c
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Here we confine to the above types of systems of equations in three variables. Before solving the

systems of equations, we first study an important concept namely the rank of a   matrix.

3.6.1   Definition (Submatrix)

A matrix obtained by deleting some rows or columns (or both) of a matrix is called a
submatrix of the given matrix.

For example, If  

1 2 3

A = 2 3 1

1 2 0

 
 
 
 − 

.

Then some submatrices of  A  are

1 2

1 2

 
 − 

 − obtained by deleting R2 and C3 of  A

1 2 3

2 3 1

 
 
 

 − obtained by deleting R3 of  A

2 3

3 1

2 0

 
 
 
  

 − obtained by deleting C1 of  A

[0] −  obtained by deleting R1, R2, C1 and C2  of  A.

3.6.2   Definition (Rank of  a matrix)

Let A be a non-zero matrix.  The rank of  A is defined as the maximum of the orders of the
non-singular square submatrices of A. The rank of a null matrix is defined as zero.  The rank of
a matrix A is denoted by rank (A).

3.6.3 Note

If  A is a non-zero matrix of order 3, then the rank of  A  is

  (i)  1  if every 2 × 2 submatrix is singular

 (ii)  2  if  A is singular and atleast one of its 2 × 2 submatrices is non-singular

(iii)  3  if  A is non-singular.

3.6.4  Examples

1.

1 2 1

A = 1 0 2

0 1 1

 
 − 
 − 

det A = − 5. A is non-singular, and hence rank (A) = 3.
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2.

1 2 3

B =  3 4 5

4 5 6

− − − 
 
 
  

det B = 0, Hence rank (B) ≠  3.

Now  
1 2

3 4

− − 
 
 

  is a submatrix of B, whose determinant is 2.

Hence rank (B) = 2.

3.

1 0 0 0

C 0 1 2 4

0 0 1 2

 
 

=  
 
 

C  is a matrix of order 3 × 4.

Let  1

1 0 0

C = 0 1 2

0 0 1

 
 
 
  

Then  C1is a square submatrix of C of order 3 and det C1 = 1.

Hence rank of the given matrix is 3.

3.6.5   Definition (Elementary Transformations)

The following tranformations are known as elementary transformations on a matrix.
(i) Interchange of two rows (or columns).

(ii) Multiplication of elements of a row (or column) by a non-zero number
(iii) Addition to the elements of a row (or a column), the corresponding elements of

another row (or column) multiplied by any non-zero number.

Elementary transformations enable us to transform a given matrix into triangular matrix. In a
triangular matrix, the search for the highest order non-singular submatrices is easier. (Why!) We state
here below a theorem without proof, which enables us to determine the rank of a matrix using
elementary transformations.

3.6.6   Theorem

Elementary transformations on a matrix do not change its rank.

A matrix obtained from a given matrix by applying a finite number of elementary transformations
(in succession) is said to be equivalent to it.  If  A  and  B  are equivalent, we write A �  B.

3.6.7  Solved Problems

1. Problem:Find the rank of   

0 1 2

A = 1 2 3

3 2 1

 
 
 
 
 

  using elementary transformations.
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Solution:   
1 2

1 2 3

A 0 1 2 (on interchanging R and R )

3 2 1

 
 
 
 
 

�

      3 3 1

1 2 3

0 1 2 (on applying R  R 3R )

0 4 8

 
 

→ − 
 − − 

�

      1 1 2 3 3 2

1 0 1

0 1 2 (on applying R  R 2R ,R  R 4R )

0 0 0

− 
 

→ − → + 
 
 

�

The last matrix is singular and 
1 0

0 1

 
 
 

  is a non-singular submatrix of it.  Hence its

rank is 2.  Rank (A) = 2.

2.Problem:Find the rank of

1 2 0 1

A = 3 4 1 2

2 3 2 5

− 
 
 
 − 

using elementary transformations.

Solution :         

1 2 0 1

A = 3 4 1 2

2 3 2 5

− 
 
 
 − 

2 2 1

1 2 0 1

R R 3R : 0 2 1 5

2 3 2 5

− 
 

→ − − 
 − 

3 3 1

1 2 0 1

R  R 2R : 0 2 1 5

0 7 2 3

− 
 

→ + − 
 
 

3 3 2

1 2 0 1

R 2R 7R : 0 2 1 5

0 0 11 41

− 
 

→ + − 
 
 

      

1 2 0

det 0 2 1 22 0.

0 0 11

 
 − = − ≠ 
  

       ∴   R(A)  =  3.
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Exercise 3(f)

            Find the rank of each of the following matrices.

 I. 1.
1 0

0 0

 
 
 

2.
1 0

0 1

 
 
 

3.
1 1

0 0

 
 
 

4.
1 1

1 0

 
 
 

5.
1 0 4

2 1 3

− 
 − 

6.
1 2 6

2 4 3

 
 
 

II. 1.

1 0 0

0 0 1

0 1 0

 
 
 
  

2.

1 4 1

2 3 0

0 1 2

− 
 
 
  

3.

1 2 3

2 3 4

0 1 2

 
 
 
  

4.

1 1 1

1 1 1

1 1 1

 
 
 
  

5.

1 2 0 1

3 4 1 2

2 3 2 5

− 
 
 
 − 

6.

0 1 1 2

4 0 2 5

2 1 3 1

− 
 
 
  

3.6.8   Definition (Consistent and  Inconsistent systems)

We say that a system of linear equations  is

 (i)  consistent if  it has a solution.

(ii)  inconsistent if it has no solution.

3.6.9   Solutions of nonhomogeneous system of equations

We consider solving the following system of  3 equations in 3 unknowns

1 1 1 1a x b y c z d+ + =

2 2 2 2a x b y c z d+ + =

3 3 3 3a x b y c z d+ + =
This system can be represented by a matrix equation   AX  =  D   where

1 1 1

2 2 2

3 3 3 3 3

A =

a b c

a b c

a b c ×

 
 
 
 
 

is  the  coefficient matrix,

3 1

X =

x

y

z ×

 
 
 
 
 

  is the variable matrix,
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1

2

3

D

d

d

d

 
 

=  
 
 

  is the constant matrix,

     

1 1 1 1

2 2 2 2

3 3 3 3

[A D]

a b c d

a b c d

a b c d

 
 

=  
 
 

  is the augmented matrix.

We state here a theorem without proof, which indicates the nature of solutions of the system.

3.6.10   Theorem

The system of three equations in three unknowns  AX = D has

(i)  a unique solution if rank (A) = rank ([A D]) = 3.

(ii)  infinitely many solutions if rank (A) = rank ([A D]) < 3.

(iii)  no solution if rank (A) ≠  rank ([A D]).

Note that the system is consistent if and only if rank (A) = rank ([A D]).

The method of solving the equations is illustrated in the following example.

3.6.11   Example
Show that the system of equations given below is not consistent.

           

2 6 11

6 20 6 3

6 18 1

x y

x y z

y z

+ = −
+ − = −
− = −

Solution:   The given system of equations can be written in the form

     AX = D, where

                            

2 6 0 11

A = 6 20 6 , X = , D = 3

0 6 18 1

x

y

z

−     
     − −     
     − −     

.

Consider the augmented matrix

          [ ]
2 6 0 11

A D = 6 20 6 3

0 6 18 1

− 
 − − 
 − − 

.

On applying  2 2 1R R 3R ,  we get→ −

          [ ]
2 6 0 11

A D 0 2 6 30

0 6 18 1

− 
 − 
 − − 

� .
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On applying 3 3 2R R 3R ,  we get→ −

             [ ]
2 6 0 11

A D 0 2 6 30

0 0 0 91

− 
 − 
 − 

� .

Now rank of [A D] = 3, since the 3 × 3 submatrix

             

6 0 11

2 6 30 ,

0 0 91

− 
 − 
 − 

is non - singular (its determinant is −91 (6) ( −6) ≠  0)

But the rank of the coefficient matrix is not  3  because

        

2 6 0

det 0 2 6 0

0 0 0

 
 − = 
  

∴   rank of (A) ≠  rank  [ ]( )AD .

Hence the given system  is  inconsistent.

3.6.12   Why do we use only elementary row transformations?

Let us apply elementary column transformations to the augmented matrix of example 3.6.11.

[ ]
2 6 0 11

A D 6 20 6 3

0 6 18 1

− 
 − − 
 − − 

� .

On applying  2 2 1C C 3C ,  we get→ −

[ ]
2 0 0 11

A D 6 2 6 3

0 6 18 1

− 
 − − 
 − − 

� .

On applying  1 1 2 3 3 2C C 3C ,  and C C 3C , we get→ − → +

[ ]
2 0 0 11

A D 0 2 0 3

18 6 0 1

− 
 − 
 − − 

� .

Now we can easily observe that the rank of the coefficient matrix is ≠  3, as

              

2 0 0

0 2 0

18 6 0

 
 
 
 − 

  is singular.
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The rank of the augmented matrix is 3, since the sub matrix

             

2 0 11

0 2 3

18 6 1

− 
 − 
 − − 

 is non-singular.

(determinant 2 ( 2 18) 11(36) 32 11 36 0)− + − = − × ≠ .

Hence rank (A) ≠  rank [ ]( )A D .  Hence the system is inconsistent.

Thus, we can use either row transformations or column transformations to find whether a system is
consistent or inconsistent.

But,  if we require the solution of the system also,  then elementary  row transformation only are
useful, as seen by the following discussion.

Each row of the augmented matrix corresponds to an equation of the system.

In the example 3.6.11.

1st row  :    2    6       0   −11   corresponds to the first equation 2 6 11x y+ = − .

2nd row :    6   20  −   6   −   3   corresponds to the second equation  6 20 6 3x y z+ − = − .

3rd row :    0     6  −18    −   1   corresponds to the third equation 6 18 1y z− = − .

The following are the effects of elementary row transformations on the equations.

  Sl. No. Elementary row operation Effect on the equations

    1. Inter change of two rows say  R
1
 and R

2
. The first equation is numbered

as 2 and the second equation is
numbered as 1.

    2. Multiplying the elements of the i-th  row i-th equation is multiplied by k.
with a non-zero number k.

    3. The elements of the  i-th  row are added the  j-th equation is multiplied
with k times corresponding elements with k  and added to the i-th
of the  j-th  row (i ≠ j). equation.

The effect of the elementary row transformation on the equations is nothing but the steps that we
employ for solving the equations under traditional elimination process.  As such, we can, at any stage of
the problem, write an equivalent system of equations from the augmented matrix.  But if we use elementary
column transformations we may not obtain an equivalent set of equations.

Hence, if we use Elementary row transformations, we can

(i)   decide whether the system is consistent or not  and also

(ii)  write the solution of the system, if  it is consistent.

      This is illustrated in the following solved problems.
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3.6.13  Solved Problems

1. Problem: Apply the test of rank to examine whether the following equations are consistent.

2 3 8

2 4

3 4 0;

− + =
− + + =

+ − =

x y z

x y z

x y z

         and  if consistent, find the complete solution.

Solution : The augmented matrix is

              [ ]
2 1 3 8

A D = 1 2 1 4

3 1 4 0

− 
 − 
 − 

          1 2

1 2 1 4

~ 2 1 3 8  (on interchanging R and R )

3 1 4 0

− 
 − 
 − 

we  transform the above matrix into an upper triangular matrix.

 2 2 1 3 3 1

1 2 1 4

~ 0 3 5 16  (on applying R R 2R , R  R 3R )

0 7 1 12

− 
  → + → + 
 − 

3 3 2

1 2 1 4

~ 0 3 5 16  (on applying R  3R 7R )

0 0 38 76

− 
  → − 
 − − 

                 ... (F)

  Now  det 

1 2 1

0 3 5 ( 1) (3) ( 38) 114

0 0 38

− 
  = − − = 
 − 

.

Hence rank (A) = rank ( )[AD]  = 3.

∴   By the Theorem of 3.6.10,  The system has a unique solution.

We write the equivalent  system of equations from (F), i.e.,

2 4x y z− + + =
       3 5 16y z+ =
          38 76z− = −

2, 2, 2 is the solution.z y x∴ = = =
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2. Problem:  Show that the following system of equations is consistent and solve it  completely:
3

2 2 3

1

x y z

x y z

x y z

+ + =
+ − =

+ − =

Solution :     The  given equations are equivalent to the equation  AX = D, where
1 1 1 3

A 2 2 1 , X and D = 3

1 1 1 1

x

y

z

     
     = =     
     −     

.

   Augmented matrix  [ ]
1 1 1 3

A D = 2 2 1 3

1 1 1 1

 
 − 
 − 

.

2 2 1 3 3 1On applying R R 2R , R  R R  we get→ − → −

     

1 1 1 3

~ 0 0 3 3

0 0 2 2

 
 − − 
 − − 

.

3 3 2 On applying R  3R 2R  we get→ −

                             

1 1 1 3

~ 0 0 3 3

0 0 0 0

 
 − − 
  

              ...   (F)

Clearly all the submatrices of order 3 of the above matrix are singular.

Hence rank [ ]( )(A) 3,  and rank A D 3.≠ ≠

Now the non-singular matrix 
1 1

0 3

 
 − 

 is a submatrix

of  both A and [A D].  Hence rank (A) = rank [ ]( )AD  = 2.

Hence by Theorem 3.6.10(ii), the system is consistent and has infinitely many solutions.

We now write the equivalent set of equations from (F).

3x y z+ + =
3 3z− = −

Hence 1, 2.z x y= + =
Hence , 2 , 1, is the solution set.x k y k z k= = − = ∈ R
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Exercise 3 (g)
 I Examine whether the following systems of equations are consistent or inconsistent and if

consistent find the complete solutions.

1. 4

2 5 2 3

7 7 5

x y z

x y z

x y z

+ + =
+ − =

+ − =

2. 6

2

2 3 9

x y z

x y z

x y z

+ + =
− + =
− + =

3. 1

2 2

2 2 1

x y z

x y z

x y z

+ + =
+ + =

+ + =

4. 9

2 5 7 52

2 0

x y z

x y z

x y z

+ + =
+ + =
+ − =

5. 6

2 3 10

2 4 1

x y z

x y z

x y z

+ + =
+ + =
+ + =

6. 3 8 10

3 4 0

2 5 6 13

x y z

x y z

x y z

− − = −
+ − =
+ + =

7. 2 3 9

2 3 6

3 2 8

x y z

x y z

x y z

+ + =
+ + =
+ + =

8. 4 6

3 2 2 9

5 2 13

x y z

x y z

x y z

+ + =
+ − =
+ + =

3.7   Solution of Simultaneous Linear Equations

In this section we discuss some methods of solving systems of simultaneous linear equations.

3.7.1.   Cramer's Rule
Consider the system of equations

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

+ + =
+ + =
+ + =

 where    
1 1 1

2 2 2

3 3 3

A

a b c

a b c

a b c

 
 =  
  

  is non-singular.

    Let  X

x

y

z

 
 =  
  

  be the solution of the equation  AX = D,  where  
1

2

3

D =

d

d

d

 
 
 
  

        

1 1 1

2 2 2

3 3 3

Let 

a b c

a b c

a b c

∆ =
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1 1 1

2 2 2

3 3 3

Then 

a x b c

x a x b c

a x b c

∆ =

1 1 2 3On applying C C C C  we gety z→ + +

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

a x b y c z b c d b c

x a x b y c z b c d b c

a x b y c z b c d b c

+ +
∆ = + + =

+ +

1 1 1
1

1 2 2 2

3 3 3

 where 

d b c

x d b c

d b c

∆∴ = ∆ =
∆ .

Similarly we get

 

1 1 1 1 1 1
32

2 2 2 2 3 2 2 2

3 3 3 3 3 3

,  where  and  ,  where 

a d c a b d

y a d c z a b d

a d c a b d

∆∆= ∆ = = ∆ =
∆ ∆

        
1 2 3

1x y z∴ = = =
∆ ∆ ∆ ∆ .  This is known as Cramer's Rule.

3.7.2.   Matrix inversion method

        Consider the matrix equation  AX = D,  where A is non-singular.  Then we can find 1A− .

                        1 1AX D A (AX) A D− −= ⇔ =
 1 1(A A) X A D− −⇔ =

1IX A D−⇔ =   ( I is the unit matrix).

1X A D−⇔ =
From this  x, y and z are known.

3.7.3  Solved Problems

1. Problem: Solve the following simultaneous linear equations by using  Cramer's  rule.

3 4 5 18

2 8 13

5 2 7 20

x y z

x y z

x y z

+ + =
− + =
− + =

Solution:

         

3 4 5 18

Let A 2 1 8 ; X  and  D = 13

5 2 7 20

x

y

z

     
     = − =     
     −     
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Then we can write the given equations in the form of matrix equation as  AX  =  D.

 

3 4 5

 det A 2 1 8

5 2 7

∆ = = −
−

        
1 8 2 8 2 1

3 4 5
2 7 5 7 5 2

− −
= − +

− −

        3( 7 16) 4 (14 40) 5( 4 5)= − + − − + − +

        27 104 5 136 0= + + = ≠ .

Hence  we can solve the given equation by using Cramer's rule.

   1

18 4 5

13 1 8 408

20 2 7

∆ = − =
−

  2

3 18 5

2 13 8 136

5 20 7

∆ = =

              3

3 4 18

2 1 13 136

5 2 20

∆ = − =
−

.

Hence by Cramer's rule,

31 2408 136 136
3; 1 and z = 1

136 136 136
x y

∆∆ ∆
= = = = = = = =

∆ ∆ ∆
.

 The solution of the given system of equations is 3, 1x y z∴ = = = .

2. Problem :  Solve 3 4 5 18;2 8 13   5 2 7 20x y z x y z and x y z+ + = − + = − + =  by using 'Matrix
inversion method'.

Solution:
3 4 5 18

Let A 2 1 8 ; X  and  D = 13

5 2 7 20

x

y

z

     
     = − =     
     −     

.

Then we can write the given equations in the form AX = D.
3 4 5

det A 2 1 8 136 0

5 2 7

 
 = − = ≠ 
 − 

.

Hence we can solve the given equations by 'Matrix inversion method'.
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        We have Adj 

9 38 37

A 26 4 14

1 26 11

− 
 = − − 
 − 

.

From matrix inversion method,

     
1

9 38 37 18 3
AdjA 1

X = A D . D 26 4 14 13 1
det A 136

1 26 11 20 1

−
−     

     = = − − =     
     −     

3, 1 and  z =1x y∴ = =   is the solution of the given system of equations.

Note
Observe that Cramer's Rule and Matrix inversion method can be applied only when the coefficient

matrix  A is non-singular.  The Gauss-Jordan method given in 3.7.4 below can be applied even otherwise,
as in 3.6.13.

3.7.4   Gauss - Jordan method

 In this method we try to transform the augmented matrix

1 1 1 1

2 2 2 2

3 3 3 3

a b c d

a b c d

a b c d

 
 
 
  

to the form

1 0 0

0 1 0

0 0 1

α
β
γ

 
 
 
  

                     ... (F)

by using elementary row transformations, so that the solution is completely visible that is

, , .x y xα β γ= = =   We may get infinitely many solutions or no solution also according to the form of the
transformed matrix (F).  In fact, this method is an extension of the method already discussed in 3.6.12.
The following solved problems (3.7.6) illustrate the method.

3.7.5   Note

For solving a system of three linear equations in three unknowns by Gauss-Jordan method,
elementary row operations are performed on the augmented matrix as indicated below.

Step 1

  (i) Transform the element in (1,1) position to 1, by a suitable elementary row transformation using the
element at (2,1) or (3,1)  position or other wise.

  (ii) Transform the non-zero elements, if any at (2,1) or (3,1) positions as zeros (other elements of the
first column) by using the element 1 at (1,1) position.

If, at the end of step 1, there is a non-zero element at (2,2) or (3,2) position, go to step 2. Otherwise
skip it.
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Step 2
  (i) Transform the element in (2,2)  position to 1, by a suitable elementary row transformation using the

element at (3,2) position or other wise.

  (ii) Transform the non-zero elements, if any, of the second column (i.e., the non-zero elements,if  any, at
(1,2) or (3, 2)  positions) as zeros, by using the element 1 at (2,2) position.

At the end of step 2, or after skipping it for reasons specified above, examine the element at  (3,3)
position.  If it is non zero, go to step 3.  Otherwise, stop.

Step 3

  (i) Transform the element  in (3, 3)  position to 1, by dividing R3 with a suitable number.

  (ii) Transform the other non-zero elements  if any  of the third column (that is, the non-zero
elements, if  any, at (1,3) or (2, 3)   positions) as zeros, by using the 1 present at (3,3)
position.

3.7.6  Solved Problems

1. Problem :  Solve the following equations by Gauss - Jordan method
3 4 5 18

2 8 13

5 2 7 20

x y z

x y z

x y z

+ + =
− + =
− + = .

Solution :  The augmented matrix is
3 4 5 18

2 1 8 13

5 2 7 20

 
 − 
 − 

1 1 2On applying  R R R  we get → −

        

1 5 3 5

2 1 8 13

5 2 7 20

− 
 − 
 − 

�

2 2 1 3 3 1On applying R R 2R , R  R 5R ,  we get→ − → −

        

1 5 3 5

~ 0 11 14 3

0 27 22 5

− 
 − 
 − − 

2 2 3On applying R 5R 2R ,  we get→ − +

        

1 5 3 5

~ 0 1 26 25

0 27 22 5

− 
 − − 
 − − 
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1 1 2 3 3 2On applying R R 5R , R R 27R ,  we obtain→ − → +

        

1 0 127 130

~ 0 1 126 25

0 0 680 680

 
 − − 
 − − 

( )3 3On applying R R 680 ,  we get→ ÷ −

   

1 0 127 130

~ 0 1 26 25

0 0 1 1

 
 − − 
  

1 1 3 2 2 3On applying R R 127 R , R R 26R ,  we get→ − → +

   

1 0 0 3

~ 0 1 0 1

0 0 1 1

 
 
 
  

Hence the solution is  x = 3,  y = 1,  z = 1.

2. Problem :  Solve the following system of  equations by Gauss - Jordan method

    3, 2 2 3, 1x y z x y z x y z+ + = + − = + − = .

Solution :  The matrix equation is  AX = D, where

      

1 1 1 3

A 2 2 1 ; X  and D 3

1 1 1 1

x

y

z

     
     = − = =     
     −     

.

The augmented matrix is

    [ ]
1 1 1 3

AD 2 2 1 3

1 1 1 1

 
 = − 
 − 

.

2 2 1 3 3 1On applying R R 2R ,R R R ,  we get→ − → −

        

1 1 1 3

~ 0 0 3 3

0 0 2 2

 
 − − 
 − − 

.

3 3 2
2

On applying R R R ,  we get
3

 → −  

        

1 1 1 3

~ 0 0 3 3

0 0 0 0

 
 − − 
  

.
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Hence the following is the system of equations equivalent to the given system of equations.
3x y z+ + =

3 3z− = − .

Hence  z = 1, x + y = 2.

 The solution set is ∴

, 2 , 1,   where .x k y k z k= = − = ∈ R

3. Problem :  By using Gauss-Jordan method, show that the following system has no solution

2 4 0, 2 2 5x y z x y z+ − = + + = ,   3 6 7 2x y z+ − = .

Solution :  The equivalent matrix equation is AX = D, where

2 4 1 0

A 1 2 2 , X  and D 5

3 6 7 2

x

y

z

−     
     = = =     
     −     

.

The augmented matrix is

     [ ]
2 4 1 0

A D 1 2 2 5

3 6 7 2

− 
 =  
 − 

.

1 2On interchanging R and R  we get

        

1 2 2 5

~ 2 4 1 0

3 6 7 2

 
 − 
 − 

.

2 2 1 3 3 1On applying R R 2R , R R 3R ,  we get→ − → −

        

1 2 2 5

~ 0 0 5 10

0 0 13 13

 
 − − 
 − − 

.

2 2 3 3On applying R R ( 5), R R ( 13),  we get→ ÷ − → ÷ −

        

1 2 2 5

~ 0 0 1 2

0 0 1 1

 
 
 
  

.

3 3 2On applying R R R ,  we get→ −

        

1 2 2 5

~ 0 0 1 2

0 0 0 1

 
 
 
 − 

.
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Hence the given system of equations is equivalent to the following system of equations

2 2 5, 2,0( ) 0( ) 0( ) 1x y z z x y z+ + = = + + = − .

Clearly no  x, y, z satisfy the last equation in the above system.

Hence the given system has no solution.

Exercise 3 (h)
 I. Solve the following systems of equations.

 (i) by using Cramer's rule and Matrix inversion method, when the coefficient matrix is non-singular.

(ii) by using Gauss-Jordan method. Also determine whether the system has a unique solution or
infinite number of solutions or no solution and find the solutions if exist.

1.  5 6 4 15

7 4 3 19

2 6 46

x y z

x y z

x y z

− + =
+ − =
+ + =

2. 1

2 2 3 6

4 9 3

x y z

x y z

x y z

+ + =
+ + =

+ + =

3.   3 5

4 2 0

3 5

x y z

x y z

x y z

− + =
+ − =

− + + =

4.     2 6 11 0

6 20 6 3 0

6 18 1 0

x y

x y z

y z

+ + =
+ − + =
− + =

5.    2 3 9

6

2

x y z

x y z

x y z

− + =
+ + =
− + =

6.    2 8 13

3 4 5 18

5 2 7 20

x y z

x y z

x y z

− + =
+ + =
− + =

7.  2 3 8

2 4

3 4 0

x y z

x y z

x y z

− + =
− + + =

+ − =

8.  9

2 5 7 52

2 0

x y z

x y z

x y z

+ + =
+ + =
+ − =

3.7.7   Solution of a homogeneous system of linear equations

We consider the following homogeneous linear equations

1 1 1

2 2 2

3 3 3

0

0

0

a x b y c z

a x b y c z

a x b y c z

+ + =

+ + =

+ + = .

The equivalent matrix equation of the above system is  AX = O where

1 1 1

2 2 2

3 3 3

0

A , X  and O 0

0

a b c x

a b c y

za b c

     
     = = =     
         

.
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Clearly the coefficient matrix  A  and the augmented matrix have the same rank, for they differ by a

column of zeros.  Thus a system of homogeneous equations is always consistent.  In fact, 0x y z= = =
is always a solution. We call this the trivial solution. We are however, interested in finding whether or not
there are non trivial solutions.

We state below a theorem without proof, which indicates the nature of solutions of the system.

3.7.8   Theorem

The system of equations AX = O  has

 (i) the trivial solution only,  if rank (A) is 3

(ii) an infinite number of solutions if rank (A) is less than 3.

The method of solving  a system of  homogeneous linear equations is similar to that adopted on the
examples given in 3.6.13. However, some problems are solved here under.

3.7.9   Solved Problems

1.  Problem:  Find the non-trivial solutions, if any, for the following system of equations.
2 5 6 0

3 8 0

3 4 0

x y z

x y z

x y z

+ + =
− + =
+ − = .

Solution :    The  coefficient matrix  

2 5 6

A = 1 3 8

3 1 4

 
 − − 
 − 

.

1 2On interchanging  R  and  R  we get

1 3 8

A 2 5 6

3 1 4

− − 
 
 
 − 

�

2 2 1 3 3 1On applying R R 2R , R  R 3R ,  we get→ − → −

1 3 8

A 0 11 22

0 10 20

− − 
 
 
  

� .

2 2 3On applying R R R ,  we get→ −

1 3 8

A 0 1 2

0 10 20

− − 
 
 
  

� .
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3 3On applying R R 10,  we get→ ÷

1 3 8

A 0 1 2

0 1 2

− − 
 
 
  

�   ... (F)

2 3det  A = 0 as R and  R   are identical.

Clearly rank (A) = 2, as the sub matrix 
1 3

0 1

− 
 
 

 is non- singular.

Hence the system has non-trivial solution.

Writing back the equations from (F)

3 8 0

+ 2 = 0

− − =x y z

y z

On giving an arbitrary value k  to z, we obtain the solution set as

2 , 2 , , . For 0x k y k z k k k= = − = ∈ ≠R   we get non-trivial solutions.

2.  Problem:  Find whether the following system of linear homogeneous equations has a non-trivial
solution.

0

2 0

2 3 0

x y z

x y z

x y z

− + =
+ − =
+ + =

Solution :    The  coefficient matrix is  

1 1 1

1 2 1

2 1 3

− 
 − 
  

.

Its determinant is  9.  Hence the system has the trivial solution 0x y z= = =  only.

Exercise 3 (i)

Solve the following systems of  homogeneous equations.

1.  2 3 0

2 0

3 3 0

x y z

x y z

x y z

+ − =
− − =
+ + =

2. 3 2 0

0

2 0

x y z

x y z

x y z

+ − =
+ + =
− + =

3.   2 0

2 3 0

5 4 9 0

x y z

x y z

x y z

+ − =
+ − =
+ − =

4.     0

2 0

3 6 5 0

x y z

x y z

x y z

+ − =
− + =
+ − =
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Key Concepts

❖ An m n×  matrix A is represented as  A = [ ]ij m na × .

❖ A matrix is called square matrix if its number of rows equals number of columns.
An element  ija  is in principal diagonal if .i j=
The sum of the elements of the Principal diagonal is called Trace of the matrix.

❖ A  square matrix is called a
(i) Diagonal matrix if each non-diagonal element is zero.
(ii) Scalar matrix if each non-diagonal element is zero and every diagonal  element  is equal to

some scalar k.
(iii) Unit matrix or Identity matrix if each non-diagonal element is zero and each diagonal element

is equal to 1.

❖ If A = [ ]ij m na × and B = [ ]ij m nb × then A + B = [ ]ij m nc ×  where ij ij ijc a b= + .

❖ If  A = [ ]ij m na ×   and  k  is a scalar, then  A [ ]ij m nk ka ×= .

❖ If A = [ ]ik m na × and B = [ ]kj n pb ×  then AB = [ ]ij m pc ×  where  
1

n

ij ik kj
k

c a b
=

= ∑ .

❖ The matrix obtained by interchanging rows and columns is called Transpose of the given matrix.
Transpose of  A  is denoted by  A' or AT

.

❖ A matrix is called

(i)   Symmetric if  'A A=
(ii)  Skew-symmetric  if  'A A= − .

❖ A matrix obtained by deleting some rows or columns (or both) of a matrix is called a submatrix of
the given matrix.

❖ Let  A  be a  3 × 3 matrix.  Then

(i) The minor of an element is the determinant of the 2 × 2  sub matrix obtained by deleting the

row and column in which the element is present
(ii) the cofactor of an element ija  is the product of its minor and (-1)i+j

(iii)  the determinant of  A is the sum of the products of the elements of any row (or column)
with the corresponding cofactors.

❖ A  square matrix is said to be
(i)    singular if its determinant is zero

               (ii)  non-singular otherwise.

❖ Adjoint of a square matrix A (order >1)  is the transpose of the matrix formed by replacing the
elements by cofactors.

❖ Let  A  be a square matrix.  A  matrix  B, if exists, such that  AB = BA = I  is called the inverse of
A and is denoted by  A−1.
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❖ The rank of a non-zero matrix  A is defined as the maximum of the order of the non-singular

square submatrices of  A.  The rank of a null matrix is defined as zero.  The rank of a matrix A is

denoted as rank (A). In particular, If  A is a 3 × 3 matrix, then its rank is

(i) 3 if  A  is non-singular

(ii) 2 if  A  is singular and atleast one of its 2 × 2 sub matrices is non-singular

(iii)  1 if every 2 × 2 sub matrix is singular.

❖ The following transformations are known as elementary transformations on a matrix.

(i) Interchange of  two rows (or columns)

(ii) Multiplication of the elements of a row (or column) by a non-zero number

(iii) Addition to the elements of a row (or a column), the corresponding  elements of another row

(or column) multiplied by any number.

❖ Elementary transformations on a matrix do not change its rank.

❖ A system of linear equations is

(i)   consistent if it has a solution

(ii)   inconsistent if it has no solution.

❖ Non-homogeneous system

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

+ + =
+ + =
+ + =

The above system of equations has

(i)   a unique solution if rank  (A) = rank ([A D]) = 3

(ii)   infinitely many solutions if rank  (A) = rank ([A D]) < 3.

(iii)   no solution if rank  (A) ≠  rank ([A D]).

❖ Homogeneous system of equations

1 1 1

2 2 2

3 3 3

0

0

0

a x b y c z

a x b y c z

a x b y c z

+ + =
+ + =
+ + = .

The above system has

(i)   Trivial solution  x = y = z = 0  only if rank (A) = 3

(ii)   infinitely many non-trivial solutions if rank (A) < 3.
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Historical Note

The history of matrices and determinants goes back to the second century B.C. although traces
can be seen as early as the fourth century B.C.  However it was not until near the end of the 17th

century that the ideas reappeared and development really got underway.

It is not surprising that the beginnings of matrices and determinants should arise through the study
of systems of linear equations.  The Babylonians studied the problems which led to simultaneous
linear equations and some of these are preserved in clay tablets which still survive.  The Chinese,
between 200 B.C. and 100 B.C. came much closer to matrices than the Babylonians.  The text
Nine Chapters of the Mathematical Art (Chiu Chang Suan Shu) written during the Han
dynasty gives the first known example of matrix methods to solve simultaneous equations.

The rectangular arrangements of certain numbers in some rows and columns was named as
"Matrix" by J.J. Sylvester in 1850. Arthur Cayley (1821-1895), an English mathematician, is also
known for his matrix representation of simultaneous equations.

Since their first appearance in ancient China, Matrices have remained as important mathematical
tools. Matrix theory is used as an indispensible tool in the study of  Physical Sciences, Engineering,
Statistics, Economics, Sociology etc.  Today they are used, not simply for solving systems of
simultaneous linear equations, but also for describing Quantum mechanics of  atomic structure,
designing computer  game graphics, analysing relationships and even plotting complicated
dance steps!

The elevation of the knowledge of matrix from a mere tool to an important mathematical theory
owes a lot to the work of a lady mathematician, Olga Taussky Todd (1906 -1995), who began by
using matrices to analyse vibrations  on airplanes during World War II and became the torch bearer
for matix  theory.

Matrices are indispensable in some applications and models in other branches of mathematics.
Some of the various types of matrices are Symmetric, Hermitian, Triangular, Diagonal, Tridiagonal,
Band-centro symmetric, Toeplitz, Positive definite Hessian, Circulant and so on.....

Answers

Exercise 3(a)

I. 1. (i)   [2   1   3]   (ii)

1

2

1

− 
 
 
 − 

(iii)
7 9 2

8 9 2

 
 
 

    (iv)

1 3

0 2

1 0

− 
 − 
  

2. 1 2 3 41, 4, 7, 3x x x x= = = =− 3.

2 3 10

2 1 8

5 1 1

− − 
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4.

0 1 1

X 4 1 3

5 2 3

− 
 = − 
  

5. 8, 5, 4, 10x y z a= = = − =

 II.  1. 2, 2, 5, 5x y z a= = = =     2. 1

      3.   

1 1 1 5 6 7

2 2 4 , 8 7 16

4 5 5 16 20 19

− − −   
   − − −   
   − − −   

4.
7 2 3

3 2 7

− 
 − 

Exercise 3(b)

 I. 1. (i)   [5] (ii)
8

5

 
 
 

(iii)   8 13

16 29

− 
 
 

(iv) I3x3

(v)   Not possible (vi) Not possible (vii)   O2x2 (viii) O3x3

2. AB  and BA  exist;  

10 2 21
0 4

AB , BA = 16 2 37
10 3

2 2 11

− 
−   = −   

   − − 

  A  and B are not commutative.

3.
14 10

5 1

 
 − − 

4. 
1 0

0 1

− 
 − 

6.
7 4 4

AB ; BA does not exist.
6 2 12

 
=  

 
7.  −2

 II.   1.   A4 = (3I)4 = 81 I 2.  O3x3 3. O3x3

III.   4.  
1 0 0 0

A  =  , B
1 0 1 1

   
=   

   
     (This is just one example satisfying the given conditions)

5.  (a) 15,000 and 15,000   (b)  5,000 and 25,000.

Exercise 3(c)

I. 1.
2 2

2 9

− 
 − − 

2.  

6 6 4 11

13 0 , 4 0

1 10 4 2

− −   
   
   
   −   

       3.
4 9 20 22

,
9 6 22 34

− −   
   − −   

4. 6 5.  2                6.   Skew-symmetric
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II.  2.

5 15 5

10 20 8

9 23 15

− 
 − 
 − − 

3.    

12 24 7 12 0 13

0 0 1 , 24 0 26

13 26 5 7 1 5

− − − −   
   
   
   − − − −   

Exercise 3(d)

I. 1. (i)   −11 (ii) 38 (iii) 1 (iv) 2 (v)  −108 (vi)  37 (vii) 0

(viii) 2 2 22abc fgh af bg ch+ − − −

(ix)    3 3 33abc a b c− − − (x) −8 2. 7

II. 6. a1 b2 c3.

Exercise 3(e)

1. (i)    

1 1
6 3 4 8

,
4 2 1 1

6 12

 
  
  − −  
  

(ii)   
cos sin cos sin

,  
sin cos sin cos

α α α α
α α α α

   
   − −   

(iii)   

1 4 2 1 4 2
1

2 5 4 , 2 5 4
3

1 2 1 1 2 1

− −   
   − − − −   
   − −   

(iv)   

2 3 1 2 3 1

1 2 0 , 1 2 0

2 2 1 2 2 1

− −   
   − −   
   − − − −   

2.         
a ib c id

c id a ib

− − − 
 − + 

3.  

9 8 2

8 7 2

5 4 1

− − − 
 
 
 − − − 

4.         

1 2 2
1

2 1 2
9

2 2 1

− 
 − − 
 − − 

5.  

1
0 0

1
0 0

1
0 0

a

b

c

 
 
 
 
 
 
 
 
  

Exercise 3(f)

I. 1.  1 2.   2              3.   1              4.   2 5.   2          6.  2

II. 1.  3 2.   3              3.   2              4.   1 5.   3          6.  3
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Exercise 3(g)

I. 1. Inconsistent, no solution.

2. Consistent; Unique solution ;  x = 1, y = 2,  z = 3.

3. Consistent; Infinitely many solutions ;
solutions set = { (x, y, z) :  x = 1, y + z = 0}.

4. Consistent; Unique solution ;  x = 1, y = 3,  z = 5.

5. Consistent; Unique solution ;  x = −7, y = 22,  z = −9.

6. Consistent; Infinitely many solutions ;  x = −1 + 2k,   y = 3 − 2k,  z = k; k is a scalar.

7. Consistent; Unique solution ;  
35 29 5

, ,
18 18 18

x y z= = =

8. Consistent; Unique solution ;  
1

2, 2,
2

x y z= = = .

Exercise 3(h)

I. 1. x = 3, y = 4,  z = 6;  Unique solution

2. x = 7, y = −10,  z = 4;  Unique solution

3. x = 0, y = 1,  z = 2;  Unique solution

4. No solution

5. x = 1, y = 2,  z = 3;  Unique solution

6. x = 3, y = 1,  z = 1;  Unique solution

7. x = y = z = 2;  Unique solution

8. x = 1, y = 3,  z = 5;  Unique solution

Exercise 3(i)

I. 1. x = y = z = 0

2. x = y = z = 0

3. x = y = z = k  for any real number k

4. x = k,  y = 2k,  z = 3k  for any real number k
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Introduction

In our day to day life we come across many queries

such as - What is your height?  How should a foot ball player

hit the ball, to give a pass to one another player of his team?

Observe that one possible answer to the first query is 1.7

meters, a quantity that specifies a value (magnitude) which is

a real number.  Such quantities are called scalars.  However,

the answer to the second query is a quantity (called force)

which involves muscular strength (magnitude) and also direction

(in which another player is positioned).  Such quantities are

called vectors.  In Physics, Engineering and Mathematics, we

frequently come across with both types of quantities, namely

scalar quantities such as length, mass, volume, temperature,

density, area, work, resistance etc. and vector quantities like

displacement, velocity, acceleration, force, weight, momentum

etc.

Josiah  Willard  Gibbs
(1839 - 1903)

Gibbs was a prominent
American engineer and
promoter of vector analysis,
which established itself as a
more easily applied subject
compared to Hamilton’s
quaternions or Grassmann’s
Calculus of extensions.

“Vectors are not merely a pretty toy suitable only for
elegant proof of   general theorems, but are a powerful
weapon of work away on mathematical investigation,
both in research and in solving problems”

−−−−− Chapman
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Vector methods have revolutionised Mechanics, Engineering, Physics and Mathematics.  Rene Descarte

(1596-1660), after whom the Cartesian coordinate system is named, G.W. Leibnitz (1646-1716), a famous

mathematician of 17th century and R.Hamilton (1805-1865), a well known theoretical physicist are the trio

who laid the seeds to this branch of Mathematics.  J.W. Gibb’s (1839-1903) work on vector analysis was of

major importance in Mathematics.

In this chapter, we will study some of the basic concepts about vectors, various operations on vectors

and their algebraic and geometric properties.  Angle between two non-zero vectors, linear combination of

vectors, vector equations of line and plane are discussed to give a full realisation of the applicability of vectors

in various areas as mentioned above.

4.1   Vectors as a triad of real numbers, some basic concepts

Let  l  be any straight line in a plane or three dimensional space.  This line can be given two directions by
means of arrow heads.  A line with one of these directions prescribed, is called a directed line (Fig. 4.1).

Fig. 4.1

4.1.1 Definition : (Directed line segment)

If A and B are two distinct points in the space, the ordered pair (A, B), denoted by AB is called
a directed line segment with initial point A and terminal point B.

The magnitude of AB, denoted by |AB| = a (say), is the length of AB or the distance between A and B
(Fig. 4.2).

    Fig. 4.2

 l  l

a

A

B
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4.1.2  Definition

A line segment with a specified magnitude and direction is called a vector.

Notice that the directed line segment in Fig. 4.2 is a vector denoted by AB or  AB or simply as a and
read as vector AB or vector a.  The arrow indicates the direction of the vector.  When A ≠  B, we say that  the

line AB is the support of AB .

The zero vector, denoted by 0, is the collection of PP, where P is any point in the space.  The zero
vector, also known as the null vector, has neither support nor any specific direction.  Observe that, for the
zero vector, the initial and terminal points coincide and its magnitude is the scalar 0.

Let a, b and c be real numbers (not necessarily distinct).  A set formed with a, b, c in which the order
of occurance is also preassigned is called an ordered triad or a triple.  If a, b, c are distinct reals, then we
get six ordered triads, namely (a, b, c), (b, c, a), (c, a, b) etc. For the ordered traid (a, b, c), a, b, c are called
the first, the second and the third components respectively.

The set of all ordered triads (a, b, c) of real numbers is denoted by � 3.  This representation will be
used in rectangular coordinate system in section  4.7.2.

4.1.3 Position Vector

Consider a three - dimensional rectangular coordinate system OX, OY, OZ and a point P in the space
having coordinates (x, y, z) with respect to the origin O(0, 0, 0) as shown in Fig. 4.3(a).  Then the vector OP
having O and P as its initial and terminal points respectively, is called the position vector of the point P with
respect to O.  This is denoted by r.  Then the magnitude of OP, using the distance formula, is given by

|OP|  2 2 2| |= = + +x y zr .

It is customary that the position vector of a point A, with respect to the origin O is denoted by a
(Fig. 4.3(b)).

Fig. 4.3(a)  Fig. 4.3(b)

Z

X
Y

P(x, y, z)

Y′X′

Z′

O

X Y

Z

Y′ X′

Z′

A

B
b

a

O
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4.1.4 Direction cosines and Direction ratios

Consider the position vector OP = r of a point P(x, y, z).  Let α, β, γ  be the angles made by the vector
r  with the positive direction (counter clockwise direction) of X, Y, Z axes respectively.  Then cos α, cos β
and cos γ are called the direction cosines of the vector r.  These direction cosines are usually denoted by
l, m, n respectively.

Fig. 4.4

Draw perpendiculars from P to the X, Y and Z axes and let A, B, C be the feet of the perpendiculars
respectively (See Fig. 4.4).

From Fig. 4.4, we observe that ∆OAP is right angled and hence cos
| |

x

r
α =

=r
.  Similarly from the

right angled triangles OBP and OCP, we may write cos
y

r
β =  and cos

z

r
γ = .  Thus the coordinates x, y, z

of the point P may also be expressed as (lr, mr, nr).  The numbers lr, mr, nr which  are  proportional to the

direction cosines l, m, n are called the direction ratios of  the vector r. These are usually denoted by a, b, c

respectively.

We observe here that

       r2 = x2 + y2 + z2

=  l2r2 + m2r2 + n2r2

=  r2(l2 + m2 + n2)

so that  l2 + m2 + n2 = 1 but a2 + b2 + c2 ≠ 1 in general.

 

 

 

 

Z

X

Y

A

C

B

P(x, y, z)

y

r

O
x

z

X

A

O

P
|r | = r

 α
900

 

x



Addition of Vectors 135

 4.2 Classification (Types) of vectors

4.2.1Definition  (Unit vector)

A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector.  It is represented by e.

The unit vector in the direction of a given vector a is usually denoted by â .

4.2.2Definition   (Equal vectors)

Two vectors a and b are said to be equal and written as a = b, if they have the same magnitude

and direction, regardless of the positions of their initial points.

4.2.3Definition  (Collinear vectors, like and unlike vectors)

Two or more vectors are said to be collinear if they are parallel to the same line, irrespective

of their magnitudes and direction.  Such vectors have the same support or parallel support.

Two vectors are called like or unlike vectors according as they have the same direction or opposite

direction.  In the following figure (Fig. 4.5) a and b are like vectors, where as  a  and  c  are unlike vectors.

Fig. 4.5

4.2.4 Negative of a vector

Let a be a vector.  The vector having the same magnitude as a but having the opposite direction is called
the negative vector of a and is denoted by −a.  Note that if  a = AB then  −a = BA.

Fig. 4.6

Note : Co-initial vectors : Two or more vectors having the same initial point are called co-initial vectors.

4.2.5Definition  (Coplanar vectors)

Vectors whose supports are in the same plane or parallel to the same plane are  called coplanar

vectors.  Vectors which are not coplanar are called non-coplanar vectors .

a b

c

a

−a
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Note that the vectors a = PA, b  = PB and c = PC are coplanar vectors if and only if the four points P,

A, B, C lie in the same plane.  Coplanarity or non coplanarity of vectors arises only when there are three or

more non-zero vectors, since any two vectors are always coplanar.

4.3 Sum (Addition) of vectors

We shall now introduce the concept of addition (sum) of vectors, derive the commutative law, associative

law and a few other properties.

4.3.1  Triangle law of vector addition

A vector AB simply means the displacement from a point

A to the point B along the line AB.  Now consider a situation

that a person moves from A to B and then from B to C

(Fig. 4.7).  The net displacement  made by the person from

point A to the point C, is given by the vector AC and expressed

as

AC = AB + BC

This is known as the triangle law of vector addition.

In general, if we have two vectors a and b (Fig. 4.8(i)), then to add them, they are positioned,  so that

the initial point of one coincides with the terminal point of the other (Fig. 4.8(ii)).

  (i)   (ii)      (iii)

Fig. 4.8

For example, in Fig. 4.8(ii), we have shifted vector b without changing its magnitude and direction, so

that it’s initial point coincides with the terminal point of  a.  Then, the vector a + b,  represented by the third

C

A B
Fig. 4.7

A B

C

BA

C

C′
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side AC of the triangle ABC, gives us the sum (or resultant) of the vectors a and b i.e., in triangle ABC

(Fig. 4.8(ii)), we have

AB + BC = AC

Now, again since AC = −CA, from the above equation, we have

AB + BC + CA = AA = 0.

This means that when the sides of a triangle are taken in order, it leads to zero resultant as the initial and

terminal points get coincided (Fig. 4.8(iii)).

Now, construct the vector B ′C so that its magnitude is the same as the vector BC, in the direction

opposite to that of it (Fig. 4.8(iii)), i.e.,  B ′C  = −BC.

Then, on applying triangle law,  from Fig. 4.8(iii), we have

′AC  = AB + ′BC  = AB + (−BC) = a − b.

The vector ′AC  is said to represent the difference of a and b.

4.3.2 Parallelogram law of vector addition

Now, consider a boat in a river going from one bank of
the river to the other in a direction perpendicular to the flow
of the river.  Then, it is acted upon by two velocity vectors -
one is the velocity imparted to the boat by its engine and the
other  is the velocity of the flow of river water.  Under the
simultaneous influence of these two velocities, the boat actually
starts travelling with a different velocity.  To have a precise
idea about the effective speed and direction (i.e., the resultant
velocity) of the boat, we have the following law of vector

addition.

If we have two vectors a and b represented by the two adjacent sides of a parallelogram in magnitude

and direction (Fig. 4.9), then their sum a + b is represented in magnitude and direction by the diagonal of the

parallelogram through their common point.  This is known as the parallelogram law of vector addition.

 Note : From Fig. 4.9, using the triangle law, one may note that

OA + AC = OC

or OA + OB = OC  (since AC = OB)

which is parallelogram law.  Thus, we may say that the two laws of vector addition are equivalent to

each other.

Fig. 4.9

O

B C

A
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4.3.3 Properties of vector addition

1.  Property : For any two vectors a and b,

  a + b = b + a (commutative property).
Proof : Consider the parallelogram ABCD (Fig. 4.10).  Let
AB = a and BC = b, then using the triangle law, for triangle
ABC, we have

AC = a + b.
Now, since the opposite sides of a parallelogram are

equal  and  parallel,  from  Fig. 4.10, we have  AD = BC = b
and  DC = AB = a.  Again using triangle law, for triangle
ADC, we have

AC = AD + DC = b + a.

Hence a + b = b + a.

2. Property :  For any three vectors a, b and c
(a + b) + c = a + (b + c) (Associative  property)

Proof: Let the vectors a, b and c be  represented by PQ, QR and RS respectively,  as shown in  Fig. 4.11(i)
and (ii).

(i)     (ii)
Fig. 4.11

Then a + b = PQ + QR = PR
and b + c = QR + RS = QS
so (a + b) + c = PR + RS = PS
and a + (b + c) = PQ + QS = PS
Hence (a + b) + c = a + (b + c).

Remark :  The associative property of vector addition enables us to write the sum of three vectors a, b, c as
a + b + c without using brackets.

3. Property : For any vector a,  a + 0 = 0 + a = a
We have a + 0 = PQ + QQ = PQ = a

∴   a + 0 = 0 + a = a, by property (1).

Here, the zero vector 0 is called the additive identity for the vector addition.

Q

P

R

S

Q

P S

R

Fig. 4.10
A B

D C



Addition of Vectors 139

Fig. 4.12

A
a B

b

C

We know that for any two real numbers x and y, |x + y | < |x | + |y | and  |x − y |  > ||x | − |y ||.  We shall
now establish similar properties for the magnitudes of the vectors.

4.3.4  Theorem:  Let  a, b  be two vectors.  Then

(i) |a + b| ≤  |a|  +  |b|  (equality holds if and only if  a  and  b  are like vectors).

(ii) |a −−−−− b| ≥  ||a|  −−−−− |b||  (equality holds if and only if  a and  b  are  like vectors.

Proof

(i) Choose points A, B and C such that AB  = a  and  BC =  b

(see Fig. 4.12).  Then

|a + b|  =  AC ≤   AB +  BC  =  |a| + |b|.

The equality holds if and only if  B belongs to the line segment AC, that is

a and b are like vectors.

(ii) |a| = |(a −−−−− b) + b|  ≤   |a −−−−− b| + |b|

                   ∴   |a| −−−−− |b|  ≤   |a −−−−− b|       ... (1)

Equality   |a| −−−−− |b|  =  |a −−−−− b|  takes place if and only if the vectors b and (a −−−−− b) are like

vectors and hence b and (a −−−−− b)  + b = a  are like vectors.

Thus |a| − − − − − |b| ≤  |a −−−−− b| (equality if and only if a, b are like vectors).       ... (2)

Similarly,

|b| − − − − − |a| ≤  |b −−−−− a| = |a −−−−− b| (with equality if and only if  a and b are like vectors).       ... (3)

Combining (2) and (3) we get that | | | |− ≤ −a b a b  with equality if and only if

a and b are like vectors.

4.4   Scalar Multiplication of a vector

We shall now introduce the operation of scalar multiplication of a vector, initially through a geometric

visualisation and later state some laws of scalar multiplication.

4.4.1  Scalar multiplication :  Let  a  be a given non zero vector and  λ a scalar.  Then the product of

the vector a by the scalar λ, denoted as λa, is defined as a vector λa collinear with a.  The vector  λa is called

the multiplication of vector a by the scalar λ and λa has the direction same (or opposite) to that of vector  a

according as the value of λ is positive (or negative).  Also, the magnitude of vector λa is |λ| times the

magnitude of the vector a, i.e.,

|λa| = |λ| |a| (see definition 4.4.2)
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A geometric visualisation of multiplication of a vector by a scalar is given in  Fig. 4.13

Fig. 4.13

When  λ = −1, then λa = −a, which is a vector having magnitude equal to the magnitude of a and
direction opposite to that of the direction of  a.  The vector −a is called the negative (or additive inverse) of
vector a, we always have

a + (−a) = (−a) + a = 0.

Also, if 
1

,
| |

λ =
a

 provided a ≠  0 (i.e.,  a is not a null vector), then
1

| | || | | | 1
| |

λ = λ = =a | a a
a

.

So, λa represents the unit vector â  in the direction of a.   Hence  
1

ˆ
| |

=a a
a

.

4.4.2  Definition

Let a be a vector and λλλλλ be a scalar.  Then we define vector λa to be the  vector  0 if either a

is the zero vector or λλλλλ is the zero scalar; otherwise λa is the vector in the direction of a with

magnitude λ|a| if  λ > 0, and λa = (−λ)(−a),   if  λ < 0.

Note : If λλλλλ < 0, then λa is the vector in the opposite direction of a with magnitude  (−λ) |a|.

4.4.3 Some laws of scalar multiplication of vector

We now state some laws of scalar multiplication of a vector which are useful for further discussion.

1. If a is a vector and λ is a scalar, then (−λ)a = λ(−a) = −(λa).

2. If a is a vector and m, n are scalars, then m(na) = (mn)a = (nm)a = n(ma).

In particular, if  n = −1, then m(−a) = (−m)a = −(ma).

3. If a is a vector and m, n are scalars, then (m + n)a = ma + na.

4.4.4  Theorem: If  m  is a scalar  and  a, b  are any two vectors,  then

m(a + b) = ma  + mb.

Proof:  If  m = 0  or one of  a, b  is  0,  then equality holds clearly.
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B1

B

A A1O

A1

a

b

mb

ma

Assume that  m ≠  0, a ≠  0, b ≠  0

Case 1:  m > 0.

Let    OA  =  a,  AB = b,  OA1  = m a.  Through  A1, draw parallel to  b  meeting  the  line OB in B1.

Then  A1B1 = m b.

Then OB  =  OA + AB = a + b. ... (1)

Since  m > 0,  m (a + b)  and a + b  have the same direction.

Since  ∆ OAB  and  ∆ OA
1
B

1
are similar (Fig. 4.14)

      1 1 1OB A B

OB AB
m= =

∴   A1B1  =  mAB  = mb and

      OB1  =  m OB

       OB1  =  OA1 + A1B1 = m a + m b  ... (2)

By  (1) and (2),  ma + mb  = m(a + b).

Case 2:   m < 0 then  −  −  −  −  −  m > 0

      ∴  m (a + b)  =  (−m) (−(a + b)) (by definition)

 =  (−m) (−a − b)

 =  (−m) (−a) + (−m)(−b) (by case 1)

 =  m a + m b (by definition).

4.4.5 Note

 (i)  Two  vectors are collinear (parallel)  if and only if one is a scalar multiple of the other.

(ii)  Three points A, B and  C  are collinear if and only if  AB, BC  are collinear vectors.

4.5   Angle between two non-zero vectors

We have learnt about angles between two lines in plane geometry.  We now introduce the concept of

the angle between two non-zero vectors, which is slightly different from the angle between two lines.   The

concept of angle between two vectors is largely useful in Chapter 5,  which deals with dot and cross products

of two vectors.

4.5.1  Definition

 Let  a  and  b  be two non-zero vectors.   Let  O, A  and  B  be points such that  OA = a  and
OB = b.   Then the measure of  ∠ AOB  which lies between  00  and  1800 is   called the angle
between a  and  b  and is denoted by (a, b) (see Fig. 4.16(a), (b), (c), (d)).

Fig. 4.14

A1

B1

B

b

Aa

ma

mb

Fig. 4.15
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4.5.2  Note:  Let  a, b  be non-zero vectors.  Then

(i) (a, b) = 00  ⇔  a  and  b  are like vectors.

(ii) (a, b) =  1800   ⇔  a  and  b  are unlike vectors.

(iii) (a, b) = 00  or 1800   ⇔  a  and  b  are collinear vectors.

(iv) If  (a, b) = 900,  then  a, b  are called perpendicular vectors.

4.5.3  Note:  Let  a, b  be non-zero vectors and  m, n be positive scalars.   Then

(i) (a, b) =  (b, a)

(ii) (a, b) =  (− a, − b)

(iii) (a, − b) = (− a, b) = 1800 − (a, b)

(iv) (a, b) = (m a,  n b)

(v) (− m a, n b) = (m a, − n b)  =  1800 − (a, b)

Check these, by drawing the necessary diagrams.

4.5.4  Definition

Let  A  and  B be  two points  and  P,  a point on the straight line AB.  We say that P divides the line
segment  AB in the ratio  m : n (m + n ≠  0),  if  n AP  =  m PB.

4.5.5  Theorem:  Let a  and b  be position vectors of the points A and B with respect to the origin O.
If a point P  divides the line segment  AB in the ratio  m : n (m + n ≠  0),  then the position vector

of   P is 
b am +n

m + n
.  (if  k ≠ 0, then  a / k  or 

k

a
 means 1

k
 a)

Proof:  Let P be the point on AB lying between A and B, in which case, P is said to divide AB internally.  Let
OP = r.  By definition  n AP  =  m PB.

Fig. 4.16(a) Fig. 4.16(b)

Fig. 4.16(c) Fig. 4.16(d)

B

Aa

b

00  < (a, b) < 900

B

O

b

a A

900  < (a, b) < 1800

 (a, b) = 00 (a, b) = 1800

O OA B B A

a b b a
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⇒      n (AO + OP)  = m (PO + OB)

⇒      n (OP − OA)  =  m (OB − OP)

⇒      n (r  − a) = m (b − r)

        ∴  (m + n) r  = m b  + n a.

      ∴
b a

r
+=
+

m n

m n

Conversely if  P  is such that  r = OP  =  (mb + na) / (m + n),  then by retracing the above steps

backwards, we can see that P lies on the line  AB  and  nAP = mPB.   Hence P divides AB in the ratio

m : n.

4.5.6  Note:  The above formula is called (division)  section  formula  and it holds whether P divides

AB internally or externally. The position vector of the point P which divides the line segment AB

externally (i.e., P lies on AB outside the segment AB) in the ratio m : n is given by

r = (mb − na) / (m − n).

4.5.7  Corollary:  If  P is the mid point of AB  then m = n and hence the position vector of

P =  r  = OP = (a + b) / 2.

Proof:  In Theorem 4.5.5,  take m = n = 1.

4.5.8  Theorem:  Let  a, b  be any two non-collinear vectors.   If  r  is any vector in the plane Π
determined by a pair of supports of a and b,  then there exist unique scalars  x  and  y such that

r = x a  + y b

Proof:  Choose a point ‘O’  in the plane  Π as the origin and

points A  and B in Π.  a = OA  and  b = OB  so that O, A and B

are not collinear.

Let P be a point in the plane Π such that OP = r.  If  P lies either

on the support of  a  (i.e., on the line OA) or on the support

of b (i.e. the line OB), then take  y = 0  or  x = 0 respectively.

Suppose P  does not lie on the supports of  a  and  b.
Through  P  draw lines parallel to  b  meeting the support of a  in
L  and parallel to  a  meeting the support of  b in M.  Thus  OL
is collinear with  a  and  OM  is collinear with b (see Fig. 4.18).

Hence there exist scalars  x   and  y  such that  OL  = x a
and  OM = y b.

Fig. 4.17

r

a

b

m

n

A

O

BP

Fig. 4.18
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r

a

b

L
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  Then   r  =  OP   =  OL  + LP

    = OL  +  OM  =  x a  + y b.

If  r  is also equal to  ′x a + y′ b,  then  (x − x′) a  = (y′ − y) b  so that x = x′,  y = y′,  otherwise  a  and  b
will be collinear vectors.  Thus x  and y  are unique.

4.5.9 Corollary:  If  a  and  b  are non-collinear vectors and  x,  y  are scalars, then

x a + y b  = 0  if  and only if   x = y = 0.

Proof:  If  x = y = 0,  then  x a  + y b = 0.    Suppose that  x a + y b = 0.

Since   0 = 0 a + 0 b,  by  Theorem  4.5.8 ,  x = 0 = y.

It is known that non−coplanar vectors do exist in the space and in particular three non−coplanar

vectors with the same initial point exist.  Now, we have the following theorem which we call as space
representation theorem.

4.5.10  Theorem:  Let  a, b, c  be three non-coplanar vectors and  r   be any vector in the space.

Then, there exists unique triad of  scalars  x, y, z  such that

r = x a + y b + z c

Proof:  Let ‘O’ be the origin, OA = a, OB = b  and  OC = c.   Let  P  be a point in the space and  r = OP.

If  P  lies on the support of  a  that is,  r  is collinear with  a,  then we choose   y = 0 = z.

Similarly, if  P  lies on the support of  b  or
c,  then choose  z = 0 = x  or x = 0 = y  respectively.

Suppose  P  lies in the plane of  OA  and
OB.   Then by Theorem 4.5.8, r  = xa + yb
so that  z = 0.   Similarly if  P  lies in the plane
of  OB  and  OC,  then    r  = y b + z c, x = 0
and,  if  P lies in the plane of  OC  and  OA,  then
r = x a  + z c,  y = 0.

Now suppose P does not belong to any
of the planes BOC, COA and AOB. Through the
point P draw planes parallel to the planes BOC,
COA and AOB meeting the supports of a, b and
c in L, M and N respectively (see Fig. 4.19).

Thus we form the space figure   P Q L R
M S N O  which is called a parallelopiped.

Now,   r = OP = OQ + QP = (OL + LQ) + OM  = (OL + ON) + OM

  = OL + OM + ON.

Fig. 4.19
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Since OL, OM and ON are collinear with  a, b  and  c respectively, there exist scalars
x,  y  and  z  such that  OL  =  x a,  OM = y b  and  ON = z c.

     ∴  r  =  x a  +  y b  +  z c.

     If  r  is also equal to  x′ a  + y′ b + z′ c , then  (y  − y′) b  +  (z − z′) c  =  (x′ − x) a.

If  x ≠  x′, then  a  is coplanar with  b  and  c (Theorem 4.5.8) which is not true.

∴  x   =   x′.  Similarly  y  =  y′  and  z  =  z′.

4.5.11  Corollary :  If  a, b, c  are non−coplanar vectors, then  x a + y b + z c = 0   if and only if
x = y = z = 0.

Proof:  If   x = y = z = 0,  then  clearly  x a + y b + z c = 0.

Suppose   x a + y b + z c = 0. Since  0 = 0 a  + 0 b + 0 c  by Theorem 4.5.10,
x = 0,  y = 0, z =  0.

4.6   Linear Combination of Vectors

This section is devoted to discuss the linear combinations of vectors.

4.6.1  Definition

Let  a
1 
 , a

2  
, a

3  
, ... , a

n
 be vectors and  x

1 
 , x

2 
 , x

3 
 , .... , x

n  
be scalars.  Then the vector

x
1
 a1 + x

2
a2 

 + x
3
 a3  +  ...  +  x

n
 a

n
  is called a linear combination of the vectors a1 ,  

a2  , a3 ,  ... , an
.

4.6.2  Note

(i) 2a − b  + 3c  is a linear combination of a , b , c.

(ii) If  a,  b  are non-collinear vectors, then by Theorem 4.5.8, every vector in the plane determined by a

pair of supports of  a  and  b  can be expressed as linear combination of  a  and  b  in one and only one

way.

(iii) If  a,  b,  c  be three non-coplanar vectors,  then Theorem 4.5.10 shows that every vector in the space

can be expressed as a linear combination of  a, b, c  in one and only one way.

(iv) Three vectors are coplanar if and only if one of them is a linear combination of the other two.

4.7   Components of a vector in Three Dimensions

In Theorem 4.5.10 we have proved that every vector can be expressed as a linear combination of

three non-coplanar vectors.  Here we introduce the concept of components of a vector with respect to given

non coplanar vectors  a, b, c.
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Fig. 4.20
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4.7.1  Definition (Components)

Consider the ordered triad (a, b, c) of non-coplanar vectors  a, b, c.  If  r  is any vector  then
it is proved in Theorem 4.5.10 that there exists unique triad (x, y, z) of scalars such that
r  =  xa + yb + zc.  These scalars  x, y, z  are called  the components of  r  with respect to the ordered
triad (a, b, c).

Any ordered triad of non-coplanar vectors is called a base for the space.

The components of a vector depend on the choice of the base.

4.7.2 Representing a vector in component form

We shall now express a given vector in component form.

Let O be a point in space.  Call it the origin. Take three mutually

perpendicular X, Y and Z axes.  Let us take the points

A(1, 0, 0), B(0, 1, 0) and  C(0, 0, 1) on the  X-axis, Y-axis

and Z-axis, respectively.  Then clearly

|OA| = 1, |OB| = 1 and |OC| = 1.

The vectors OA, OB and OC, each having magnitude 1, are called unit vectors along the axes OX, OY

and OZ, respectively, and denoted by i, j and k, respectively  (Fig. 4.20).

Now, consider the position vector OP of a point P(x, y, z) as in Fig. 4.21.  Let  P1 be the foot of the

perpendicular from P on the plane  XOY.  We thus  see  that  P1P is parallel to Z-axis.

Fig. 4.21

As i, j and k are the unit vectors along the X, Y and Z-axes, respectively, and by the definition of
the coordinates of P, we have P1P = OR = zk.
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Similarly QP1 = OS = yj and OQ = xi.

Therefore, it follows that OP1 = OQ + QP1 = xi + yj

    and OP = OP1 + P1P = xi + yj + zk.

Hence, the position vector of  P with reference to O is given by

OP (or r) = xi + yj + zk.

This form of any vector is called its component form. Here, x, y and z  are called the scalar components
of  r, and  xi, yj and  zk are called the vector components of r along the respective axes.  Sometimes x, y and

z are also termed as rectangular components.

4.7.3  Length of a vector in terms of its components

The length of any vector  r = xi + yj + zk,  is readily determined by applying the Pythagoras theorem
twice.  We note that in the right angle triangle OQP1 (Fig. 4.21)

|OP1| =  2 2 2 2
1| | | | ,x y+ = +OQ QP

and in the right angle triangle OP1P, we have

|OP1| =  2 2 2 2 2
1 1| | | | ( )x y z+ = + +OP P P .

Hence, the length of any vector  r  = xi + yj + zk is given by

|r| = |xi + yj + zk| = 2 2 2x y z+ + .

4.7.4  Note :  If a and b are any two vectors given in the component form a1i + a2 j + a3k  and

b1i + b2 j + b3k respectively, then the following results of addition, subtraction and  scalar multiplication of

vectors hold in component form :

(i) the sum (or resultant) of the vectors a and b is given by

a + b = (a1 + b1)i + (a2 + b2)j + (a3 + b3)k

(ii) the difference of the vectors a and b is given by

a − b = (a1 − b1)i + (a2 − b2)j + (a3 − b3)k

(iii) the vectors a and b are equal if and only if a1 = b1, a2 = b2 and a3 = b3.

(iv) the multiplication of vector a by any scalar λ is given by

λa = (λa1)i + (λa2)j + (λa3)k.
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Fig. 4.22
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4.7.5  Vector joining two points

If  P1(x1, y1, z1) and P2(x2, y2, z2) are any two points,

then the vector joining P1 and P2 is the vector P1P2 (Fig. 4.22).

Joining the points P1 and P2 with the origin O, and applying

triangle law, to the triangle OP1P2, we have OP1 + P1P2 = OP2.

Using the properties of vector addition, the above equation

becomes

  P1P2 =  OP2 − OP1

i.e.,   P1P2 =  (x2i + y2 j + z2k) − (x1i + y1 j + z1k)

=  (x2− x1)i + (y2 − y1) j + (z2 − z1)k

The magnitude of vector P1P2 is given by

 | P1P2 | =  2 2 2
2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + − .

4.7.6  Definition (Right handed and left handed triads)

Let  OA  =  a,  OB = b,  OC = c  be three non-coplanar vectors.

Viewing from the point C,  if the rotation of  OA  to OB  does not exceed angle 1800 in anti-clock

sense, then  a, b, c  are said to form a right handed system of vectors and we say simply that (a, b, c)  is

a right handed system.  If  (a, b, c) is not a right handed system, then it is called a left handed system (see

Fig. 4.23(a) and 4.23(b)).

Right handed system

Fig. 4.23(a)

Left handed system

Fig. 4.23(b)

B

b

C
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c

A

a

C

Bb

c

O O
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4.7.7  Solved Problems

1. Problem:  Find unit vector in the direction of vector a = 2i + 3j + k.

Solution:  The unit vector in the direction of a vector a is given by 
1

ˆ .
| |

=a a
a

Now  |a| = 2 2 22 3 1 14+ + = .

Therefore  
1 2 3 1

ˆ (2 3 )
14 14 14 14

= + + = + +a i j k i j k.

2. Problem:  Find a vector in the direction of vector a = i − 2j that has magnitude 7 units.

Solution:  The unit vector in the direction of the given vector a is

1 1 1 2
ˆ ( 2 )

| | 5 5 5
= = − = −a a i j i j

a .

Therefore, the vector having magnitude equal to 7 and in the direction of a is

 
1 2 7 14

7 7
5 5 5 5

 = − = −  
a i j i j .

3. Problem:  Find the unit vector in the direction of the sum of the vectors,

         a = 2i + 2j − 5k and b = 2i + j + 3k.

Solution: The sum of the given vectors is  ( , say) 4 3 2+ = = + −a b c i j k

and  2 2 2| | 4 3 ( 2) 29.= + + − =c
4 3 2

ˆ
29

+ + −∴ = =
+

a b i j k
c

| a b |
.

4. Problem:  Write direction ratios of the vector a = i + j − 2k and hence calculate its direction cosines.

Solution:  Note that direction ratios a, b, c of a vector r = xi + yj + zk are just the respective components

x, y and z of the vector.  So, for the given vector, we have a = 1, b = 1, c = −2.  Further, if l, m and n the

direction cosines of the given vector, then

 
1 1 2

, , as | | 6
| | | | | |6 6 6

a b c
l m n= = = = = = − =r

r r r
.

Thus, the direction cosines are 
1 1 2

, , .
6 6 6

 −  
5. Problem:  Consider two points P and Q with position vectors OP = 3a − 2b and  OQ = a + b. Find
the position vector of a point R which divides the line joining P and Q in the ratio 2 : 1, (i) internally
and (ii) externally.

Solution:

(i) The position vector of the point R dividing the join of P and Q internally in the ratio 2 : 1 is
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2( ) (3 2 ) 5
.

2 1 3

+ + −= =
+

OR
a b a b a

(ii) The position vector of the point R dividing the join of P and Q externally in the ratio 2 :1 is
2( ) (3 2 )

4
2 1

+ − −= = −
−

OR
a b a b

b a .

6. Problem:  Show that the points A(2i − j + k), B(i − 3j − 5k), C(3i − 4j − 4k) are the vertices of a right
angled triangle.

Solution:We have

AB = (1 − 2)i + (−3 + 1) j  + (−5 − 1)k = −i − 2j − 6k.

BC = (3 − 1)i + (−4 + 3) j  + (−4 + 5)k = 2i − j + k.

and CA = (2 − 3)i + (−1 + 4) j  + (1 + 4)k = −i + 3j + 5k.

we have   |AB|2 = |BC|2 + |CA|2.

7. Problem:  Let   A, B, C  and  D  be four points with position vectors   a + 2b,  2a − b,   a  and
3a + b  respectively.  Express the vectors  AC, DA, BA  and  BC  interms  of  a  and  b.

Solution:  Let ‘O’ be the origin of reference so that  OA = a + 2b, OB = 2a − b, OC = a  and
OD = 3a + b.  Then AC   =  OC −−−−− OA

=  a − (a + 2b) = − 2 b

DA =  (a + 2b) − (3a + b) = − 2a + b

BA =  (a + 2b) − (2a − b) = 3b − a

BC  =  a − (2a − b) = b − a.

8.  Problem:  Let  A B C D E F   be a regular hexagon
with centre ‘O’.   Show that

  AB + AC + AD + AE + AF = 3 AD = 6 AO.

Solution:  From Fig. 4.23

AB + AC + AD + AE + AF

=  (AB + AE) + AD + (AC + AF)

=   (AE + ED) + AD + (AC + CD)  (Fig. 4.24)

(�  AB = ED, AF = CD)

=   AD + AD  + AD =   3AD

=   6AO (� ‘O’ is the centre and OD = AO).

9. Problem:  In ∆ ABC,  if  a, b, c  are position vectors of the vertices  A, B  and C respectively, then

prove that the position vector of the centroid  G  is  
1

3
 (a + b + c).

Fig. 4.24
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Solution:  Let G  be the centroid of ∆ ABC and A D the

median through the vertex A. (see Fig. 4.25)

Then   AG  :  GD  =  2 : 1.

Since the position vector of D is 
1

2
 (b + c),

by the Theorem 4.5.5 , the position vector of  G is

  

( )2
1

2
2 1 3

+
+ + +=

+

b c
a a b c .

10. Problem:  In  ∆ ABC, if ‘O’  is the circumcentre and  H  is the orthocentre, then show that

(i)  OA + OB  + OC = OH   (ii) HA + HB + HC = 2 HO

Solution:  Let  D be the mid point of BC.

(i)  Take ‘O’ as the origin, let OA = a;   OB = b  and
OC = c  (See Fig.4.26)

OD = 
2

+b c

 ∴  OA+OB+OC = OA+2OD = OA+AH = OH

  (Observe that AH = 2R cos A, OD = R cos A,

  R is the   circum radius of ∆ ABC and hence A H = 2 OD)

(ii)  HA + HB + HC = HA + 2HD = HA + 2(HO + OD)

 =  HA + 2HO + 2OD = HA + 2HO + AH = 2HO.

Note : Taking circumcentre as the origin, we have proved that the position vector of the orthocentre
of a triangle is the sum of the position vectors of the vertices which will be very useful in
proving geometrical problems concerning triangles.

11.  Problem:  Let  a, b, c  and  d  be the position vectors of  A, B, C  and  D  respectively which are the

vertices of a tetrahedron.  Then  prove that the lines joining the vertices to the centroids of the opposite

faces are concurrent (this point is called the centroid or the centre of the tetrahedron).

Solution :   Let O be the origin of reference.  Let G
1
, G

2
, G

3
  and  G

4
  be the centroids of ∆ BCD, ∆ CAD,

∆ ABD and ∆ ABC respectively (see Fig.4.27).

 Then 1OG  = 
3

+ +b c d
 .

Fig. 4.25

Fig. 4.26
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Consider the point P that divides AG
1
 in the ratio 3 : 1.

     OP  = 

( )3
1

3
4

+ +
+

b c d
a

( )1

4
∴ =OP a + b + c + d .

Similarly we can show that the position vectors of the points dividing BG
2 
, CG

3
 and  DG

4
  in the ratio

3 : 1 are equal to 
1

4
(a + b + c + d). Therefore P lies on each of  AG

1 , BG
2 ,  CG

3
  and  DG

4
.

12. Problem:  Let  OABC  be a parallelogram and  D  the midpoint of  OA.  Prove that the segment CD

trisects the diagonal OB and is trisected by the diagonal OB.

Solution:  Let  OA =  a,  OC = b  so that  OB  =  a + b;   OD =  
2

a
.

Let  M  be the point of intersection of OB and CD (see Fig. 4.28).

Let OM : MB = k : 1  and  CM : MD = l : 1.

       ∴  OM  = 
( )

1

k

k

+
+

a b
 and also

OM 
( )

1
22

1 2 1

l
l

l l

  +  + = =
+ +

a
b

a b

 ( )
1

2 1 1 1

l k

l k l
∴ = =

+ + +

  ∴  l = 2   and   k = 
1

2
.

∴ CD trisects OB and OB trisects CD.

13. Problem:  Let  a, b  be non-collinear vectors.  If �  = (x + 4y) a + (2x + y + 1) b and

β β β β β = (y − 2x + 2) a + (2x − 3y − 1) b are such that 3�  = 2β , then find  x and  y.

Solution:  3�  = 2βββββ ⇒  3(x + 4y) a + 3 (2x + y + 1) b  = 2(y − 2x + 2) a + 2 (2x − 3y − 1)b

On comparing the coefficients of  a and b, we have

  3x + 12y  =  2y − 4x + 4 ⇒   7x + 10y = 4     ... (1)

Fig. 4.28
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and        6x + 3y + 3  =  4x − 6y − 2 ⇒   2x + 9y = − 5     ...(2)

Solving (1) and (2),  x =  2, y = − 1.

14.  Problem:  Show that the points whose position vectors are − 2a + 3b + 5c, a + 2b + 3c, 7a − c are
collinear when a, b, c are  non-coplanar vectors.

Solution:  Let P, Q, R  be the given points.

    Then   PQ = 3a − b − 2c, QR = 6a − 2b − 4c

          ∴   QR = 2 PQ. Hence  P, Q and R are collinear.

15. Problem:  If the points whose position vectors are 3 i  − 2 j  − k ,  2 i + 3 j − 4 k,

− i + j + 2k  and  4 i +  5 j  + λ k  are coplanar, then show that λ  =  
146

17
− .

Solution:  Let the given points be A, B, C and D respectively.

     Then  AB = − i  + 5 j − 3 k,  AC = − 4 i + 3j + 3k and

  AD = i + 7j + (λ  + 1) k.

A, B, C and D are coplanar if and only if

AD  =  x AB  +  y AC,  for some scalars x, y;  that is

i + 7j + (λ + 1) k  =  x (− i + 5j − 3k ) + y (− 4i + 3j + 3k)

Equating the corresponding coefficients

− x − 4y = 1, 5x + 3y = 7,  − 3x + 3y = λ  + 1

Solving the first two equations we get  x = 
31 12

,
17 17

= −y

and   hence λ  = − 3x + 3y − 1 = 
146

17
− .

Exercise 4(a)

I. 1. ABCD is a parallelogram. If  L and  M are the middle points of BC and CD respectively, then find

 (i)  AL and AM interms of AB and AD.

(ii)  λ, if =AM ADλ  − LM

    2. In ∆ ABC,  P, Q and R are the midpoints of the sides AB, BC and CA respectively.  If  D is any point

 (i)  then express DA + DB + DC interms of DP, DQ and DR

(ii) if PA + QB + RC = � ,  then find � .

3. Let a = i + 2 j + 3 k  and b = 3i + j .  Find the unit vector in the direction of  a + b.

4. If the vectors −3i + 4 j + λ k  and  µ i + 8 j + 6 k are collinear vectors, then find λ and µ.
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5. ABCDE is a pentagon. If the sum of the vectors AB, AE, BC, DC, ED and  AC is λAC, then find the
value of λ.

6. If the position vectors of the points A, B and C are − 2i + j − k,  − 4i + 2j + 2k  and
6i − 3j − 13k  respectively and AB = λAC, then find the value of  λ.

7 .7 .7 .7 .7 . If  OA = i + j + k,  AB  =  3i − 2j  + k,  BC = i + 2j − 2k  and  CD = 2i + j + 3k,  then find the vector
OD.

8. a = 2i + 5j + k  and  b = 4i + m j  +  n k  are collinear vectors, then find  m  and  n.

9. Let  2 4 5= + −a i j k ,  = + +b i j k  and  2= +c j k .  Find the unit vector in the opposite

direction of + +a b c .

10. Is the triangle formed by the vectors 3i + 5j + 2k, 2i − 3j  − 5k and − 5i − 2j + 3k equilateral?

11. If α, β and γ are the angles made by the vector  3i − 6j + 2k with the positive directions of the
coordinate axes then find cos α, cos β and cos γ.

12. Find the angles made by the straight line passing through the points (1, −3, 2) and (3, −5, 1) with the
coordinate axes.

II. 1. If ,+ + = α + + = βa b c d b c d a  and  , ,a b c  are non-coplanar vectors, then show that

+ + + =a b c d 0.

2. , ,a b c  are non-coplanar vectors.  Prove that the following four points are coplanar.

 (i)   4 3 , 3 2 5 , 3 8 5− + − + − − + −a b c a b c a b c , 3 2− + +a b c .

(ii)  6 2 , 2 3 , 2 4+ − − + − + −a b c a b c a b c , 12 3− − −a b c .

3. If i, j, k are unit vectors along the positive directions of the coordinate axes, then show that the four
points 4i + 5j + k, − j − k, 3i + 9j + 4k and − 4i + 4j + 4k are coplanar.

4. If  a, b, c are non-coplanar vectors, then test for the collinearity of the following points whose position
vectors are given by

  (i)  2 3 , 2 3 4 , 7 10− + + − − +a b c a b c b c

 (ii) 3 4 3 , 4 5 6 , 4 7 6− + − + − − +a b c a b c a b c

(iii) 2 5 4 , 4 3 , 4 7 6+ − + − + −a b c a b c a b c

III.1. In the Cartesian plane, O is the origin of the coordinate axes.   A person starts at O and  walks a
distance of 3 units in the NORTH - EAST direction and reaches the point P.  From  P  he walks 4 units
of distance parallel to NORTH - WEST  direction and reaches the point  Q. Express the vector OQ
in terms of i and  j (observe that |XOP = 450).

2. The points O, A, B, X  and  Y  are such that OA = a,  OB  = b, OX = 3a  and
OY = 3b.   Find  BX  and  AY  interms of  a and b. Futher, if the point P divides AY in the ratio 1 : 3,
then express BP interms of a  and  b.
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A P

O

3. In OAB∆ , E is the mid point of AB and F is a point on OA such that OF = 2FA.  If  C is the point of

intersection of OE  and BF,  then find the ratios OC : CE and BC : CF.

4. The point E divides the segment  PQ  internally in the ratio 1 : 2  and  R is any point  not on the line PQ.

If  F is a point on QR  such that QF : FR = 2 : 1, then show that EF is parallel to PR.

4.8   Vector Equations of Line and Plane

In this section we discuss the parametric vector equations of a straight line and plane which are useful in

solving certain geometric problems. Hereafter P(r) means, P is a point with position vector  r.

4.8.1 Theorem:  The vector equation of the straight line passing through the point  A(a) and parallel

to the vector  b  is  r = a + t b,  t ∈  � .

Proof:  Let P(r)  be any point  on the line (see Fig. 4.29).

Then  AP  and b  are collinear vectors

   ∴  r − a = t b  for some  t ∈  � .

   ∴  r  =  a + t b

Conversely suppose r = a + t b. Then  r − a  = t b

  ∴   AP = t b

   ∴   AP  and b  are collinear vectors.

   ∴   P(r) lies on the line.

4.8.2 Corollary:  The equation of the line passing through origin O  and parallel to the vector

b is  r = t b,  t ∈  � .

4.8.3 Cartesian form:  Cartesian equation for the line passing through A(x
1 
, y

1 
, z

1
) and  parallel to the

vector   b = l i  +  m j  +  n k  is  1 1 1− − −= =x x y y z z

l m n
.

Fix the origin at O so that OA  =  1 1 1i j k+ +x y z .

If  P(r)  =  (x, y, z)  so that  r  =  OP  =  x i  +  y j  +  z k  then P lies on the above line  ⇔ = +r a bt

for some  t ∈ �  (Here a means OA).

Now   ( ) ( )1 1 1r t x y z x y z t l m n= + ⇔ + + = + + + + +a b i j k i j k i j k

                            ⇔  x = x
1
 + t l,  y = y

1
 + t m   and   z = z

1
 +  t n

Fig. 4.29



 Mathematics - IA156

    
1 1 1− − −⇔ = = =x x y y z z

t
l m n .

We represent these equations by 1 1 1x x y y z z

l m n

− − −= = .

If one of  l, m, n  is zero, say  l = 0, the equation becomes

1 1 1 ( 0)
0

x x y y z z
t

m n

− − −= = = ≠ .

This means that  1 0 0− = =x x t  so that 1=x x .  (One need not become panic on seeing 0 in the

consequent as it is a ratio and not a fraction).

4.8.4 Theorem:  The vector equation of the line through the points A (a)  and  B(b)  is

r = (1 − t) a + t b, t ∈  � .

Proof :  Let ‘O’  be the origin so that  OA = a  and  OB =  b

P(r)  is  a point on the line ⇔   AP  and  AB  are collinear vectors

⇔   AP  = t AB,  t ∈  � .

⇔   r − a  =  t (b − a)

⇔   r = (1 − t) a + t b.

4.8.5  Cartesian form:  Let  A = (x
1
, y

1
, z

1
)  and  B =  (x

2
, y

2
, z

2
),

P (r)  be a point and let

 r = xi + yj + zk.  Then P lies on the line AB

⇔  x i +  y j + z k =  (1 − t) a  + t b   for some  t ∈  � .

( ) ( ) ( )1 1 1x x y y z z⇔ − + − + −i j k

       =  ( ) ( ) ( )2 1 2 1 2 1t x x y y z z − + − + − i j k

( ) ( )1 2 1 1 2 1,x x t x x y y t y y⇔ − = − − = −  and ( )1 2 1z z t z z− = −

1 1 1

2 1 2 1 2 1

x x y y z z

x x y y z z

− − −⇔ = =
− − −

.

4.8.6 Theorem:  The vector equation of the plane passing through the point  A(a) and parallel to the

vectors  b and c  is

 ; ,t s t s= + + ∈r a b c � .

Proof : Let σσσσσ be the plane passing through the point A(a) and parallel to the vectors  b and c and P(r)  be  any
point   in σσσσσ.

Fig. 4.30

A P B

O

 a b r
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In the plane σσσσσ, through the point A, draw lines parallel

to the vectors  b  and  c.  With the line segment AP as diagonal,

complete the parallelogram ALPM in σσσσσ with the point L on

the line parallel to c and M on the line parallel to  b (see

Fig. 4.31).

∴  AL = sc,  for  some  s ∈  �   and  AM = t b  for some,

t ∈  � .

     Now   r − a = AP  =  AL + AM = s c + t b

      ∴ r   =   a + t b + s c .

     Conversely, if  P  is any point such that

         r = a + t b + s c, then r − a = t b + s c  so that

         AP = t b + s c and hence P lies in the plane σσσσσ.

4.8.7  Corollary :  The equation of the plane passing
through the points A (a) , B (b) and parallel to the vector

c  is  r = (1 − t) a + t b + s c, t, s ∈  � .

Proof :  In Theorem 4.8.6, replace the vector  b  with AB.

Then the equation of the plane is

       r  =  a + t AB + s c

i.e.,  r  =  a + t (b − a) + s c

i.e.,  r  =  (1 − t) a + t b + s c.

4.8.8  Corollary:  The equation of the plane passing through three noncollinear points  A (a),  B (b)
and   C (c)  is

r = (1 −  t  − s) a + t b + s c   where  t, s ∈ �.

Proof :  In Theorem 4.8.6,  replace  b  with  AB  and  c  with  AC.

4.8.9 Theorem:  Three points  A (a),  B (b)  and  C (c) are collinear if and only if there exist scalars
x, y, z (not all zero) such that x a + y b + z c = 0  and    x + y + z = 0.

Proof :  Suppose A, B and C are collinear.  Then   AB = λ  BC  for some λ ∈  � .

  ⇒   b − a  =  λ  (c − b)

  ⇒   a  +  (− 1 − λ ) b  + λ c  =  0

Take  x = 1, y =  − 1 − λ  and  z = λ   so that x + y + z = 0 and  x ≠  0.

Conversely,  let  x,  y,  z be scalars such that atleast one of them is not zero,  x a + y b + z c = 0,
x + y + z = 0.

Fig. 4.31
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Suppose z ≠  0.  Since z = − (x + y)  and  x a + y b + z c = 0

 ⇒   x a + y b − (x + y) c = 0

∴   x (a − c)  + y (b − c) = 0

∴   x (CA) + y (CB) = 0  and  x + y ≠  0.

∴  CA and CB are collinear vectors and hence the points A, B and C are collinear points.

4.8.10 Theorem:  Four points  A, B, C and  D  with position vectors  a, b, c  and  d  respectively are
coplanar if and only if there exist scalars  x, y, z  and  u  not all zero such that

x a + y b + z c + u d = 0   and   x + y + z + u = 0.

Proof :  Suppose the points  A, B, C  and  D  are coplanar.

∴  The vectors AB, AC and AD are coplanar.

∴  There exist scalars λ  and µ  such that AD  =  λ  AB  +  µ  AC.

 i.e. d − a  =  λ  (b − a)  + µ  (c − a).

∴ (1 − λ  − µ ) a  +  λ b + µ c + (− d) = 0.

Take  x = 1 − λ  − µ ,  y = λ ,  z = µ   and  u = − 1.

Then  x a + y b + z c + u d = 0  and   x + y + z + u = 0.

Conversely suppose that  x, y, z  and  u  are scalars such that atleast one of them is not zero,
x a + y b + z c + u d = 0  and  x + y + z + u = 0.

Suppose  u ≠  0  so that  x + y + z = − u ≠  0.

Now,  x a + y b + z c + u d = 0   ⇒    x a + y b + z c − (x + y+ z) d = 0.

∴  x (a − d)  + y (b − d) + z (c − d) = 0.

∴  x DA + y DB + z DC = 0  and one of  x, y, z  is not zero.  ( 0+ ≠� x y z+ )

∴  DA, DB, DC are coplanar vectors.

∴  The points A, B, C and D are coplanar.

4.8.11 Solved Problems

1. Problem:  In the two dimensional plane, prove by using vector methods, the equation of the line

whose intercepts on the axes are  ‘a’  and  ‘b’  is 1
x y

a b
+ = .

Solution:  Let    A  = (a, 0)  and  B  = (0, b).

         ∴  A  =  a i,  B  =  b j

By  Theorem 4.8.4, the equation of the line AB is  r = (1 − t) a i  +  t (b j).

If  r = x i  + y j,  then  x = (1 − t) a  and  y = t b.

         ∴
x y

a b
+  = 1 − t + t = 1.
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2. Problem:  Using the vector equation of the straight line passing through two points, prove that the
points whose position vectors are  a, b  and  (3a − 2 b) are collinear.

Solution:  The vector equation of the line passing through two points  a  and b is   r  = (1 − t) a + tb.   The
line also passes through the point 3a − 2b,  if  3a − 2b = (1 − t) a + t b for some scalar t. Equating  the
corresponding coefficients,  1 − t = 3  and  t = − 2.

∴  The three given points are collinear.

3. Problem:  Find the equation of the line parallel to the vector 2i − j + 2k  and which passes through
the point A whose position vector is  3i + j − k.   If  P  is a point on this line such that  AP = 15,  find the
position vector of  P.

Solution:  The vector equation of the given line is

r = (3i + j − k)  +  t (2 i  −  j  +  2k), ‘t’ being a scalar parameter.

                    Since AP = t (2 i  −  j  + 2 k), we have

                      15 = AP = 2 2 24 4 3 5+ + = ± ⇒ = ±t t t t t

                       ∴   OP = (3i + j − k) ±  5 (2 i  −  j  +  2 k)

=  13 i  −  4 j  +  9 k   or  − 7 i  +  6 j  − 11 k.

4. Problem:  Show that the line joining the pair of points  6a − 4b + 4c, − 4c and the line joining the
pair of points  − a − 2 b − 3c, a + 2b − 5c  intersect at the point   − 4 c  when   a, b, c are non-coplanar
vectors.

Solution:  Equation of the line joining the first pair of points is

      r  =  (1 − t) (− 4 c) + t (6a − 4 b + 4 c), t ∈ �

          i.e.,  r  =  (6 t) a − (4 t) b + (8 t − 4) c         ... (1)

Equation of the line joining the second pair of points is

        r   =   (1 − s) (− a − 2b − 3c) + s (a + 2b − 5c),  s ∈  � .

  i.e.,  r = (2s − 1)a + (4s − 2)b + (−2s − 3) c.        ... (2)
Equating the corresponding coefficients of a, b and c  in (1) and (2) we have 6 t − 2s = − 1,

4 t  +  4 s  =  2,  8 t  +  2 s  =  1. Solving the first and second of these equations we get t = 0 and s = 1/2.  These
values satisfy the last equation.  Substituting the value of  t = 0  in (1) or  s = 1/2 in  (2), the point of intersection
of the lines is  −4 c.

5. Problem:  Find the point of intersection of the line  r = 2a + b + t(b − c) and the plane
r = a + x(b + c) + y (a + 2 b − c) where a, b, c are non-coplanar vectors.

Solution:  At the point of intersection of the line and the plane, we have

2 a + b + t (b − c) = a + x (b + c) + y (a + 2 b − c).



 Mathematics - IA160

∴  On comparing the corresponding coefficients,

     2  =  1 + y   ⇒  y = 1

      1 + t  =  x + 2y ⇒   t − x = 1

         − t  =  x − y ⇒   t + x = y = 1.

On solving, we get   t = 1 , x = 0.

∴   The point of intersection = 2 a + 2 b − c.

Exercise 4(b)

  I. 1. Find the vector equation of the line passing through the point 2 i + 3 j + k  and parallel to the vector

4 i − 2 j + 3 k.

2. OABC is a parallelogram. If OA = a and OC = c, find the vector equation of the side BC.

3. If  a, b, c  are the position vectors of the vertices A, B and C respectively of ∆ ABC,  then find the

vector equation of the median through the vertex A.

4. Find the vector equation of the line joining the points 2i + j + 3 k and −4i +3j −k.

5. Find the vector equation of the plane passing through the points

 i − 2 j + 5 k, − 5 j − k,  and  − 3 i  + 5 j.

6. Find the vector equation of the plane passing through the points (0,0,0), (0,5,0), and (2,0,1).

II. 1. If  a, b, c  are noncoplanar find the point of intersection of the line passing through

the points 2 a + 3 b − c,  3 a + 4 b − 2 c  with the line joining the points a − 2b + 3c,  a − 6b + 6c.

2. ABCD is a trapezium in which AB and CD are parallel.   Prove by vector methods that the mid points

of the sides AB, CD and the intersection of the diagonals are collinear.

3. In a quadrilateral ABCD,  if the mid points of one pair of opposite sides and the point of intersection

of the diagonals are collinear, using vector methods, prove that the quadrilateral ABCD is a trapezium.

III. 1. Find the vector equation of the plane which passes through the points 2 4 2+ +i j k ,

2 3 5+ +i j k  and parallel to the vector 3 2− +i j k .  Also find the point where this plane meets the

line joining the points 2 3+ +i j k  and 4 2 3− +i j k .

2. Find the vector equation of the plane passing through points 4 3− −i j k , 3 7 10+ −i j k  and

2 5 7+ −i j k  and show that the point 2 3+ −i j k  lies in the plane.
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Key Concepts

� Vectors are a class of directed line segments which have both direction and magnitude.

� Vector is represented by an ordered triple (a, b, c) of real numbers.  Negative of a vector AB is
defined to be BA.

� The line AB is called support of the vector AB.

� Vectors with same support or parallel supports are called collinear vectors (parallel vectors)

� Collinear vectors are called like vectors or unlike vectors according as they have the same direction
or opposite direction.

� Addition of vectors a and b using triangle law :  That is, if AB = a  and BC = b, then a + b = AC
and a − b  is defined as a + ( − b).

� ma  is the vector in the direction of a when m> 0 and (− m) (− a) when m < 0, with magnitudes m
|a|, ( −m) |a| respectively.

� ( ) ( ) ( ) ( )m n m n n m n m= = =a a a a   and  ( ) ( ) ( )m m m− = − = −a a a .

� Position vector of a point P with reference to origin ‘O’ is OP and  AB = OB − OA.

� Point P divides the segment AB in the ratio ( ): 0m n m n+ ≠  if     n AP = m PB.

� If the supports are parallel to the same plane, they are called coplanar vectors.

� “Non coplanar vectors” means not coplanar vectors.

� Representation of a vector r in the plane determined by two non-collinear vectors a  and b  is

x y= +r a b ,  where x, y  are  unique scalars.

� Representation of any vector  r  in the space is  x y z= + +r a b c   where  x, y, z are unique
scalars.

� If  P divides the segment joining the points A(a) and B(b) in the ratio m : n, then the position vector

of P is   
+
+

b am n

m n
 .

� Vector equaton of the straight line passing through the point A(a) and parallel to the vector b is

,t t= + ∈r a b  �  .

� Vector equation of the straight line passing through two points A(a) and B(b) is

         ( )1 ,t t t= − + ∈r a b  �  .
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� Vector equation of the plane passing through a point A(a) and parallel to the

vectors b and c  is    , ,t s t s= + + ∈r a b c  �  .

� Vector equation of the plane passing through three points A(a), B(b) and C(c) is

       (1 )t s t s= − − + +r a b c   .

� Condition for collinearity of three points: Three points with position vectors
a, b and c are collinear if and only if there exist scalars x, y and z (not all zero) such that

x + y + z = 0  and  x a  + y b  + z c  = 0.

� Condition for coplanarity of four points: Four points with position vectors
a, b, c and d are coplanar if and only if there exist scalars x, y, z and u (not all zero)  such that

x + y + z + u = 0  and  x a + y b + z c + u d = 0.

Historical Note

   Hermann Grassmann (1809 - 1877), the originator of calculus of extension,  did a unique job
in creating a new subject.  In his work, which is considered as a master piece of originality, he developed
the idea of an algebra in which symbols representing geometric entities such as points, lines and planes,
are manipulated using certain rules.

Beginning with a collection of fundamental units 1 2 3
..., ,e e e  of his algebra, he effectively defines

free linear space which they generate; that is to say, he considers formal linear combinations for a hyper
complex number

1 1 2 2 3 3
...a e a e a e+ + +

where  a
1 
, a

2 
, a

3
 ... are real numbers and defines addition and multiplication by real numbers.  He then

develop the theory of linear independence in a way which is astonishingly similar to the presentation one
finds in modern linear algebra texts.  He goes on to prove

1 1

1 2 2 1

1 1

0

. 1.

× =
× = − ×

=

e e

e e e e

e e

Generalisations of these operations led to newer algebras like Clifford algebra and Exterior algebra.

It is pertinent to say that in 1840 Grassmann took an examination and wrote a highly original long
essay of 200 pages and introduced for the first time an analysis based on vectors, including vector
addition and subtraction, vector differentiation and vector function theory.
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Answers

Exercise 4(a)

   I.  1.  (i) AL = AB + 
1

2
 AD ,   AM = 

1

2
 AB + AD (ii) λ  =  

3

2
.

        2.  (i) DA  +  DB + DC = DP  + DQ  +  DR  (ii)  ααααα = 0

        3. 
1

34
 (4 i + 3 j + 3 k) 4.  λ  = 3, µ  = − 6

5.  λ  = 3 6. λ  = −1/4

7.  OD = 7i  + 2j + 3k 8.  m = 10,  n  = 2

9.  
1

7

−
 (3i  + 6j − 2k) 10. Equilateral triangle

11.  
3 6 2

cos , cos , cos
7 7 7

α = β = − γ =

 12.  1 1 12 2 1
Cos , Cos , Cos

3 3 3
− − −   − −      

II. 4. (i) Collinear   (ii) non-collinear   (iii) collinear

III. 1.  O Q = 
1

2
 (− i + 7 j)

2.  BX = 3 a − b, AY = 3 b − a , BP  =  
1

(3 )
4

−a b

3.  OC : CE = 4:1 and  BC : CF = 3:2

Exercise 4(b)

  I. 1.  r  =  (2 + 4t) i + (3 − 2t) j + (1 + 3t) k, t ∈  �

2.  r  =  c + t a,  t ∈  �
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3.  r  =  (1 − t) a + 
2

t
 (b + c), t ∈  �

4.  r  =  2 (1 − 3 t) i + (1 + 2 t ) j  + (3 − 4 t) k, t ∈  �

5.  r  =  (1 − t − s) (i − 2 j + 5 k) − t (5 j  +  k) + s ( − 3 i + 5 j) ; t, s ∈  �

6.  r  =  (5 t) j + s (2 i + k) ; t, s ∈  �

II. 1.  a  + 2b

III. 1.  
14 89

(2 3 ) (4 2 ) (2 3 ) ; , , , ,3
17 17

s t s t s t s
− = + + − − + + + ∈   

�r i j k

2.   r = (1 − s −t) (4i − 3 j − k) + s (3i + 7j − 10k) + t (2i + 5 j − 7 k) ; ,t s ∈ �
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Introduction

In Chapter 4, we studied about the addition and
subtraction of vectors.  We  also introduced the concept
of multiplication of a vector with a scalar and derived
the parametric vectorial equations of straight line and
plane.  In this unit, we intend to introduce another
algebraic operation, called the product of vectors.

Recall that product of two real numbers is a real
number and product of two matrices that are compatible
for multiplication, is again a matrix.  But in case of
functions, we may operate them in many ways,  Two
such  operations are  multiplication of functions pointwise
and composition of two functions.  Similarly we define
two different types of products, namely, scalar (or dot)
product where the resultant is a scalar and vector (or
cross) product where the resultant is a vector.  In the
case of vectors, both the types of products have several
applications in Geometry, Mechanics, Physics and
Engineering.

Morris Kline
(1908 - 1992)

Morris Kline was a Professor of
Mathematics, a writer on its
history,  philosophy and was a
great teacher of mathematics,
and also a popular writer of
mathematical themes.  His books:
Mathematics : A cultural
approach , and Mathematical
Thought from Ancient to Modern
times, are well known.

“One need not carryout operations with vectors
geometrically,  but can work with them algebrically”

−−−−− Morris  Kline
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We shall conclude this chapter by introducing the concept of  scalar triple product of three vectors,
explain its geometrical interpretation,  indicate its use in obtaining the shortest distance between two skew
lines and also discuss the vector triple product of three vectors.

5.1 Scalar or Dot product of two vectors - Geometrical  Interpretation -
Orthogonal Projections

5.1.1 Definition

Let  a and b be two vectors.  The scalar (or dot) product of  a  and  b  written as a .b, is
defined by

0 if one of , is
.

cos �� �� ��� ��	
��	����	��
����	 	���


=  ≠ ≠ θ

0

0

a b
a b

| a | | b | a b a b

5.1.2  Note

(i) a . b  is a scalar.

(ii) If  a,  b  are non-zero vectors, then  a .  .  .  .  . b  is positive or  zero or negative according as the angle

θ  between  a  and  b  is acute  or right or obtuse angle.

(iii) If  θ = 0, then a . b = |a| |b| . In particular 2
cos0. = =a a a a a   and  .a a  is generally denoted

by  a2.

(iv)  If θ = π,  then a . b = − |a| |b| . In particular  a.(−a) = −|a|2.

5.1.3  Orthogonal Projection

We introduce the concept of orthogonal projection of a

vector b  on  a vector  a  and derive formulae for orthogonal

projection of  b  on  a   and its magnitude, we notice that the

orthogonal projection of  b  on  a  is  same as the orthogonal

projection of b  on any vector collinear with  a.

5.1.4  Definition

Let  a = AB  and  b = CD  be two non-zero vectors.  Let  P  and  Q  be the feet of the

perpendiculars drawn from  C  and  D  respectively onto the line AB (see Fig. 5.1).   Then  PQ  is
called the orthogonal projection vector of   b  on  a  and the magnitude |PQ| is called the
magnitude of the projection of  b  on  a.     If  a ≠  0   and  b = 0,  then the projection vector of
b  on  a  is defined as the zero vector.

Fig. 5.1

A B
QP

D
b

a

C
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5.1.5  Note

(i) Some people use the word  ‘projection’  for the projection of a vector as well as the magnitude of the
projected  vector.  It should be understood according to the context.

(ii) The projection remains unchanged even if the supports of the vectors are replaced by parallel lines.

Hence we may choose a and b as coinitial vectors.

5.1.6  Theorem: The projection vector of   b  on  a  is  
2

. 
 
  

a b
a

a
 and  its magnitude is 

.a b

a
.

Proof:  Let  a  =  OA  and  b = OB;  P  be the foot of the perpendicular from  B  on OA and  �   =  AOB∠ .

Case 1:  θ  is acute (Fig. 5.2(a)). Then

  by definition, the projection of  b on  a  = OP

=  
 
   

OP
a
a

=  (OB) cos�
 
   

a
a

=   ( )cos �
a

b
a

=   ( ) 2cos �
a

a b
a

=    
( )

2

.a b a

a
.

Case 2:  θ  is obtuse  (Fig. 5.2(b)).  In this case,  OP  is in the opposite direction of  a and hence the angle

(b,  OP)  is  π − θ.

     ∴   Projection of  b  on  a   =  OP

           =  
 −
   

OP
a

a

           =  ( ) ( )OB cos �
 −−    

a
a

π

Fig. 5.2(a)

Fig. 5.2(b)

B

O

θ

P

b

a A

AP

B

O a

b

θπ − θ
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=    ( )OB cos�
 −−    

a
a

=     ( )(OB)cos�
a
a

=     (|a| |b| cos θ)  2| |

a
a

=      
2

( )

| |

a .b
a

a
.

Case 3:  When  θ  is a right angle, P coincides with O  so that  OP  =  0  and also
   a .  .  .  .  . b = 0.

    Hence  OP = 2

.a b
a

a
.

Thus the projection vector of  b on  
( )

2

.
=

a b
a a

a
  and  its magnitude is 

.a b

a
.

5.1.7  Definition

Let  a  and  b  be non-zero vectors and  a = OA,  b = OB.   Let  P  be the foot of the perpendicular from

B on the line  OA.   Then  OP  is called the component of  b  parallel to  a  and  PB  is  called

component of  b  perpendicular to a  (see  Fig. 5.2(a)  and 5.2(b)).

Note:   
( )

2

.
  =  −PB

a b
b a

a
.

If  � � �= a , b , then OP  or   − OP is called the scalar component of  b   on  a  according as 0� ��≤

or  0� ��> .

5.1.8  Geometrical interpretation of the scalar product

Let  a  and  b   be two non-zero vectors  and  θ  be the angle between  a  and  b.  Let  OA  =  a  and
OB  =  b.   P  is the foot of the perpendicular from  B on  OA.

Then  a .  .  .  .  . b =  |a| |b| cos θ

         . cos�∴ =a b a b

= OPa  (See Fig.5.2 (a))

=   Area of the rectangle whose sides are |a| and |OP|.
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5.1.9  Theorem:  Let  a,  b  and  c  be non-zero vectors.

Then  the projection of  b + c  on  a  is equal to the sum of

projections of   b  and  c  on  a  and hence

( ) ( ) ( )
2 2 2

. . .+
= +

a b c a b a c
a a a

a a a
.

Proof :   Let  a  =  OA,  PQ  =  b,  QR  =  c,  so that

PR  =  b + c.  We may assume that   b + c  ≠   0.

Let  L,  M  and  N  be the feet  of the perpendiculars drawn  from

P,  Q  and  R  respectively on the line  OA (Fig. 5.3(a), (b)).

 
( )

2

. +
=

a b c
a

a
Projection of  (b + c)  on  a

                         =   LN  =  LM   +  MN

 =  (Projection of   b  on  a)  +  (Projection of  c  on  a)

 =   2 2

. .+a b a c
a a

a a
.

5.1.10  Corollary

If  a, b, c   are three vectors then  a     .....     (b + c)  =  a     .....     b   +  a     .....     c.

Proof : We may assume that  a, b, c  and  b + c  are all non-zero vectors.

From 5.1.9, the projection of  (b  +  c) on  a  = (projection of  b  on  a) +  (projection of  c  on  a).

          ∴   
( )

2 2 2

. . .+
= +

a b c a b a c
a a a

a a a

   
( )

2

. .+
=

a b a c
a

a

    ( ). . .a b c a b a c∴ + = +

Fig. 5.3(b)

Fig. 5.3(a)

Q

ANLO M

RP

L N A

Q

M O

R

P
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5.2 Properties of  dot product

In this section we discuss some of the basic laws of dot product of two vectors.

5.2.1  Theorem:  Let  a,  b  be two vectors.    Then

(i) a      .      b  =  b      .      a  (commutative law)

(ii) (l a)     .     b   =  a     .     (l b) =  l  (a     .     b),  l ∈  R.
(iii) (l a)     .     (m b) =  l m  (a     .     b),  l  and  m ∈  R.
(iv) (− a)     .     (b) =  a     .     (− b) =  − (a     .     b)

(v) (− a) . (− b) =  a     .     b.

Proof: If one of  a, b   is  a zero vector, then by the definition of dot product (i) to (v) hold.

Suppose  a  ≠  0   and  b  ≠  0.    Let  (a,  b) = θ. Then

(i) (a, b)  =  θ = (b, a).
∴   b  .  .  .  .  .  a   =  |b| |a| cos θ  =  |a| |b|  cos θ =  a .  .  .  .  . b.

   (ii) Case 1  :   l > 0.

       Then (l a,  b)   =  (a,  l b)  =  ( a,  b)  =  θ
∴   (l a)     .     b  =  |l a|  |b| cos θ = l |a| |b| cos θ (� l > 0)

                  =  | a |  (l | b | cos θ )  =  a      .      (l b)  and

    (l a) .  .  .  .  . b  =  l  | a |  | b |  cos θ  =  l (a     .     b).

Case 2  :   l < 0.

       ∴ (l a,  b)  =  (a,  l b)  =  π θ−  (Fig. 5.4)

Now  (l  a)     .     b  =  | l a| | b | cos ( π θ− )

           =  (− l) | a | | b | (− cos θ) = l (a . b)

  a  . (l  b)  =  | a | |l b| cos (π − θ)

                  =  | a | (− l) | b | (− cos θ) = l (a     .     b)

 ∴  (l a) . b  =  a . (l b) =  l (a     .     b)  for all scalars ‘ l ’.

(iii) In (ii)  if we replace b with  m b (m ∈ R ), then

 (l a)     .     (m b)  =   l (a     .     (m b))  =  l (m     b))  =  l (m     b . a)  =  l m (b . a)

(iv) In  (ii)  if we replace  l  with − 1,

we have (−a) . b = ((−1) a) . b = − 1 (a . b) = − (a . b).

(v) In  (iii)  replace  l  with − 1 and  m   with  −1  to get the result.

5.2.2  Note: From the fact that a. b =  b . a  and from corollary 5.1.10.
(b + c) . a  =  b . a  +  c . a

and (a + b)2      =  a2 + b2 + 2a . b.

Fig. 5.4

B A

O
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5.3 Expression for scalar (dot) product,  Angle  between two Vectors

In this section, we derive formula for the dot product  a     .     b when  a  and b are expressed in terms of  a
right handed system (i, j, k).  We observe that, if  i, j, k  are mutually perpendicular unit vectors, then
i     .     i  =  j     .     j  = k     .     k  =  1  and   i     .     j  =  0,   j     .     k = 0  and  k     .     i = 0.

5.3.1  Theorem: Let  (i,  j,  k)  be the orthogonal unit triad.  Let  a = a
1
 i  +  a

2
 j  +  a

3
 k  and

b  =  b
1
i  +  b

2
 j + b

3
 k be vectors where a

j
  , b

j
  are scalars for  j = 1, 2, 3.  Then

a .  .  .  .  . b  =  a
1
 b

1
 +  a

2
 b

2
 +  a

3
 b

3
.

Proof:  By Corollary 5.1.10,  and Theorem 5.2.1 we have  a
1
 i .  .  .  .  . (b

1
i + b

2 
j + b

3 
k)

=   a
1
 b

1
 (i .  .  .  .  . i)  + a

1
 b

2
 (i .  .  .  .  . j)  +  a

1
 b

3
 (i .  .  .  .  . k)

=   a
1
 b

1
 + 0 + 0  =   a

1
 b

1

i.e.,            a
1
 i . (b

1
 i +  b

2
 j + b

3
 k) = a

1
 b

1
.

Similarly    a
2 
 j  .  .  .  .  . (b

1
 i +  b

2
 j + b

3
 k) = a

2
 b

2
 and  a

3 
 k  .  .  .  .  . (b

1
 i +  b

2
 j + b

3
 k) = a

3
 b

3
.

∴   Again by Corollary 5.1.10,  we have  a .  .  .  .  . b  = a
1
 b

1
  + a

2
 b

2
  + a

3
 b

3
.

5.3.2  Note

(i) In  Trigonometry,  for  | x | ≤  1,  Cos−1 x  is defined to be that angle  θ  lying between 0  and  π
(i.e.,  0 ≤  θ ≤  π) such that  cos θ = x.   Hence,  if  θ  is the angle between two non-zero vectors

a  and  b,  then, from the definition of  a ..... b, we  have  -1 .
� ���

a b
a b

 
=    

  and in particular if

a  =  a
1
 i  +  a

2
 j  + a

3
 k  and   b = b

1
 i  + b

2
  j  +  b

3
 k   then

θ  = 1 1 1 2 2 3 3

2 2 2 2 2 2
1 2 3 1 2 3

Cos−
 + + 
 + + + + 

a b a b a b

a a a b b b
.

(ii) a, b  are  perpendicular to each other if  and only  if  a
1
b

1
 + a

2
 b

2
  + a

3
  b

3
 =  0.

5.4  Geometrical  Vector methods

In this section we study the application of dot product in proving certain geometrical results.

5.4.1  Theorem: Angle in a semicircle is a right angle.

Proof:  Let  AB  be a diameter of a circle  with centre  O.

Let  OA = a   so that  OB = − a.
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Let  P  be a  point on the circle  and  OP  =  r  (Fig. 5.5).

          Then  ( ) ( )= .− − −PA . PB a r a r

( )2 2a r= − −

( )0 radius= = =� a r

0APB 90∴ ∠ = .

5.4.2  Theorem: In any triangle, the altitudes are concurrent.

Proof:  In  ABC∆ ,  let the altitudes  AD  and  BE  meet in H.

Taking H as origin  (Fig. 5.6),

let  = =HA HBa,  b   and  =HC c

AH is  perpendicular to BC

⇒ AH     .     BC  = 0

⇒ − a     .     (c  −  b) = 0

⇒ a     .     b  =  c      .     a    ... (1)

    BH  is perpendicular to AC

⇒ BH     .     AC = 0

⇒ − b     .     (c  −  a)  =  0

⇒  b     .     c   =  a      .      b    ... (2)

From (1)  and  (2),   c     .     a  =  a     .     b  =  b     .     c    ... (3)

Now  CH .  .  .  .  . AB  =  − c     . (b  −  a)

 =  − (c     .     b) +  c     .     a = 0 (from (3))

∴  CH is perpendicular to AB.

∴  The line CF  is also an altitude.

Thus the altitudes of ABC∆   are concurrent.

5.4.3  Theorem: In any triangle, the perpendicular
bisectors of the sides are concurrent.

Proof:  In ABC∆ ,  let  D, E  and  F  be the mid points of the
sides  BC,  CA  and AB  respectively.  Let the perpendicular lines
to BC and  AC at  D  and  E respectively meet in the point  ‘O’
(see Fig. 5.7).  We show that OF is perpendicular to AB.  ‘O’
lies on the perpendicular bisectors of the sides BC and AC.

Fig. 5.5

Fig. 5.7

Fig. 5.6

P

A O B

A

B

E

F

D

H

C

A

F E

CB

O

D
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 OB =  OC  =  OA = R ∴   (say)       ... (1)

Now  ( ) ( )1
. .

2
= + −OF AB OB OA OB OA

      ( )1

2
= −2 2OB OA

      ( )2 21
R R 0

2
= − =   (from (1))

∴   OF  is perpendicular to AB.

5.4.4  Theorem (Parallelogram law)

In a parallelogram,  the sum of the squares

of the lengths of the diagonals is equal to sum of

the squares of the lengths of its sides.

Proof:  Let  OABC  be a parallelogram in which OB  and

CA  are diagonals.  Let  OA = a  and  OC  = c

(see Fig. 5.8(a)).

Then =OB +a c  and  = −CA a c

2 2∴ + =OB CA
2 2+ −a + c a c

( ) ( )2 2 2 22 . 2 .= + + + − +a a c c a a c c

2 2
2 2= +a c

2 2 2 2OA AB CB OC= + + + . (�   OA = BC  and  OC = AB)

5.4.5 Theorem: In ABC∆ ,  the length of the median through the vertex  A is  ( )1/ 22 2 21
2 2

2
b c a+ − .

Proof:  Let  D  be the mid point of the side BC.   Take ‘A’  as the origin.  Let  AB  = ααααα   and   AC  =  βββββ  so

that  (α,  βα,  βα,  βα,  βα,  β)  =   A∠ .

     Since   
2

=AD
� � �

,  we have

            
2 2 24 2= + +AD � � ���

     =  AB2  +  AC2  +  2AB . AC

2 2 2 cos Ac b bc= + +

( )2 2 2 2 2c b b c a= + + + − [see Theorem 10.2.3]

Fig. 5.8(a)

Fig. 5.8(b)

C

O A

B

A B

C

D
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 2 2 22 2b c a= + −

            ∴  AD  = 
2 2 21

2 2
2

b c a+ − .

Note: Similarly, if  BE  and  CF  are the other medians, then  BE  =  
2 2 21

2 2
2

c a b+ −  and

CF  =  
2 2 21

2 2
2

a b c+ − .

5.5  Vector equation of a plane - Normal form

In Chapter 4 (section 4.8),  we have derived the parametric vector equations of planes.  In this

section,  we derive vector equations of a plane,  by using the scalar product of two vectors.  The equation of

the plane derived in this section is called the normal form.

5.5.1  Theorem: The vector equation of the plane whose perpendicular distance from the origin is  p

and whose unit normal drawn from the origin towards the plane is n ,  is r .  .  .  .  . n  =  p.

Proof :  Let  σ  be the plane whose perpendicular distance  ON  from the origin ‘O’  is  p.  Let  n  be the unit

vector in the direction of  ON  so that  ON  =  p n.   Let  P  be any point in the plane σ  and  OP = r. (see

Fig. 5.9)

Since  PN  is perpendicular to  ON,  ON     .....     NP  =  0

∴  (p n) .  .  .  .  . (r  −  p n) = 0

∴   r     .....     n =  p (n     .....     n) = p.

Conversely, let P be any point and  r     .....     n  =  p

      Then  NP .  .  .  .  .  n  = (r − p n) ..... n

( )p= −r .n n .n

= −r . n  p

0= .

∴  P  belongs to the plane σ.

5.5.2  Note

 (i) If the  plane  σ   passes  through the origin ‘O’  then  p = 0  and  hence the vector equation of  σ
is  r .  .  .  .  . n = 0.

 (ii) If  (l, m, n)  are the direction cosines (see 4.1.4) of the normal to the plane  σ  and  P(x, y, z) is any

point then,  P σ∈ ⇔ r .n  = p.

      ( ) ( ). 0x y z l m n⇔ + + + + =i j k i j k

Fig. 5.9
O

N P
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      l x m y n z p⇔ + + = .

Thus the equation of the plane σ  is  l x m y n z p+ + =  .

This equation of the plane is called normal form in Cartesian coordinates.

5.5.3  Theorem: Vector equation of the plane passing through the point A(a) and perpendicular to a

vector n is (r − a) . n = 0.

Proof:  Let P(r)  be a point in the given plane.

Then  AP   is perpendicular  to  n  and so,  (r − a) ..... n = 0

Conversely,  if  P(r)  is any point such that ( ). 0=r - a n , then  AP  is perpendicular to n.

∴ P belongs to the given plane.

5.6 Angle between two planes

We  now introduce the concept of angle between two planes.

5.6.1 Definition

Let  σ
1
, σ

2
  be two planes, n

1
, n

2
 be the unit normals of σ

1
 and σ

2 
respectively.  Then the

angle between  σ
1
 and σ

2
  is defined to be the angle between their normals  n

1
 and n

2

(Fig 5.10(a)).   If  θ is the angle between σ
1
 and σ

2
  then so is (1800 − θ  )  (Fig. 5.10(b)).  We

shall take the acute angle as the angle between two planes.

Fig. 5.10(a) Fig. 5.10(b)

If n1 and n2 are normals to the planes  r . n
1
 = d

1
 and   r . n2 = d

2
, and θ is the angle between the normals

to the planes

then,  1 2
1 2

1 2

.
cos | . | .

| || |
θ = =n n

n n
n n

5.6.2  Note : The planes are perpendicular to each other if n
1
 . n

2
 = 0  and parallel if   n

1
 is parallel  to n

2
.

180
0 − θ

Plane σ
2

Angle between
the planes

Plane σ
1

900 − θ
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 5.6.3 Solved Problems

1. Problem:  If  a  =  6 i + 2 j + 3 k  and  b  = 2 i  − 9 j  + 6 k, then  find   a     .....     b  and the angle between
a  and  b.

Solution: By Theorem 5.3.1,  a     .....     b  =  6(2) + 2(−9)  + 3(6)  = 12.

Let  θ  be the angle between a  and  b.

∴  | a |  =  2 2 26 2 3 7+ + =   and  ( )22 22 9 6 11= + − + =b

12 12
cos�

7 11 77
∴ = = =

×
a . b
a b

 ,  or   1 12
� � ���

77
−  

  
.

2. Problem:  If  a  =  i + 2 j  − 3 k  and  b  = 3 i  −  j  + 2 k ,  then  show that  a  +  b  and   a  − b  are
perpendicular to each other.

Solution:  4 ++ = −a b i    j    k   and  a − b  = 2 + 3   5− −i    j  k

( ) ( ) ( ) ( ) ( ) ( ). 4 2 1 3 1 5∴ + − = − + + − −a b a b

   8 8 0= − + = .

+∴ a b   and  −a b are at right angles.

3. Problem:  Let  a  and  b  be  non-zero,  non collinear vectors.

If  |a  +  b| = |a  −  b|, then find the angle between  a  and  b.

Solution:   2 2+ = − ⇒ + = −a b a b a b a b

         ( ) ( ) ( ) ( ). .⇒ + + = − −a b a b a b a b

         2 2 2 22 . 2 .⇒ + + = − +a a b b a a b b

         4 0⇒ =a .b

         0⇒ =a .b

∴   Angle between  a  and  b  is  900.

4. Problem:  If   | a | = 11, | b | = 23  and  | a − b | = 30,  then find the angle between the vectors
a , b and also find | a + b |.
Solution:  By hypothesis  | a − b | = 30.

Let θ  be the angle between a and b .

  900∴ = − −2 2 2a b = a 2a .b + b

 121 (2 11 23 cos�� ���= − × × × +

( )650 506 cos�= −

           
125

cos � �
253

∴ −

                      
1 125

� � ���
253

π −  ∴ −   
.
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2 2 2 125

| | 2 121 2 11 23 529 400
253

a b a a.b + b
− + = + = + × × + =  

.

| | 20a b∴ + = .

5. Problem :   If  a  =  i  −  j  −−−−− k   and   b  =  2i  − 3j  + k, then find the projection vector of  b  on  a
and  its magnitude.

Solution:  a .  .  .  .  . b = 4,  | a |  = 3 . Projection vector of  b  on  a= ( )2

4

3
− −b . a

a = i j k
a

.

Magnitude of the projection vector  =  
4

3
=

b . a

a
.

6. Problem:  If  P, Q, R  and  S  are points whose position vectors are  i − k,  − i  + 2j,
2i  − 3k  and  3i − 2j  − k  respectively, then find the component of  RS  on  PQ.

Solution:   PQ  =  − 2i  + 2j  + k  and  RS  =  i  − 2 j +  2k

     | PQ |  =  3.

Let  e  be the unit vector in the direction of  PQ.

∴   ( )1
= 2 2

3
− + +e i j k .

So the component of  RS on  PQ  =  RS     .....     e  =  
4

3
− . (See note under 5.1.7).

7. Problem:  If the vectors 3 5λ − +i j k  and  2λ λ− −i j k  are perpendicular to each  other,
find λ .
Solution:  By hypothesis ( ) ( )3 5 . 2 0λ λ λ− + − − =i j k i j k

22 3 5 0λ λ∴ + − =

( )( )2 5 1 0λ λ∴ + − =

5

2
λ −∴ = or  1.

8. Problem:   Let  2 3 , 4= + + = +a i j k b i j  and  3 7= − −c i j k .  Find the vector r  such that
r     .     a = 9, r     .     b = 7 and  r     .     c = 6. 

Solution:  Let x y z= + +r i j k
∴  By hypothesis 2x + 3y  + z  =  9,  4x + y = 7 and  x − 3y − 7z = 6.  Solving these  equations

for  x, y  and  z,  we have x = 1, y = 3,  z = −2
∴  r  =  i  +  3 j  −  2 k.

9. Problem:  Show that the points 2 , 3 5− + − −i j k i j k  and  3 4 4− −i j k  are the  vertices of a
right angled triangle.   Also,  find the other angles.

Solution: Let the given points be A, B  and C respectively (see Fig. 5.11)

Then  2 6− − −AB = i j k ,
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Fig. 5.12

F

G
D

C

B

A

O

E

    2= − +BC i j k ,

    3 5= − + +CA i j k

        2 3 5 0⇒ = − − + =BC . CA  .

        0C 90⇒ ∠ = .

6
cos B =

41
=BC . BA

BC BA .

35
cos A =

41
=AB . AC

AB AC .

10. Problem:  Prove that the angle �  between  any two diagonals of a cube is given by  
1

cos�
3

= .

Solution:  Without loss of generality we may assume that the cube is a unit cube.

Let  OA = , OC =i j   and  OG = k

(see Fig. 5.12)  be coterminus edges of the cube.

∴  Diagonal + +OE = i j k  and diagonal

            − − +BG = i j k .

 Let  θ  be the  smaller angle between the diagonals
OE  and  BG.

   Then 
1 1 1 1

cos�
33 3

− − +
= = =

OE . BG

OE BG
.

11. Problem:  Let  a, b, c be non-zero mutually orthogonal vectors. If  x a + y b + z c = 0,  then show

that  x  =  y  =  z  =  0.

Solution:  x a + y b + z c = 0 ( ). 0x y z⇒ + + =a a b c

( ). 0x⇒ =a a

( )0 . 0x =⇒ ≠� a a .
Similarly  y = 0,  z  = 0.

12. Problem:  Let  a, b  and  c  be mutually orthogonal  vectors of equal magnitudes.  Prove that the

vector a  +  b  +  c is equally inclined to each of  a, b   and  c ,  the angle of inclination being 1 1
Cos

3
− .

Solution:  Let λ= = =a b c .

Now,  2 2 2 2 2 .+ + = + + + ∑a b c a b c a b

 ( )23 . . . 0λ= = = =a b b c c a�

Fig. 5.11

B

C A
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Let  θ  be the angle between a  and  + +a b c

Then  
( )

( )
. . 1

cos�
33λ λ

+ +
= = =

+ +
a a b c a a
a a b c

.

Similarly, it can be proved that  a + b + c  inclines at an angle of  1 1
Cos

3
−  with  b and  c.

13.Problem:  The vectors  AB = 3i − 2j + 2k and AD = i − 2k represent the adjacent sides of a

parallelogram ABCD.  Find the angle between the diagonals.

Solution : From  Fig. 5.13,

  Diagonal  AC = AB + BC

= (3i − 2j + 2k) + (i − 2k)

= 4i − 2j

  Diagonal  BD = −2i + 2j − 4k.

Let  θ  be the angle between AC and BD.

. 8 4 3
cos

| | | | 20 24 10

− −∴ θ = = = −AC BD
AC BD .

14.  Problem : For any two vectors a and b,  show that

 (i)  |a . b |  < |a | |b |  (Cauchy - Schwartz inequality)

(ii)  |a + b | < |a | + |b |   (triangle inequality)

Solution :

(i)  If  a = 0  or b = 0,  the inequalities hold trivially.

So, assume that |a|  ≠ 0 ≠  |b|.  Then  
| . |

| cos | 1.
|

= θ ≤a b
| a || b

Hence  |a . b|  <  |a|  |b|.

(ii)  Consider |a + b|2 =  (a + b)2 = (a + b) . (a + b)

       =  a . a + a . b + b . a + b . b

       =  |a |2  + 2(a . b) + |b |2, (scalar product is commutative)

       <  |a |2 + 2|a . b | + |b |2 (�   x < |x|  x∀ ∈ R )

        <  |a |2 + 2|a | |b | + |b |2 (from (i))

       =  (|a | + |b |)2

       Hence  |a + b |  <  |a | + |b |.

Fig. 5.13

D C

A B
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15. Problem:  Find the cartesian equation of the plane passing through the point (−2, 1, 3) and
perpendicular to the vector  3 i  +  j  +  5 k.

Solution:  Let  A  =  2 3− + +i j k   and  x y z= + +r i j k  be any point P in the plane.

( ) ( ) ( )2 1 3x + y z∴ + − + − AP  = i j k .

AP  is perpendicular to  3 5+ +i j k  ( ). 3 5 0⇒ + + =AP i j k

          ( ) ( ) ( )3 2 1 1 5 3 0x + y z⇒ + − + − =
          3 5 10 0x y z⇒ + + − = .

16. Problem:  Find the cartesian equation of the plane through the point   A (2, −1, −4)  and parallel to

the plane  4 12 3 7 0x y z− − − = .

Solution:  The normal to the plane 4 12 3 7 0x y z− − − =  is  4 12 3− −i j k .

Hence  4 12 3− −i j k  is also normal to the required plane.

Let  P = x y z+ +i j k  be any point in the required plane.

Then ( )4 12 3 0AP . i j k− − =

i.e., ( ) ( ) ( ) ( )2 1 4 . 4 12 3 0x y z + − + + + − − = i j k i j k

i.e., ( ) ( ) ( )4 2 12 1 3 4 0x y z +− − + − =

i.e., 4 12 3 32x y z− − = .

17. Problem:  Find the angle between the planes 2 3 6 5x y z− − =  and 6 2 9 4x y z+ − = .

Solution:  1 2 3 6= − −n i j k  and  2 6 2 9= + −n i j k  are normals to the given planes.  Let θ be the angle

between the planes.  Hence  θ  is the angle between the normals 1n  and  2n  (Definition 5.6.1).

∴  1 2

1 2

. 12 6 54 60 60
cos�

7 11 7749 121

− += = = =
×

n n
n n

.

18. Problem:  Find unit vector orthogonal to the vector 3 + 2 + 6i j k   and  coplanar with the vectors

2 + +i j k  and  +i j k− .

Solution:  Let  2 + +a i j k= ,  +b i j k= −   and  3 + 2 + 6c i j k=
    Let  r be a vector coplanar with  a, b and orthogonal to  c.   Then

  +r a b= x y   where x, y are scalars, . 0r c =  and 1r = .

Now, ( ) ( ) ( )+ 2 + +x y x + y x  y x + y= = −r a b i j k

( ) ( ) ( ). 0 3 2 2 6 0x + y x  y x + y= ⇒ + − + =r c

  14 7 0⇒ x  +  y  =  

  2y  =  x⇒ − .                                ...  (1)
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Also  |r| ( ) ( ) ( )2 2 2
1 2 1x + y x  y x + y= ⇒ + − + =
  2 29 1x  + x   =  ⇒   from (1)

  
1

10
x  =    ⇒ ±

 ∴  r  ( )1
3

10
= ± −j k .

Exercise 5(a)

 I. 1. Find the angle between the vectors 2 3i j k+ +   and  3 2i j k− + .

   2. If the vectors 2i j kλ+ −  and 4 2 2i j k− +  are perpendicular to each other,  find λ.

3. For what values of λ, the vectors 2i j kλ− + and 8 6i j k+ − are at right angles?

4. 2 , 3 5a i j k b i j k= − + = − − .  Find the vector c  such that  a, b  and  c  form the sides of a
triangle.

5. Find the angle between the planes ( ). 2 2r i j k− +  = 3  and ( ). 3 6 4r i j k+ + = .

6. Let e
1
 and e

2 
be unit vectors making angle θ. If  1 2

1
sin � �

2
λ− =e e then find λ .

7. Let  a i j k= + +   and 2 3b i j k= + +  .  .  .  .  .  Find

(i) The projection vector of  b  on  a  and  its magnitude.

(ii) The vector components of  b in the direction of  a  and perpendicular to  a.

8. Find the equation of the plane through the point (3, −2, 1)  and perpendicular to the vector (4, 7, −4).

9. If 2 2 3 , 3 2a i j k b i j k= + − = − + , then find the angle between 2a b+  and 2a b+ .

II. 1. Find unit vector parallel to the XOY- plane and perpendicular to the vector 4 3i j k− + .

2. If , 3, 5+ + = = =0a b c a b  and  7c = ,  then find the angle between  a  and  b.

3. If  2, 3a b= =  and  4c =  and each of a, b, c is perpendicular to the sum of the other two

vectors, then find the magnitude of  a b c+ + .

4. Find the equation of the plane passing through the point 2 3a i j k= + −  and perpendicular to the

vector 3 2 2i j k− −  and the distance of this plane from the origin.
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5. a, b, c and  d  are the position vectors of four coplanar points such that

(a − d) .  .  .  .  . (b − c)  =  (b − d) .  .  .  .  . (c − a)  =  0.  Show that  the point  d  represents the orthocentre of the
triangle with  a, b  and  c as its vertices.

III.1. Show that the points (5, −1, 1), (7, −4, 7), (1, −6, 10)  and  (−1, −3, 4) are the vertices of a rhombus.

2. Let  4 5 , 4 5a i j k b i j k= + − = − +  and 3c i j k= + − . . . . .  Find the vector which is
perpendicular to both  a  and  b  whose magnitude is twenty one times the magnitude of  c.

3. G is the centroid of  ABC∆  and  a, b, c  are the lengths of the sides BC,  CA  and  AB respectively.

Prove that ( )2 2 2 2 2 23 OA  +  OB   +  OCa  +  b  +  c   =    ( )2
9 OG−  where ‘O’ is any point.

4. A line makes angles 1 2 3� � � � �  and 4�  with the diagonals of a cube.

Show that 
2 2 2 2

1 2 3 4

4
cos � � ��� � � ��� � � ��� � �

3
.

5.7  Vector product (cross product) of two vectors and properties

In this section, we recall ‘Right and Left handed system’  of a vector triad introduced in Chapter 4.
We shall define the vector (cross) product of two vectors and study some of the properties of cross product
of vectors.

5.7.1 Right handed and Left handed Systems.

Consider the three dimensional  rectangular coordinate system (Fig. 5.14).  In this system when the
positive X-axis is rotated counter clock wise into the positive Y-axis,  a right handed (standard) screw would
advance in the direction of the positive Z-axis. (Fig. 5.14(i)).

In a right handed coordinate system,  the thumb of the right hand points in the direction of the positive
Z-axis when the fingers are curled in the direction away from the positive X-axis towards the positive Y-axis.
(Fig. 5.14(ii))

Fig. 5.14(i) Fig.  5.14(ii)
X

O
Y

Z

X

O
Y

Z
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Let  O, A, B  and C be points in the space such that no three of them are collinear.  Let   OA = a,

OB = b and OC = c (Fig. 5.15(i), (ii), (iii)).  Observing from the point C,  if the angle of rotation (in the counter

clock wise sense)  of  OA to OB does not exceed 1800, then  the vector triad (a, b, c) is said to be a Right

handed triad or Right handed system  (Fig. 5.15(i)).

If (a, b, c) is not a right handed triad, then it is said to be a left handed triad   (Fig. 5.15(ii)).

Fig. 5.15 (i)                   Fig. 5.15 (ii)         Fig. 5.15 (iii)

5.7.2  Note :  (i) If (a, b, c) is a right handed (left handed) system,  then the triads (b, c, a) and  (c, a, b)  also
                form right handed (left handed) systems.

(ii) If  (a, b, c)  is a right handed triad and a, b, c are  mutually perpendicular to each other,  then (a, b, c)
is called an orthogonal triad.  Thus the vector triad (i, j, k)  is an orthogonal triad   (Fig. 5.15(iii)).

(iii) If any two vectors in a triad are interchanged,  then the system  will change.  For example,  (a, b, c)  and
(b, a, c)  form opposite systems.

(iv) If any vector of a system is replaced by its additive inverse,  then the system changes.  Thus (a, b, c) and
(a, b, −c) form opposite systems.

5.7.3  Definition

Let  a  and  b  be non zero non collinear vectors.  The cross (or vector) product of  a  and  b,

written  as  ×a b  (read as a cross b) is defined  to be the vector ( )sin �a b n  where  θ  is the angle

between a  and  b and  n  is the unit vector perpendicular to both  a  and  b  such that (a, b, n) is a right

handed system.

If  one of the vectors a, b is the null vector or a, b are collinear vectors then the cross product

a ×  b is defined as the null vector 0.

5.7.4  Note:  If  a,  b  are non-zero and non-collinear vectors,  then  a b×  is a vector, perpendicular

to the plane determined by  a  and  b , whose magnitude is  sin�a b   (observe that sin θ  is positive).

B

C

A

B

C

A

Z

Y

X

OO
O
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In the following theorem we prove that,  the cross product of two non-zero
non-collinear vectors does not obey the commutative law.

5.7.5  Theorem: If  a  and  b  are two vectors, then ( )a b b a× = − × .

Proof :  If  one of  a,  b  is the null vector  or  a, b  are collinear

vectors,  then  0a b× =  and 0b a× =  and hence

( )a b b a× = − × . . . . .  Suppose a, b are non−zero and non-collinear

vectors.  Let θ be the angle between  a  and  b  and  n  be the unit

vector perpendicular to both  a and  b such that ( ), ,a b n  is a right

handed triad.  Hence by definition ( )sin �× =a b a b n .....      In this

case θ  is traversed from  a to b (Fig. 5.16).   As noted earlier  (note

5.7.2 (iii) and (iv))  ( ), ,b a n−  is a right handed triad,  i.e., θ is
traversed from b to a (Fig. 5.17).

If  we assume a and b to lie in the plane of the paper,  then n and −−−−−n  both will be perpendicular to the

plane of the paper.  Observe that n is directed above the paper while −−−−−n is directed below the paper.

( )( ) ( ) ( )sin � ��� �∴ × = − = − = − ×b a a b n a b n a b .

     Thus    ( ) ( )× = − ×b a a b

Note: sin�× = × =a b b a a b .

5.7.6  Theorem:  Let  a, b  be vectors and  l, m  be  scalars.  Then

(i) ( ) ( ) ( )a b a b a b b a− × = × − = − × = ×

(ii) ( ) ( )− × − = ×a b a b

(iii) ( ) ( ) ( )a b a b a b× = × = ×l l l

(iv) ( ) ( ) ( )a b a b× = ×l m  l m 

Proof :  In the case, when one  of  a, b is the null vector or they are collinear vectors or one of the scalars l,

m  is the zero scalar, then all the above equalities hold good.   Hence  we assume that  a,  b are non-zero and

non-collinear vectors  and  l, m  are non-zero scalars.  Let  θ  be the angle between  a and  b  and  n  be the

unit vector perpendicular to both  a and b  such that (a, b, n) is a right handed triad.

 

 

 

 a

b

n

 

  

b
Fig. 5.16

Fig. 5.17

a

θ

θ

ˆ−n
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(i)  Then angle between  − a  and  b  is  π − θ  (see  Fig. 5.18).

 From  note  5.7.2(iv),  the triad ( ), ,a b n−  is a left handed triad and ( ), ,a b n− −  is a right handed
triad.

          ( ) ( )( )( )sin � �∴ − × = − − −a b a b n

     ( )sin �= − a b n

      ( )a b b a= − × = × .

Also       ( ) ( )( )× − = − − ×a b b a   (Theorem  5.7.5)

                ( )( ) ( ) ( )( )= − − × − × = − ×�b a a b a b

          ( )= × = − ×b a a b

  Thus  ( ) ( ) ( )a b a b a b b a− × = − × = × − = × .

(ii)  ( ) ( ) ( ) − × − = − × − a b a b   (by  (i))

      ( ) = − − × a b   (by (i))

      = ×a b .

(iii)  Let  l > 0.  Then angle between la  and  b  is θ  and a a=l l  . . . . .

       Further,  the vector triad  ( ), ,a b nl  is a right handed triad.

( ) ( )sin �l l∴ × =a b a b n

( )sin �l= a b n

( )sin �l  =  a b n

( )l= ×a b .

  The case when  l  < 0  follows from (i)  by  replacing a  with l a  and the fact that  −l > 0.

(iv)  ( ) ( ) ( )a b a b× = ×l m l m   follows from (i), (ii) and (iii).

The proof of  the following Theorem 5.7.7 is beyond the scope of this book and hence we assume its
validity without proof.

5.7.7 Theorem (Distributive law)

If  a, b  and  c  are vectors,  then    (i)  ( )a b c a b a c× + = × + ×
       (ii)  ( ) .a b c a c b c+ × = × + ×

Note:  By assuming (i) and  recalling the result that ( )b a a b× = − ×  we get (ii).

If  ( ), ,i j k  is an orthogonal triad,  then from the definition of the cross product of two vectors, it is
easy to see that (i) 0i i j j k k× = × = × =  and

            (ii) ,i j k j k i× = × =  and k i j× = .

Fig. 5.18

−a

ab

−b
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5.8  Vector product in  (i,  j,  k)  system

In this section, we derive formula for  a b×  when a and  b are given in ( ), ,i j k  system and deduce

the formula for a b× .

5.8.1  Theorem

Let 1 2 3a i j k= + +a a a   and  1 2 3b i j k= + +b b b .  Then

    ( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1a b i j k× = − − − + −a b a b a b a b a b a b

Proof :  For  proving the above formula,  we use Theorem 5.7.7 and the property of cross product among

i,  j and k, as mentioned at the end of Theorem 5.7.7.

 ( ) ( )1 2 3 1 2 3a a a b b b× = + + × + +a b i j k i j k

            ( ) ( ) ( )1 1 1 2 1 3a b a b a b = × + × + × i i i j i k

                     +  ( ) ( ) ( )( )2 1 2 2 2 3a b a b a b × + × + × j i j j j k

                                       + ( ) ( ) ( )( )3 1 3 2 3 3a b a b a b × + × + × k i k j k k

            ( ) ( )1 1 1 2 1 3 2 1 2 2 2 3a b a b a b -a b a b a b   = + − + + +   0 0k j k i

        ( )3 1 3 2 3 3a b a b a b + − + 0j i

     ( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1a b a b a b a b a b a b∴ × = − − − + −a b i j k

5.8.2 Notation:  Adopting the expansion of a 3 ×  3 determinant of real matrix

1 2 3
2 3 1 3 1 2

1 2 3 1 2 3
2 3 1 3 1 2

1 2 3

= − +
a a a

b b b b b b
b b b a a a

c c c c c c
c c c

,

the above formula for a b×  can now be expressed as

1 2 3

1 2 3

i j k

a b× = a a a

b b b

5.8.3  Corollary
If 1 2 3 1 2 3,a i j k b i j k= + + = + +a a a b b b  and θ is the angle between a and b, then

( )2
2 3 3 2

2 2
1 1

sin�
a b a b

a b

∑ −
=

∑ ∑
.

Proof:  By Theorem 5.8.1,  we have

      2 3 3 2 1 3 3 1 1 2 2 1( ) ( ) ( )a × b i j k= − − − + −a b a b a b a b a b a b .
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Fig. 5.19(a) Fig. 5.19(b)

( )2
2 3 3 2a b a b∴ × = ∑ −a b  and 2 2 2

1 2 3a = + +a a a  and 2 2 2
1 2 3b = + +b b b .

       Now, sin�a b a b× = ,  so that

( )2
2 3 3 2

2 2
1 1

sin�
a b a b

a b

∑ −×
= =

∑ ∑

a b

a b
.

5.8.4 Note: To determine the angle between two vectors, we use the dot product of vectors rather than the

cross product, as the cross product gives value of  sin θ which is positive for ( )� ��∈ π .

5.8.5  Theorem: For any two vectors  a  and  b,

 ( )( ) ( )22
. . .a b a a b b a b× = −  ( )22 2 .a b a b= − .

Proof : 2 2 2 2sin �a b a b× =  where  θ  is the angle between  a  and  b.

   ( )2 2 21 cos �a b= −  
2 2 2 2 2cos �= −a b a b ( )( ) ( )2

. . .a a b b a b= − .

5.8.6  Note: If  a  and  b  are non-collinear vectors, then, unit vectors perpendicular to both  a  and   b  are

( )a b

a b

×
±

×
.

5.9   Vector Areas

In the following,  we introduce the concept of vector area of a plane region bounded by a closed plane
curve (a curve in which initial point and terminal point are the same) and find vector area of a triangle and
parallelogram.

5.9.1  Definition  (Vector area)

Let  D  be a plane region bounded by

closed curve C.  Let  P
1
, P

2
, P

3
  be three points

on C  (taken in this order).  Let  n  be the

unit vector perpendicular to the region D

such that, from the side of n,  the points P
1
,

P
2
 and  P

3  
are in anticlock sense.  If A is the

area of the region D,  then An is called the

vector area of  D. [See Fig. 5.19(a), (b)]

−−−−−n

P
2

P
1

P
3 C

P
3 P

2

P
1

     n
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5.9.2 Note: If the points P
1
, P

2
  and  P

3
  are in clock sense from the side of  n, then the vector area is

A (− n).   In any case the vector area of a plane region D, is either An or  A(−n), so that the area is the

magnitude of the vector area.

In the following theorems, we derive the vector area of a triangle and parallelogram as applications of

cross product of vectors.

5.9.3  Theorem:  The vector area of ABC∆  is

( ) ( ) ( )1 1 1

2 2 2
× = =AB AC BC × BA CA × CB .

Proof :  Let the vertices  A, B  and  C of the triangle be described in anticlockwise sense so that the closed

boundary of the plane region  ABC∆   is BC CA AB∪ ∪ .

Let  ∆  be the area of  ABC∆ .

Let n be the unit vector in the direction of  ×AB AC .

    ( ) ( )1
AB AC sin A

2
∆ =

   ∴  ( ) ( ) ( )1
AB AC sinA

2
n n∆ =

  ( )1
sin A

2
AB AC n=

  ( )1

2
AB × AC= .

5.9.4  Corollary:  If   a, b, c  are the position vectors of the vertices A, B and C (described in counter

clockwise sense) of  ABC∆ ,  then the vector area of  ABC∆  is  ( )1

2
× + × + ×c cb a a b  and its area is

1

2
b a a b× + × + ×c c .

Proof :  From Theorem 5.9.3,  the vector area of

( )1
ABC =

2
∆ AB × AC

  ( ) ( )1

2
 = − × − b a c a

  ( ) ( ) ( ) ( )1

2
 = × + × − + − × + − × − b c b a a c a a

  ( ) ( )1

2
 = × − × − × + 0b c b a a c

  [ ]1

2
= × + × + ×b c c a a b

    Area of   
1

ABC
2

∆ = ∆ = ∆ = × + × + ×n b c c a a b .

Fig. 5.20

n

A
A

B

C
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5.9.5  Note: Since vector area of a plane region D is a vector quantity perpendicular to the plane of  D,  it

follows that, the vector ( ) ( ) ( )× + × + ×b c c a a b  is perpendicular to the plane of the ABC∆  where
a, b, c are the position vectors of A, B and C respectively.

5.9.6 Theorem (Vector area of a parallelogram):   Let  ABCD be a parallelogram with vertices A, B, C

and  D described in counter clockwise sense.  Then, the vector area of  ABCD  in terms of the diagonals

AC  and  BD  is ( )1

2
×AC BD .

Proof : ( )1

2
×AC BD

( ) ( )1

2
= + ×AB BC BA + AD

[ ]1

2
= × + +AB × BA + AB AD BC × BA BC × AD

( )1

2
 = + − AB × AD CB × BA

( )1

2
 = + − AB × AD CB × CD ( )=BA CD�

( ) ( )1 1

2 2
= × + ×AB AD CD CB

 =  Vector area of  ���  +  vector area of CDB∆
 =  Vector area of  ABCD.

5.9.7  Note

(i) In fact, the vector area of any plane quadrilateral ABCD in terms of the diagonals  AC  and  BD

is ( )1

2
×AC BD .

(ii) The area of  the quadrilateral ABCD  is  
1

|
2

×AC BD | .

(iii) The vector area of a parallelogram with a and b as adjacent sides is a ×  b and the area  is | |×a b .

5.9.8  Theorem:  Let  ( ), ,a b c  be a non-coplanar vector triad,

α α α α α = 1 2 3a b c+ +l l l  and  β  β  β  β  β  =     1 2 3m m m+ +a b c .  .  .  .  .  Then

ααααα ×  βββββ  =  1 2 3

1 2 3

b c c a a b× × ×
l l l

m m m

.....

Proof:  Using the distributive law of cross product over vector addition (Theorem 5.7.7)  we have

ααααα ×  βββββ  =  ( ) ( ) ( ) ( )1 2 1 3 2 1 2 3a b a c b a b c× + × + × + ×l m l m l m l m ( ) ( )3 1 3 2c a c b+ × + ×l m l m

Fig. 5.21

D

A

C

B
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                            ( )( ) ( )( ) ( )( )2 3 3 2 1 3 3 1 1 2 2 1b c c a a b= − × − − × + − ×l m l m l m l m l m l m

           ( ) ( ) ( )( ), and  b a a b c b b c a c c a× = − × × = − × × = − ×�

                1 2 3

1 2 3

b c c a a b× × ×
= l l l

m m m
.

Note :  In the above theorem, if we take , and= = =a i b j c k  such that ( ), ,i j k is a right handed

system, then we obtain the formula for ααααα ×  β β β β β as in 5.8.2.

5.9.9  Solved Problems

1. Problem:  If 2 3 5 , 4 2a i j k b i j k= − + = − + +  then find a b× and unit vector perpendicular

to both  a  and  b.

Solution:  2 3 5

1 4 2

i j k

a b× = −
−

  =  26 9 5i j k− − +

The unit vector perpendicular to both a  and  b

    ( )1
26 9 5

782

a b
i j k

a b
×= ± = ± − − +
× .

2. Problem:  If  2 3 5 , 4 2a i j k b i j k= − + = − + + , then find ( ) ( )a b a b+ × −  and unit vector

perpendicular to both  a b+   and  a b− .

Solution:  ( ) ( ) ( ) ( )a b a b a b b a+ × − = − × + ×
                        ( )2 a b= − × ( )2 26 9 5i j k= − − − + (see problem 1)

                       =  52 18 10i j k+ −
Unit vector perpendicular to both a b+  and a b−

           ( )1
26 9 5

782
i j k= ± + − .

Remark:  In problems 1 and 2, you find that the unit vectors perpendicular to both  a  and  b are same as the

unit vectors perpendicular to both a b+  and a b− . . . . . Give justification.

3. Problem:  Find the area of the parallelogram for which the vectors 2 3a i j= −  and 3b i k= −
are adjacent sides.
Solution:  The vector area of the given parallelogram is

          2 3 0 3 2 9 .

3 0 1

× = − = + +
−

i j k

a b i j k

   ∴  Area  = 94a b× = .
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4. Problem: If  , ,a b c  and  d  are  vectors such that a b c d× = ×   and  a c b d× = × ,  then show

that the vectors a d−  and b c−  are parallel.

Solution:  a b c d× = × ,  a c b d× = × .  On subtraction, ( ) ( )a b c c b d× − = − ×
    ( )d b c= × −

( ) ( )∴ − × − = 0a d b c

a d∴ −  and b c−  are parallel vectors.

5. Problem:   If  2 3a i j k= + +  and  3 5b i j k= + −  are two sides of a triangle, then find its area.

Solution: Area of the triangle is equal to half of the area of the parallelogram for which

a  and  b are adjacent sides

           
1

2
a b= ×

      But  1 2 3 17 10

3 5 1

i j k

a b i j k× = = − + −
−

.

∴  Area of the triangle  =  
1 390

2 2
a b× = .

6. Problem:   In ABC∆ ,  if  ,a b=BC CA =  and  cAB =   then show that

 a b b c c a× = × = × .

Solution:    a b c+ + = +BC CA + AB  = BB  =  0

a b c∴ + = −
( ) ( )a a b a c∴ × + = × −

( )a b a c c a∴ × = − × = × .

Also      ( ) ( )a b b c b+ × = − ×
( )a b c b b c∴ × = − × = ×

b c a b c a∴ × = × = × .

7. Problem:  Let 2a i j k= − +   and  3 4b i j k= + − .  If  θ  is the angle between
a and  b,  then find sin θ .

Solution: 2 1 1 3 5 11

3 4 1

× = − = − + +
−

i j k

a b i j k  and 6, 26a b= =  and

    155× =a b .

        Now   

155 155
sin�

1566 26

×
= = =

a b

a b
.
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8. Problem:   Let  a, b  and  c  be such that 0c ≠ ,  ,a b c b c a× = × = .  Show that , ,a b c  are pair

wise orthogonal vectors and  1,b c a= = .

Solution: a b c c× = ⇒    is perpendicular to both  a  and  b.

b c a a× = ⇒    is perpendicular to both  b  and  c.

, ,a b c∴  are mutually orthogonal vectors

0sin 90c a b a b a b∴ = × = =                          ... (1)

    0sin 90a b c b c b c= × = =  ... (2)

From (1)  and  (2),  2
c a c a b=

 1b∴ =  and from  (1),  c a= .

9. Problem:  Let  2 2 ,a i j k b i j= + − = + .  If  c  is a vector such that a . c  = |c|, |c −−−−− a| = 2 2  and

the angle between  a b×  and  c  is 300,  then find the value of ( )a b c× × .

 Solution:    3, 2a b= =  and  .a c c= .

     ( )2 2 2
2 2 8 2 .c a c a c a a c= − ⇒ = − = + −

       2
8 9 2c c∴ = + −

( )2
1 0c∴ − =

1c∴ = .

Now 2 1 2 2 2

1 1 0

i j k

a b i j k× = − = − + .

( ) 0sin 30a b c a b c∴ × × = ×   ( ) 1 3
3 1

2 2
= = .

10. Problem:  Let  a,  b  be two non-collinear unit vectors. If  ααααα  = a − (a .  .  .  .  . b) b  and

βββββ = a  ×  b, then  show that  | βββββ |  =  | α  α  α  α  α |.

 Solution: ( )22 2 2 2
.β = × = −a b a b a b   (see Theorem 5.8.5)

   = 1 2cos �− = 2sin � , where �  is the angle between a and b.

      ( ) ( )2 22 2 2
. 2 .= + −a a b b a b�

  2 2 21 cos � ���� � ��� �= + − =

    ∴ =� � .
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11. Problem:  A non-zero vector  a  is parallel to the line of intersection of the plane determined by the

vectors i,  i  + j  and the plane determined by the vectors  i − j,    i + k.  Find the angle between a  and

the vector i − 2j + 2k.

Solution: Let  l  be the line of intersection of the planes determined by the pairs i,  i + j and  i − j,  i + k.

Let  ( )1n i i j i j k= × + = × =   and

      ( ) ( )2n i j i k= − × +
            j k i i j k= − + − = − − + .

    1n∴ is perpendicular to l and 2n  is also  perpendicular to  l.

    ∴  Since  a  is parallel to the line l,  follows that a  is perpendicular to both 1n  and 2n .

  a∴  is parallel to ( )1 2× = × − − + = − + = −n n k i j k j i i j .

 ∴  ( ) ( )1 2 ,λ λ= × = −a n n i j  for some real λ.  Let 2 2b i j k= − + .
Let  θ  be the angle between a  and  b.

 
( )

( )
1 2. 1

cos�
2 3 2

+
∴ = = = ±

λ
λ

a b
a b

.

        0� !�∴ =  or  1350 .

12. Problem:  Let  4 5 , 4 5a i j k b i j k= + − = − +  and 3c i j k= + − .  Find vector ααααα  which is

perpendicular to both a  and  b   and   α  α  α  α  α . c = 21.

Solution:  Since α α α α α  is perpendicular to both  a  and  b , there exists scalar λ such that

       α  α  α  α  α  ( ) 4 5 1

1 4 5

i j k

a bλ λ= × = −
−

  ( )21 21 21i j kλ= − −

  ( )21 i j kλ= − − .

                                        α α α α α . c  = 21  ( )21 3 1 1 21λ⇒ − + =

 
1

3
λ∴ =   and  α α α α α  7 7 7i j k= − − .

13. Problem:  For any vector  a,  show that 2 2 2 2
2a i a j a k a× + × + × = .

Solution:   Let        a i j k= + +x y z .

  Then   a i k j× = − +y z .

      2 2 2y z∴ × = +a i

Similarly 2 2 2a j× = z + x  and 2 2 2a k× = x + y

               ( )2 2 2 22 2 22 2a i a j a k a∴ × + × + × = =x + y + z .
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14. Problem: If  a  is a non-zero vector and b, c  are two vectors such that a b a c× = ×   and

. .a b a c= , then prove that b c= .

Solution:  ( ) 0a b a c a b c× = × ⇒ × − =
      ⇒  either b c=  or  b c−  is collinear with a

Again   ( ). . . 0a b a c a b c= ⇒ − =
     either⇒ =b c  or  −b c  is perpendicular to a .

∴  If  b c≠ , then b c−  is parallel to a  and  is perpendicular to a which is impossible.

∴ =b c .

Exercise 5(b)

 I. 1. If  2, 3p q= =  and  ( ),
6

p q
π= ,  then find 

2
p q× .

2. If  2a i j k= − +   and  3 5b i j k= − − , then  find  | a b× |.

3. If  2 3a i j k= − +  and  4 2 ,b i j k= + −  then find ( ) ( )a b a b+ × − .

4. If 
2

4
3

p
p+ +i j k  is parallel to the vector 2 3i j k+ + , find p.

5. Compute ( ) ( ) ( )a b c b c a c a b× + + × + + × + .

6. If p i j k= + +x y z , then find 2
p k× .

7. Compute ( ) ( )2 3 4 2j i k i j k× − + + × .

8. Find unit vector perpendicular to both  i + j + k  and 2i + j + 3k.

9. If  θ is the angle between the vectors i + j  and  j  + k, then find sin θ .

10. Find the area of the parallelogram having 2a j k= −  and b i k= − +  as adjacent sides.

11. Find the area of the parallelogram whose diagonals are 3 2i j k+ −  and 3 4i j k− + .

12. Find the area of the triangle having 3 4+i j  and 5 7− +i j  as two of its sides.

13. Find  unit vector perpendicular to the plane determined by the vectors 4 3a i j k= + −  and

2 6 3b i j k= − − .

14. Find the area of the triangle whose vertices are A(1, 2, 3),  B(2, 3, 1)  and C(3, 1, 2).
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II. 1. If  a  +  b  +  c  = 0, then  prove that  a b b c c a× = × = × .

2. If 2 , 2 4a i j k b i j k= + − = − + −  and c i j k= + + , then find ( ) ( ).a b b c× × .

3. Find the vector area and the area of the parallelogram having 2a i j k= + −  and

2 2b i j k= − +  as adjacent sides.

4. If  × = × ≠ 0a b b c , then show that a c b+ = p ,  where  p  is some scalar.

5. Let  a  and  b  be vectors, satisfying 5a b= =  and (a, b)  = 450.  Find the area of the triangle having

2−a b  and 3 2+a b  as two of its sides.

6. Find the vector having magnitude 6  units and perpendicular to both 2i k−  and 3 j i k− − .

7. Find a unit vector perpendiclar to the plane determined by the points P(1, −1, 2),
Q(2, 0, −1) and R(0, 2, 1).

8. If . .a b a c=  and , 0a b a c a× = × ≠ , then show that b = c.

9. Find a vector of magnitude 3 and perpendicular to both the vectors 2 2b i j k= − +  and
2 2 3= + +c i j k  . . . . .

10.10.10.10.10. If  13, 5a b= =  and . 60a b = ,  then find a b× .

11. Find unit vector perpendicular to the plane passing through the points (1, 2, 3),
(2, −1, 1) and (1, 2, −4).

III.1.  If  a,  b and c  represent the vertices A, B and C respectively of  ABC∆ , then prove that

( ) ( ) ( )× + × + ×a b b c c a is twice the area of ABC∆ .

    2. If 2 3 4 ,a i j k b i j k= + + = + −  and c i j k= − + , then compute ( )a b c× ×  and verify
that it is perpendicualr to a.

3. If 7 2 3 , 2 8a i j k b i k= − + = +  and c i j k= + + , then compute ,a b a c× ×  and

( )a b c× + . . . . . Verify whether the cross product is distributive over vector addition.

4. If ,a i j k c j k= + + = − , then find vector b such that a b c× =  and . 3a b = .

5. , ,a b c  are three vectors of equal magnitudes and each of them is inclined at an angle of 600 to the

others.  If  6a b c+ + = , then find a  . . . . .

6. For any two vectors a and  b, show that

( )( )2 2
1 1+ +a b  2 2

1 .= − + + + ×a b a b a b .
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Fig. 5.22

7. If , ,a b c  are unit vectors such that a is perpendicular to the plane of b, c and the angle between b and

c is  
3

π
, then find a b c+ + .....

8. 3 2 , 3 2 , 4 5 2a i j k b i j k c i j k= − + = − + + = + −  and 3 5= + +d i j k , then compute
the following.

(i)  ( ) ( )a b c d× × ×  and  (ii) ( ) ( ). .a b c a d b× − × .

5.10    Scalar triple product

In this section we introduce the concept of scalar triple product of three vectors and discuss its
properties and its geometrical interpretation.

5.10.1  Definition

     Let  a,  b  and  c  be three vectors.  We call  ( ).×a b c , the scalar triple product of a, b  and c

and denote this by [ ]a b c .  Usually [ ]a b c  is called box [ ]a b c .

5.10.2  Note:  ( ). 0a b c× =  when

(i) one of  a, b, c  is  0  or

(ii) a, b or  b, c  or  c, a  are collinear vectors or

(iii) c  is perpendicular to a b× .

5.10.3  Theorem:   Let  a, b  and  c  be three non-coplanar vectors and  OA  =  a,  OB  =  b  and
OC = c.   Let  V be the volume of the parallelopiped with OA, OB  and OC as coterminus edges.  Then

      (i) ( ).a b c× = V,  if  ( ), ,a b c   is a right handed system.

     (ii) ( ).a b c× = −V,  if  ( ), ,a b c   is a left handed system.

Proof :  (i)  Consider the parallelopiped OADBFCGE having  OA,

OB  and  OC  as coterminus edges.   Assume that a, b, c  is right

handed system.  Draw CM perpendicular to the plane determined

by OA  and  OB (i.e., a  and  b)  and  N  be the foot of the

perpendicular to the  support of  a b×  (see Fig. 5.22).  Let  n  be

the unit vector in the direction of a b×  so that by definition of

a b× ,  we have ( ), ,a b n  is a right handed system.  Let  θ  be the

angle between  a b×  and  c.  i.e.,  � �"#= ∠ .

O B

DA

G

C
F

E

M

N

θ

c

b

n

a

a × b
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V  =  (Area of the base parallelogram OADB) ×  (height of the vertex C from the base)

  =  ( ) ( )CM ON× = ×a b a b .        ... (1)

  But from OCN∆ ,  ON  =  (OC) cos θ

        ∴  V  = ( )OC cos�×a b     (from  (1))

     cos�= ×a b c

  = ( ).a b c× .

Thus ( ) [ ]V .a b c a b c= × = .

(ii) Suppose ( ), ,a b c  is a left handed system.

( ), ,a b c∴ −   is a right handed system (see note 5.7.2).  But the volumes of the corresponding
parallelopipeds are  same.

( ) ( ) ( )V = . .a b c a b c ∴ × − = − × 
           ( ). Va b c∴ × = − .

5.10.4  Theorem:  For any three vectors a, b  and c

( ) ( ) ( ). . .a b c b c a c a b× = × = ×  that is,  [ ] [ ] [ ]a b c b c a c a b= = .
Proof : If  one of  a, b  and  c  is  O or any two are collinear, the equality holds (by 5.10.2).

   Assume that ( ) ( ), , , , ,a b c b c a and  ( ), ,c a b  form right handed systems.

    ∴ ( ) ( ) ( ). . .a b c b c a c a b× = × = ×  =  volume of the parallelopiped = V.

If all the triads form left handed systems, then

( ) ( ) ( ). . . V× = × = × = −a b c b c a c a b

Thus    ( ) ( ) ( ). . .a b c b c a c a b× = × = ×

5.10.5  Theorem : If  a, b, c  are any three vectors, then ( ) ( ). .a b c a b c× = × . (that is, in a scalar
triple product, the operations dot and cross can be interchanged)
Proof :  From Theorem 5.10.4, we have

( ) ( ). .a b c b c a× = × ( ).a b c= ×   (�  dot product is commutative)

5.10.6  Theorem:  If   a, b, c  are three nonzero vectors such that no two are collinear,  then [ ] 0a b c =
if and only if a, b and  c  are coplanar.

Proof:  Suppose  a,  b  and  c  are coplanar.   Since a b×  is perpendicular to the plane determined by

a  and  b  it is also perpendicular to c.   Hence ( ). 0× =a b c .

             [ ] 0a b c∴ = .

Conversely assume that [ ] 0a b c =   i.e,  ( ). 0a b c× = .

   a b∴ ×    is perpendicular to c.  But a b×  is perpendicular to both a  and   b.
  a b∴ ×    is perpendicular to   a,  b  and  c .
  , ,a b c∴  are coplanar.
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5.10.7  Corollary

Four  distinct  points  A, B, C  and  D are coplanar if and only if [ ] 0=AB  AC  AD .

Proof :  A, B, C and D  are coplanar ⇔  the vectors AB,  AC  and  AD   are coplanar

[ ] 0⇔ =AB  AC  AD .

5.10.8  Theorem: Let ( ), ,i j k  be orthogonal triad of unit vectors which is a right handed system.

Let  1 2 3a i j k= + +a a a ,  1 2 3b i j k= + +b b b  and  1 2 3c i j k= + +c c c .

Then [ ]
1 2 3

1 2 3

1 2 3

a b c =
a a a

b b b

c c c

.

Proof:  It is known that ( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1a b a b a b a b a b a b× = − − − + −a b i j k

 [ ] ( ).∴ = ×a b c a b c

( ) ( ) ( )2 3 3 2 1 1 3 3 1 2 1 2 2 1 3= − − − + −a b a b c a b a b c a b a b c

 =  

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c
.

5.10.9  Corollary
Let  1 2 3a i j k= + +a a a ,  1 2 3b i j k= + +b b b   and  1 2 3c i j k= + +c c c . . . . .  Then  a, b, c are

coplanar if and only if  
1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

 = 0 .

Proof:  Follows from Theroems 5.10.6 and 5.10.8.

5.10.10  Corollary
Let α, β, γα, β, γα, β, γα, β, γα, β, γ be three noncoplanar vectors and 1 2 3 ,a = + +� � �a a a

1 2 3 1 2 3,b c= + + = + +� � � � � �b b b c c c .   Then  a, b  and  c are coplanar  if  and only if

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

 = 0.

Proof :  From Theorem 5.9.8,   1 2 3

1 2 3

a b× =
�×� �×� �×�

a a a

b b b

= ( ) ( ) ( ) ( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1− × − − × + − ×� � � � � �a b a b a b a b a b a b

[ ] ( ).∴ = ×a b c a b c

    ( ) ( ) ( )2 3 3 2 1.a b a b c= − ×� � � − ( ) ( ) ( )1 3 3 1 2.a b a b c− ×� � �

        ( ) ( ) ( )1 2 2 1 3.a b a b c+ − ×� � �
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   ( ) ( ) ( )2 3 3 2 1 1 3 3 1 2 1 2 2 1 3a b a b c a  b a b c a b a b c = − − − + −  [ ]� � � ,

 [ ] [ ] [ ]( )= =� � � � � � � � � �

[ ] [ ]
1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

∴ =a b c � � � .

Since , ,� � �  are non-coplanar, [ ] 0≠� � � .

, ,∴ a b c  are coplanar vectors if and only if 
1 2 3

1 2 3

1 2 3

0=
a a a

b b b

c c c

.

5.10.11  Theorem:  The volume of a tetrahedron with a, b  and c  as coterminus edges is [ ]1

6
a b c .

Proof:  Let  OABC  be a tetrahedron and  ,a b= =OA OB , c=OC   (Fig. 5.23). . . . .    Let  V  be the volume
of the tetrahedron  OABC.  By definition, the volume V is given by

  
1

V = 
3

 (area of the base OAB∆ )  (length of the perpendicular from C to the base OAB∆ ).

CN is the perpendicular from C  to  OAB∆  and CM  is the perpendicular from  C onto the supporting

line of a b×  so that CN  = OM  =  Length of the projection of  c onto a b×

                                       
( ) [ ].a b c a b c

a b a b

×
= =

× ×

             Area of OAB
2

a b×
∆ =

                               
[ ]1 1

V =
3 2

∴ × ×
×

a bc
a b

a b

                                = [ ]1

6
a b c .

5.10.12  Corollary

The volume of  the tetrahedron whose vertices are A, B, C and  D is   [ ]1

6
DA DB DC .

Proof:  Since DA,  DB  and  DC  are coterminus edges of the tetrahedron ABCD, from the above theorem,

it follows that its volume is [ ]1

6
DA DB DC .

Fig. 5.23

O

A

B

C
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5.11  Vector equation of a plane - different forms, skew lines,
 shortest distance -plane, condition for coplanarity etc.

In Chapter 4,  we have discussed about the parametric vectorial equation of a plane in various forms.
In this section we obtain the vector equations of a plane by using dot and cross products.  Also, we introduce
the concept of skew lines, the shortest distance between two skew lines and derive a formula for the shortest
distance.  In this connection, we fix the origin of reference ‘O’.   a  is a  point means a is the position vector
of a point with respect to origin ‘O’.

5.11.1  Theorem:  The vector equation of a plane passing through the point A (a)  and parallel to two
non-collinear vectors  b  and  c  is [ ] [ ]r bc a bc= .

Proof:  Let  a  represent the point A  and  P(r) be any point in the plane.  We may assume

that A P≠ .
P lies in the plane

⇒    The vectors AP, b, c are coplanar

⇒    [AP b c] = 0  (by Theorem 5.10.6)

⇒    .( ) 0c× =AP b

( ) ( ). 0⇒ − × =r a b c

( ) ( ). .⇒ × = ×r b c a b c

[ ] [ ]⇒ =r bc a bc .

Suppose P(r)  is any point in the space such that  [ ] [ ]r b c a b c= .

In the above argument, if we retrace the steps backwards, we will have [ ] 0b c =AP .

Thus the vectors AP,  b, c  are coplanar.  Hence  P  lies in the plane.

5.11.2  Theorem:  The vector  equation of the plane passing through points A( a ),  B( b )  and

parallel to the vector  c  is [ ] [ ] [ ]r b c r c a a bc+ = .

Proof:  Let  ( )P r  be any point .  .  .  .  .  We may assume that P A≠ .....

Then P  lies in the plane ⇔  the vector ×AP AB   is perpendicular to the plane

⇔ ×AP AB  is perpendicular to the vector c.

( ) . 0c⇔ × =AP AB .

( ). 0c⇔ × =AP AB  (Theorem 5.10.5)

( ) ( )( ). 0r a b a c⇔ − − × =

( ) ( ). 0r a b c c a⇔ − × + × =

[ ] [ ] [ ]r b c r c a a bc⇔ + = .

5.11.3  Theorem:  The vector equation of the plane passing through three non-collinear points A(a),
B(b) and C(c) is  [ ] [ ] [ ] [ ]r bc r c a r a b a bc+ + = .

Proof:  Let  ( )P r  be any point.
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The four points A, B, C and P are coplanar

⇔  The vectors  AP,  AB  and  AC  are coplanar

,⇔ − −r a b a  and −c a  are coplanar.

[ ] 0⇔ − − − =r a b a c a

( ) ( ) ( ). 0⇔ − − × − =r a b a c a

{ }( ). 0⇔ − × + × + × =r a b c a b c a

[ ] [ ].r b c c a a b a b c⇔ × + × + × =

[ ] [ ] [ ] [ ]r b c r c a r a b a b c⇔ + + = .

5.11.4  Theorem:  The vector equation of the plane containing the line ,= + ∈ Rr a t b t  and
perpendicular to the plane . = qr c  is [ ] [ ]r b c a b c= .

Proof:  For the plane . =r c q , the vector  c  is a normal.  Since the plane contains the line  r a b= + t , it
passes through the point a  and is parallel to the vectors  b and  c.

∴   By Theorem 5.11.1, the vector equation of the plane is [ ] [ ]r b c a b c= .

5.11.5  Skew lines, Shortest distance and Cartesian equivalents.

If  two lines in space intersect at a point,  then the shortest distance between them is zero.  Also, if two
lines in space are parallel, then the shortest distance between them  is  the perpendicular distance or the length
of the perpendicular drawn from any point on one of the lines onto the other line.

In a space,  there are pairs of lines which are neither intersecting nor parallel.  Such a pair of lines  is
called a pair of  skew lines.  Thus,  two lines are called skew lines,  if  there is no plane containing both the
lines.

5.11.6 Example

Consider a room of size 1, 3, 2 units along X, Y and Z axes respectively.   (Fig. 5.24).

The line GE that goes diagonally across the ceiling

and the line DB passing through one corner of the ceiling

directly above A, goes diagonally down the wall.  These

lines are skew lines because they are not parallel and also

never meet.

By the shortest distance between two lines we mean

the join of a point on one line with a point on the other line

so that the length of the segment so obtained is the smallest.

In the case of skew lines, the line of the shortest distance

will be perpendicular to both the lines.
Fig. 5.24
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5.11.7  Distance between two skew lines

Let L
1
 and L

2
 be two skew  lines,  as shown in Fig. 5.25,  with equations.

r = a
1
 + λb

1
.

and r = a
2
 + µb

2
.

Let S be the point  on L
1
 with position vector a

1
 and let

T be the point on L
2
  with position vector a

2
.  Then the

magnitude of the vector of shortest distance will be equal to

that of the projection of ST along the direction of the  line of

shortest distance.

If  PQ is  the vector of shortest distance between L
1
 and L

2
, then it is perpendicular to both b

l
 and b

2
.

The unit vector n along PQ would  therefore be  1 2

1 2

.
| |

×=
×

b b
n

b b
  Then PQ = d n,  where d is  the magnitude

of the shortest distance vector.

Let θ be the angle between ST and PQ. Then

PQ = ST . |cos θ|

But 
.

cosθ = PQ ST
| PQ || ST |

 2 1.( )

ST

d

d

−= n a a
,  since  ST = a

2
 − a

1
.

 1 2 2 1

1 2

( ) . ( )

ST | |

× −=
×

b b a a
b b

,  since  1 2

1 2| |

×=
×

b b
n

b b
Hence the required shortest distance is

          d = PQ  = ST|cos θ| 1 2 2 1

1 2

( ) . ( )

| |

× −=
×

b b a a
b b

.

5.11.8  Cartesian form

The shortest distance between the lines

1 1 1
1

1 1 1

:
x x y y z z

l
a b c

− − −= = and   2 2 2
2

2 2 2

:
x x y y z z

l
a b c

− − −= =

is    

2 1 2 1 2 1

1 1 1

2 2 2

2 2 2
1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( )

x x y y z z

a b c

a b c

b c b c c a c a a b a b

− − −

− + − + −
.

Fig. 5.25
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L
2

L
1
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5.11.9 Plane passing through the intersection of two given planes

Let ΠΠΠΠΠ1
 and ΠΠΠΠΠ2

 be two given planes given by the equations r . n
1
 = d

1
 and  r

 
. n

2
 = d

2
 respectively.  The

position vector of any point on the line of intersection must satisfy both the equations (Fig. 5.26).

Fig. 5.26

If  t is  the position vector of a point on the line,  then
t . n

1
 = d

1
  and  t . n

2
 = d

2
.

Therefore  for all real values of   λ,  we have
t . (n

1
 + λn

2
) = d

1
 + λd

2
.

Since t is  arbitrary,  it satisfies for any point on the line.  Hence,   r . (n
1
 + λn

2
) = d

1
 + λd

2
 represents

a plane Π
3
 which is such that if any vector  r satisfies both the equations Π

1
 and Π

2
,  it also satisfies the

equation of Π
3
 i.e., any plane passing through the intersection of the planes  r. n

1
 = d

1
  and r . n

2
 = d

2
 has the

equation  r. (n1 + λn
2
) = d

1
 + λd

2
.

5.11.10 Cartesian form

In the  Cartesian system,  let

n
1
 = a

1
i + b

1 
j + c

1
k, n

2
 = a

2
i + b

2 
j + c

2
k , r = x i + y j + z k.

Then  x (a
1
 + λa

2
) + y(b

1
 + λb

2
) + z(c

1
 + λc

2
) =  r . (n

1
 + λn

2
) = d

1
 + λd

2
.

or  (a
1
x + b

1
y + c

1
z − d

1
) + λ(a

2
x + b

2
y + c

2
z − d

2
) = 0

is the required cartesian form of the equation of the plane passing through the intersection of the given planes,
λ being the parameter.

5.11.11Condition for coplanarity of two lines

Let the given lines be

r = a
1
 + λb

1
        ... (1)

and r = a
2
 + µb

2
                    ... (2)

If line (1) passes through the point A with position vector  a
1
 and is parallel to b

1
 and line (2) passes

through the point B with position vector a
2
 and is parallel to b

2
, then  AB = a

2 
− a

1
.

The given  lines are coplanar if and only if  AB  is perpendicular to b
1
×  b

2
.
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i.e.,  AB . (b
1
×  b

2
) = 0   or  (a

2 
−  a

1
) . (b

1
×  b

2
) = 0.

Cartesian form

Let  (x
1
, y

1
, z

1
)  and (x

2
, y

2
, z

2
)  be the coordinates of the points A and B respectively.

Let (a
1
, b

1
, c

1
)  be the direction ratios of  b

1
  and (a

2
, b

2
, c

2
) be the direction ratios of b

2
.  Then

 AB  =  (x
2
 − x

1
)i + (y

2
 − y

1
) j + (z

2
 − z

1
)k

   b
1
 =  a

1
i + b

1 
j + c

1
k  and  b

2
 = a

2 
i + b

2 
 j + c

2 
k

The given lines are coplanar if and only if  AB . (b
1
×  b

2
)  = 0.  In the cartesian form, it can be expressed

as

2 1 2 1 2 1

1 1 1

2 2 2

0

x x y y z z

a b c

a b c

− − −
= .

5.11.12  Perpendicular  distance of a Point from a plane

Vector form : Consider a point P with Position vector  a  and a plane Π
1
 whose equation is   r.n = d.

(Fig. 5.27(a), (b)).

Fig. 5.27(a) Fig. 5.27(b)

Consider a plane Π
2
 through  P parallel to the plane  Π

1
.  Thus n is also a  unit vector normal to Π

2
 .

Hence its equation is (r − a) . n = 0   or  r . n = a . n.

Let Q be the foot of the perpendicular from P to Π
1
, ′N  be the foot of the perpendicular from the origin to  Π

2

and N be the foot of the perpendicular from  ′N  to  Π
1
.  Then O, ′N , N are collinear.

Thus the distance  ON′   of this plane from the origin is |a . n|.  The distance of P from the plane Π
1

(Fig.5.27(a)) is  PQ,  ON ON = | . |d′− − a n which is the length of the perpendicular from a point a to the

given plane.  We may establish similar results for Fig. 5.27(b).
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5.11.13 Note : (i)  If the equation of a plane Π
 
is in the form  r . N = d,   where N is normal to the plane,  then

the perpendicular distance of this plane from a point a  is 
| . |d−N

| N |
a

.

(ii)  The length of the perpendicular from origin O to the plane  r . N = d  is  
| |d

| N |
,  since  a  = 0.

5.11.14  Cartesian form

Let P(x
1
, y

1
, z

1
)  be the given point with position vector a and Ax + By + Cz = D  be the cartesian

equation of the given plane.  Then

a = x
1 
i + y

1  
j + z

1 
k

N = Ai + B j + Ck

Hence,  from  5.11.13(i),  the perpendicular distance from P to the plane is

1 1 1 1 1 1

2 2 2 2 2 2

( ) . (A B C ) D A B C D

A +B +C A +B +C

x y z x y z+ + + + − + + −=i j k i j k
.

5.11.15  Angle between a line and a plane

Vector form :  The angle between a line and a plane is the complement of the angle between the line
and normal to the plane (Fig. 5.28).

Fig. 5.28

If the equation of the line is   r = a + λb and the equation of the plane is  r . n = d,  then the angle θ

between the  line and the normal to the plane is 
.

cos
| | | |

θ = b n
b n

.

Hence the angle φ between the line and the plane  is given by (900 − θ).

∴   sin φ =   sin (900 − θ)  = 
.

cos
| | | |

θ = b n
b n

  or  1 .
sin

| | | |
−φ = b n

b n
.

Line
Normal
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5.12   Vector triple product - results

In section 5.10, we have introduced the concept of scalar triple product of three vectors and in
section 5.11 studied some of its properties and its applications in deriving the equation of a plane in different

forms.  Suppose a, b, c  are three vectors.  Then ( )a b c× ×  is called the vector triple product or vector

product of three vectors.  In this section we study some properties of the vector product ( )a b c× ×  of

three vectors  a, b, c.

5.12.1  Theorem:  Let  a, b, c  be  three vectors.  Then

(i) ( ) ( ) ( ). .a b c a c b b c a× × = −

(ii) ( ) ( ) ( ). .a b c a c b a b c× × = −

Proof

(i)  Without loss of generality, we may assume that a and b  are non-collinear vectors and  c  is not parallel to

a b× ,  as otherwise ( ) ( ) ( ). .0× × = = −a b c a c b b c a . . . . . Fix the origin ‘O’.  Let  OA  =  a,  OB  = b.

We consider the plane OAB as XY-plane. Let  i  be the unit vector in the direction of  OA  and  j  be unit

vector perpendicular to i  in the XY-plane.   Fix the unit vector k  perpendicular to xy-plane such that

( , , )i j k  is an orthogonal triad of unit vectors forming a right handed system.  Then, we can write a = a
1
i,

1 2b i j= +b b   and 1 2 3c i j k= + +c c c .

( ) ( ) ( )1 2 1 2 3+a b c k i j k∴ × × = × +a b c c c

    ( ) ( )1 2 1 1 2 2j i= −a b c a b c

    ( ) ( ) ( ) ( )1 1 1 2 1 1 2 2 1. . +a c b b c a i j i− = + −a c b b b c b c a

    ( ) ( )1 1 2 1 2 2j i= −a c b a b c

         ( ) ( ) ( ). .∴ × × = −a b c a c b b c a

(ii)    ( ) ( )( )× × = − × ×a b c b c a

    ( ) ( ). . = − − b a c c a b

    ( ) ( ). .= −a c b a b c .

5.12.2  Note:  In general, the vector product of three vectors is not associative.

5.12.3  Corollary:  If  a, b  are non-collinear vectors and b  is perpendicular to neither  a  nor to c,

then  ( ) ( )a b c a b c× × = × ×   if and only if the vectors  a  and c  are collinear.
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Proof :  Suppose ( ) ( )a b c a b c× × = × ×

 ( ) ( ) ( ) ( ). . . .∴ − = −a c b b c a a c b a b c

 ( ) ( ). .∴ =b c a a b c

 ∴  a,  c  are collinear vectors.

 Conversely suppose  a, c are collinear vectors, and c aλ=  .

( ) ( ) ( ) ( ) ( )a b c a b c a b a a b aλ λ∴ × × − × × = × × − × ×

         ( ) ( )( )λ  = × × − × × a b a a b a

         ( ) ( ) ( )( )λ  = × × − × × × = − ×  �a b a a b a b a a b

         ( )λ= =0 0 .
5.12.4  Theorem :   If  b  is perpendicular to both a and c, then

( )a b c× ×   =  ( )a b c× × .

Proof :   Suppose b  is perpendicular to  a and c.

Then 0. .= =a b b c

( ) ( ) ( ) ( ). . .a b c a c b b c a a c b× × = − =

and ( ) ( ) ( ) ( ). . .a b c a c b a b c a c b× × = − =

Thus    ( ) ( )a b c a b c× × = × ×

5.12.5  Theorem : For any four vectors a, b, c and d  ( ) ( ) . .
.

. .

a c a d
a b c d

b c b d
× × =  and in particular

( )2×a b  ( )22 2 .a b a b= −

Proof:    ( ) ( ) ( )( ). .× × = × ×a b c d a b c d    (by 5.10.5)

                      ( ) ( ). . .a b d c b c d = −    (by 5.12.1)

     ( ) ( ) ( )( ). . . .a c b d a d b c= −

     
. .

. .

a c a d

b c b d
=

In the above formula  if  c  =  a,  and   d = b,  then

   ( ) ( ) . .

. .
.× × =

a a a b
a b a b

b a b b

     ( )( ) ( )2
. . .a a b b a b= −

     ( )22 2 .a b a b= − .
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5.13   Solved Problems

1. Problem: Prove that the vectors 2 , 3 5= − + = − −a i j k b i j k  and 3 4 4= − −c i j k  are
coplanar.

Solution: ( )
2 1 1

. 1 3 5

3 4 4

a b c

−
× = − −

− −
 (by Theorem 5.10.8)

    =  2 (12 − 20)  +  (−4 + 15)  +  (− 4 + 9)
    =  − 16  + 11  +  5  =  0

∴   a, b, c  are coplanar vectors  (Cor.  5.10.9).
2. Problem:  Find the volume of the parallelopiped whose  coterminus edges are represented by the

vectors 2 3 , 2i j k i j k− + − +  and 2 i j k+ − .

Solution:  Let  2 3 , 2a i j k b i j k= − + = − +  and  2c i j k= + −

( )
2 3 1

. 1 1 2

2 1 1

−
× = −

−
a b c

     =  2(1 − 2) + 3(−1 −4) + 1(1 + 2)
     =  −2 − 15 + 3  =  −  14

 ∴   volume    =  ( ).a b c×  = 14.

3. Problem:  If the vectors 2 , 2 3= − + = + −a i j k b i j k  and 3 5c i j k= + +p  are coplanar,
then find  p.

Solution: It is known that a, b, c are coplanar if and only if [ ] 0a b c = .
(Theorem 5.10.10)

   [ ]
2 1 1

0 1 2 3

3 5p

−
∴ = = −a b c  =  2(10 + 3p)  +  1  (5 + 9) + (p − 6)

 =  20 + 6p  + 14  +  p − 6    =  7p + 28

               4∴ = −p .

4. Problem:  Show that ( ) ( ) ( ) 2× × + × × + × × =i a i j a j k k a a  for any vector a.

Solution:  ( ) ( ) ( ). .i a i i i a i a i× × = −  ( ).a i a i= −

( ) ( ).j a j a j a j× × = −
       ( ) ( ).k a k a k a k× × = −

( ) ( ) ( )i a i j a j k a k∴ × × + × × + × × = ( ) ( ) ( )3 . . .a i a i j a j k a k − + + 
       3 2= − =a a a

      ( ). , . , .x y z x y z= + + ⇒ = = =� a i j k i a a j a k .
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5. Problem :  Prove that for any three vectors a, b, c, [ ] [ ]2b c c a a b a b c+ + + = .

Solution:  [ ]b c c a a b+ + +

( ) ( ) ( ){ }.b c c a a b= + + × +

( ) { }.b c c a c b a b= + × + × + ×

( ) ( ) ( ). . .b c a b c b b a b= × + × + ×

     ( ) ( ) ( ). . .c c a c c b c a b+ × + × + ×

[ ] [ ]0 0 0 0b c a c a b= + + + + +

[ ]2 a b c= .

6.  Problem:  For any three vectors  a, b, c,  prove that [ ] [ ] 2
b c c a a b a b c× × × = .

Solution:   [ ] ( ) ( ) ( ){ }.b c c a a b b c c a a b× × × = × × × ×

    [ ]( ) {( ) } {( ) }= × ⋅ × ⋅ − × ⋅b c c a b a c a a b

    ( ) [ ] [ ]{ }.= × −b c c a b a c a a b

    ( ) [ ] [ ] 2
.b c a c a b a b c= × = .

7. Problem:  Let  a, b  and  c  be unit vectors such that  b  is not parallel  to  c  and   ( ) 1

2
a b c b× × = .

Find the angles made by a  with each of  b and c.

Solution :  ( ) ( ) ( )1
. .

2
b a b c a c b a b c= × × = −

Since b  and  c  are non collinear vectors, equating corresponding coefficients on both sides,

1
.

2
a c =  and . 0a b = .

a∴   makes angle 
3

π
 with c  and is perpendicular to b.

8. Problem: Let , 2 3a i j k b i j k= + + = − + ,  c i j= −  and

6 2 3= + +d i j k .  Express  d,  interms of  ,b c c a× ×  and  a b× .

Solution:  [ ]
1 1 1

2 1 3

1 1 0

= −
−

a b c

      ( ) ( ) ( )1 0 3 1 0 3 1 2 1 5= + − − + − + = .

 . 11, . 19, . 4= = =d a d b d c

If    ( ) ( ) ( )d b c c a a b= × + × + ×x y z ,  then we have
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       [ ] [ ] [ ]
. . .

, ,
d a d b d c
a b c a b c a b c

x = y = z = .

     
11 19 4

, ,
5 5 5

∴ x = y = z =

  ∴ ( ) ( ) ( )11 19 4
3 3 2 4 3

5 5 5
d i j k i j k i j k= + − + − − + + − − .

9. Problem:  For any four vectors  a, b, c  and  d,  prove that

( ) ( ) ( ) ( ) ( ) ( ). . . 0b c a d c a b d a b c d× × + × × + × × = .

Solution:   We have  ( ) ( ) ( ( ))× ⋅ × = ⋅ × ×a b c d a b c d

        = (( ) ( ) )⋅ ⋅ − ⋅a b d c b c d

        = ( ) ( ) ( ) ( )
⋅ ⋅

⋅ ⋅ − ⋅ ⋅ =
⋅ ⋅

a c a d
a c b d a d b c

b c b d .

 Then L.H.S.  =  
. . . . . .

. . . . . .

b a b d c b c d a c a d

c a c d a b a d b c b d
+ +

   ( ) ( ) ( )( ) ( ) ( ) ( )( ). . . . . . . .= − + −b a c d b d c a c b a d a b c d

( )( ) ( )( ). . . .a c b d a d b c+ −  =  0.

10. Problem: Find the equation of the plane passing through the points A = (2, 3, −1),  B  = (4, 5, 2)
and  C = (3, 6, 5).

Solution :  Let  ‘O’  be the origin.  Let  r i j k= + +x y z   be the position vector of any point P  in the plane

of ABC∆ .  Then the vectors  AP,  AB,  AC are coplanar.

∴  [AP   AB   AC]  = 0.

Now     AP   =  (x − 2,  y − 3,  z + 1)

 AB  = (2, 2, 3)  and  AC  =  (1, 3, 6)

[ ]
2 3 1

0 2 2 3 0

1 3 6

x y z− − +
∴ = ⇒ =AP AB AC .

i.e.,  (x − 2) (12 − 9)  − (y − 3)  (12 − 3)  + (z + 1) (6 − 2) = 0
i.e.,  3x − 9y  + 4z  + 25 =  0.

11. Problem: Find the equation of the plane passing through the point  A  =  (3, −2, −1)  and parallel
to the vectors b  =  i  − 2j  + 4k  and 3 2 5c i j k= + − .
Solution: Let r i j k= + +x y z  be the position vector of any point P  in the given plane.

Then [ ] 0− =r a b c   (Theorem 5.11.1)

3 2 1

1 2 4

3 2 5

− + +
∴ −

−

x y z

  =  0.
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∴    (x − 3) (10 − 8)  −  (y +2)  (−5 −12) + (z +1)  (2 + 6) = 0

⇒   2x  + 17 y  + 8 z  +  36 = 0.

12. Problem:  Find the vector equation of the plane passing through the intersection of the planes

r . (i + j + k)  = 6  and r . (2i + 3j + 4k) = −5  and the point (1, 1, 1).

Solution: Here  n
1
 = i + j + k  and n

2
 = 2i + 3j + 4k;  Also d

1
 = 6  and d

2
 = −5.

Substituting these values in the relation r.(n
1
 + λn

2
) = d

1
 + λd

2
,   we get

        r .[(i + j + k + λ(2i + 3j + 4k)] = 6 − 5λ

or  r . [(1 + 2λ) i + (1 + 3λ) j + (1 + 4λ)k]  =  6 − 5λ, ...(1)

where λ is some real number.

Taking  r = x i + y j + zk,   we get

(x i + y j  + z k) . [(1 + 2λ)i + (1 + 3λ) j + (1 + 4λ)k]  =  6 − 5λ
or  (1 + 2λ)x + (1 + 3λ) y + (1 + 4λ)z =  6 − 5λ
or  (x + y + z − 6) + λ(2x + 3y + 4z + 5) = 0 ...(2)

Since this plane passes through the point (1, 1, 1), it should satisfy this equation (2).  Then

(1 + 1 + 1 − 6) + λ(2 + 3 + 4 + 5) = 0 
3

.
14

⇒ λ =

Substituting this value of  λ  in  equation (1),  we get

3 9 6 15
. 1 1 1 6

7 14 7 14

      + + + + + = −            
r i j k

or   
10 23 13 69

.
7 14 7 14

 + + =  
r i j k   or  ( ). 20 23 26 69+ + =r i j k , which is the required vector

equation of the plane.

13. Problem: Find the distance of a point (2, 5,  −3)  from the plane   r.(6i  − 3j + 2k) = 4.

Solution: Here  a = 2i + 5 j  − 3k ,  N = 6 i  − 3j + 2k;  and d = 4.

 ∴   The distance of the point (2, 5,  −3)  from the given plane is

| (2 5 3 ) .(6 3 2 ) 4 | |12 15 6 4 | 13

| 6 3 2 | 736 9 4

+ − − + − − − −= =
− + + +

i j k i j k
i j k .

14. Problem:  Find the angle between the line  
1 3

2 3 6

x y z+ −= =  and the plane  10x + 2y − 11z = 3.

Solution: Let  φ be  the angle between the given line and the normal to the plane.

Converting the given equations into vector form,  we have

  r = (−i + 3 k)  + λ (2i  + 3j + 6k)

and  r . (10i + 2j − 11k)  = 3.

Here  b = 2i + 3j + 6k   and  n = 10i + 2j − 11k.
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   2 2 2 2 2 2

(2 3 6 ).(10 2 11 )
sin

2 3 6 10 2 11

+ + + −φ =
+ + + +

i j k i j k

140 8 8
or sin .

7 15 21 21
−−  = = φ =  ×  

15.  Problem:  For any four vectors  a,  b,  c  and  d ,  ( ) ( ) [ ] [ ]a b c d a c d b b c d a× × × = −  and

( ) ( ) [ ] [ ]× × × = −a b c d a b d c a b c d .....
Solution:   Let m c d= ×
        ( ) ( ) ( )a b c d a b m∴ × × × = × ×

     ( ) ( ). .a m b b m a= −

     ( ).( )) ( .( )= × − ×a c d b b c d a

     [ ] [ ]= −a c d b b c d a .

  Again  Let × =a b n .....

  Then  ( ) ( )a b c d× × ×  =  ( )× ×n c d

     = ( ) ( ). .−n d c n c d

     ( )( ) ( )( ). .a b d c a b c d= × − ×

     [ ] [ ]= −a b d c a b c d .

16. Problem:  Find the shortest distance between the skew lines  ( ) ( )6 2 2 2 2t= + + + − +r i j k i j k

and  ( ) ( )4 3 2 2r i k s i j k= − − + − − .

Solution: The first line passes through the point  A(6, 2, 2) and is

parallel to the vector 2 2b i j k= − + . . . . .  Second line passes

through the point C(−4, 0, −1) and is parallel to the vector

3 2 2= − −d i j k .....  (Fig. 5.29).

Shortest distance = 
[ ]

×
AC b d

b d
 (Theorem 5.11.7)

[ ]
10 2 3

1 2 2 108

3 2 2

− − −
= − = −

− −
AC b d ;

     1 2 2

3 2 2

× = −
− −

i j k

b d       = 8 8 4i j k+ +   and 12b d× =

∴   Shortest distance between the skew lines 
[ ] 108

9
12

AC
= = =

×
b d

b d
.

∴

Fig. 5.29

A(6, 2, 2)

C(−4, 0, −1)

P

900

Q

d = (3, −2, −2)

b = (1, −2, 2)
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Exercise 5(c)

 I. 1. Compute  [ ]i j j k k i− − − .

2. If 2 3 , 2 , 3 2a i j k b i j k c i j k= − − = + − = + − , then compute ( )×.a b c .

3. If  a  = (1, −1, −6),  b  = (1, −3, 4)  and  c = (2, −5, 3),  then compute the following. (i) ( ). ×a b c
(ii) ( )a b c× × (iii) ( )a b c× × .

4. Simplify the following

(i) ( ) ( ) ( )2 3 2− + × + − +.i j k i j k j k

(ii) ( ) ( ) ( )2 3 2 2− + − + × + +.i j k i j k i j k

5. Find the volume of the parallelopiped having coterminus edges i j k+ + ,  i j−   and 2i j k+ − .

6. Find  t  for which the vectors 2 3 , 2 3i j k i j k− + + −  and j k− t  are coplanar.

7. For non-coplanar vectors, a, b  and c, determine  p for which the vectors , 2a b c a b c+ + + +p
and a b c− + +  are coplanar.

8. Determine λ,  for which the volume of the parallelopiped having coterminus edges , 3i j i j+ −  and
3 j kλ+  is 16 cubic units.

9. Find the volume of the tetrahedron having the edges ,i j k i j+ + −  and 2i j k+ + .

10. Let  a, b  and c  be non-coplanar vectors and 2 3 , 2 2= + + = + −� � � � � � � �  and
3 7= −� � � , then find [α β γα β γα β γα β γα β γ].

11. Let  a, b  and  c  be non-coplanar vectors.  If  [2a − b + 3c,  a + b − 2c, a + b − 3c] = λ [a b c], then
find the value of λ.

12. Let  a, b  and c  be non-coplanar vectors. If  [a + 2b  2b + c  5c + a] = λ [a b c], then find λ.

13. If  a, b, c are non-coplanar vectors, then find the value of

( ) ( ) ( )2 .

[ ]

 + − − × − − a b c a b a b c

a b c
.

14. If  a, b, c are mutually perpendicular unit vectors, then find the value of [a b c]2.

15.  a , b ,  c are non-zero vectors and a is perpendicular to both  b  and  c.  If  |a| = 2,  |b| = 3,  |c| = 4

and (b, c) = 
2

3

π
 , then find |[a b c]|.

16. If  a , b ,  c are unit coplanar vectors, then find [2 , 2 , 2 ]− − −a b b c c a .

II.  1. If  [ ] [ ] [ ] [ ]+ + =b c d c a d a b d a b c , then show that the points with position vectors
a, b, c and d  are coplanar.

2. If a, b and c are non-coplanar vectors, then prove that the four points with position vectors

2a + 3b − c,  a − 2b + 3c, 3a + 4b − 2c  and 6 6a b c− +  are coplanar.

∴
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3.  a, b  and c  are non-zero and non-collinear vectors and � �≠ , is the angle between b and c.  If

( ) 1

3
a b c b c a× × = ,     then find sin θ.

4. Find the volume of the tetrahedron whose vertices are (1, 2, 1), (3, 2, 5), (2, −1, 0) and  (−1, 0, 1).

5. Show that ( ) ( ) ( ) [ ]. 2a b b c c a a bc+ + × + = .

6. Show that the equation of the plane passing through the points with position vectors 3i − 5 j  − k,
− i + 5j + 7k  and parallell to the vector  3i − j + 7k  is  3x + 2y − z = 0.

7. Prove that ( ) ( )( ).a a a b a a b a × × × = ×  .

  8. If a, b, c  and  d  are coplanar vectors, then show that ( ) ( )× × × = 0a b c d .

 9. Show that ( ) ( ) ( )[ ]. .a b a c d a d a b c × × × =  .

10. Show that ( ) ( ).  + × + + a b c a b c  = 0.

 11. Find  λ  in order that the four points A(3, 2, 1),  B (4, λ, 5), C (4, 2, −2) and D(6, 5, −1) be coplanar.

12. Find the vector equation of  the  plane passing through the intersection of planes

r . (2i + 2j − 3k) = 7,  r . (2i + 5j + 3k) = 9  and through the point (2, 1, 3).

13. Find the equation of the plane passing through (a, b, c)  and parallel to the plane r . (i + j + k) = 2.

14. Find the shortest distance between the lines   r = 6i + 2j + 2k + λ(i − 2j + 2k)  and

r = −4i − k + µ(3i − 2j − 2k) .

15. Find the equation of the plane passing through the line of intersection of the planes
r . (i + j + k) = 1  and  r . (2i + 3j − k) + 4 = 0  and parallel to X-axis.

16. Prove that the four points ( )4 5 , , 3 9 4+ + − + + +i j k j k i j k  and 4 4 4i j k− + +  are coplanar.

17. If , ,a b c  are non-coplanar, then show that the vectors , ,a b b c c a− + +  are coplanar.

18. If , ,a b c  are the position vectors of the points A, B and C respectively, then prove that the vector

a b b c c a× + × + ×  is perpendicular to the plane of ABC∆ .

III. 1. Show that ( )( ) ( ) ( )× × × = ×.a b c c a c b c   and
( ) ( ) ( ) ( ) ( ) ( )× × + =. . . . .a b a c a b a c a a b c .

2. If  A  =  (1, −2, −1), B = (4, 0, −3), C = (1, 2, −1)  and  D = (2, −4, −5),  find the distance between
AB  and CD.

3. If 2 , 2 , 2a i j k b i j k c i j k= − + = + + = + − , find ( )a b c× × and |(a×b) × c| .

4. If  2 3 , 2a i j k b i j k= − − = + −  and 3 2c i j k= + − ,

verify that ( ) ( )a b c a b c× × ≠ × × .
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5. If 2 3 , 2a i j k b i j k= + − = − + , 4c i j k= − + −  and d i j k= + + , then compute

( ) ( )× × ×a b c d .

6. If  ( ) ( )2 2= 1, , = 1,A Ba, a b, b  and ( )2= 1,C c, c  are non−coplanar vectors and

2 3

2 3

2 3

1

1 0

1

+

+ =

+

a a a

b b b

c c c

, then show that 1 = 0+a b c .

7. If a, b, c are non-zero vectors, then ( . ) . . . 0× = ⇔ = = =a b c a b c a b b c c a .

8. If 2 3 , 2 , 2a i j k b i j k c i j k= − + = + + = + +  then find ( )a b c× ×  and ( )a b c× × .

9. If  1, 1, 2a b c= = =  and ( )× × + = 0a a c b  then find the angle between a and  c.

10. Let ( ), 1a i k b i j k= − = + + −x x  and ( )1c i j k= + + + −y x x y . . . . .  Prove that the scalar

triple product [ ]a b c  is independent of both x  and y.

11. Let 2 , 3b i j k c i k= + − = + . . . . .  If  a  is a unit vector then find the maximum value of  [ ]a b c .

12. Let , ,a i j b j k c k i= − = − = − ..... Find unit vector  d  such that [ ]. 0a d b c d= = .....

Key Concepts

� Concept of scalar product (or dot) of two non-zero vectors a and b containing angle  ‘θ’  is introduced

as |a| |b| cos θ which is geometrically equal to product of the magnitude of one of the vectors and the

projection of the other on the first vector.

� If  θ  is the angle between  a  and  b, then   cos θ  =  1 1 2 2 3 3

2 2
1 1

.

| | | |

+ +
=

∑ ∑
a b a b a b

a b

a b
a b

  where

a = a
1
 i + a

2 
 j  +  a

3
 k ,   b =  b

1 
i  +  b

2 
j  +  b

3
 k  in (i, j, k) system and

a . b  =      a
1
 b

1
   +  a

2
 b

2
  + a

3
 b

3
.

� Right handed and left handed system of vectors.  Definition of cross product of vectors a  and  b

as  a ×  b =  (|a| |b| sin θ ) n  where  a,  b  are non-zero and non-collinear vectors, θ  is the angle

between  a  and  b  and  n  is perpendicular to both  a  and  b such that (a, b, n) is a right handed

system.
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� Cross product is not commutative, infact for any two vectors a and b, it is proved that
b ×  a =  −  (a  ×   b).

� If  a =  a
1
i + a

2
 j + a

3
 k  and  b = b

1
i + b

2
 j + b

3
 k  then  a ×  b = 1 2 3

1 2 3

a a a

b b b

i j k

.

� If θ  is the angle between the vectors a  and  b,  then sin θ  =  
| | | |

×a b

a b
.

� While determining the angle between two vectors, considering a . b is always better.

� Introduced the concept of scalar triple product of three vectors  a, b  and  c  as
(a ×  b) . c  and explained the  (a ×  b) . c  is equal to ± V where ‘V’ is the volume of the
parallelopiped with a, b, c as coterminus edges according as (a, b, c) is a right handed system or a
left handed system and thus V is the numerical value of  (a ×  b) . c.

� Introduced the notation [a b c]  for  (a ×  b) . c  and proved that   [a b c] = [b c a] = [c a b] .

� If  a  =  a
1
i  +  a

2 
j  +  a

3
k, b = b

1
i  +  b

2
 j  +  b

3
k  and  c = c

1
i  +  c

2
 j  +  c

3
k  then

[a b c]  =  
1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

.

� A necessary and sufficient condition for three vectors  a, b, c  to be coplanar is that  [a b c]  =  0,

equivalently  
1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

  =  0.

� Volume of a tetrahedron with vertices A, B, C and D is  
1

6
 | [AB AC AD] |.

� Two lines are said to be skew lines if there is no plane containing both the lines. The shortest

distance between two straight lines  r = a  + t b  and  r = c + s d  is  | ( ) ( ) |

| |

− ×
×
.c a b d

b d
.

� Vector equation of the line passing through the point a and parallel to the vector b   is

(r − a)  ×  b  =  0.

� (a ×b)  ×  c  =  (a . c) b  − (b . c) a  and  a ×  (b ×  c)  =  (a . c) b  − (a . b) c.

� (a ×  b) . (c ×  d) = 
a .c a .d

b .c b .d
 and (a ×  b) ×  (c ×d) = [a c d] b − [b c d]a

        = [a b d] c − [a b c] d.
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Historical Note

             Vector Analysis came into existence during the fourth decade of 19th century.  Preceding the
advent of Vector Analysis three events merit mention.

(i) Discovery and geometrical representation of complex numbers.

(ii)   Leibnitz’s search for a geometry of position.

(iii)  The idea of parallelogram law of forces and velocities.

Josiah Willard Gibbs (1839 - 1903)  work on Vector Analysis was of major importance in pure
mathematics. Using the ideas of Hermann Grassmann (1809 −1877),  Gibbs produced a system more
easily applied than that of Hamilton.

During 19th century, while Grassmann’s  Hypercomplex numbers were hardly noticed, Hamilton’s
quaternion calculus fell flat in the mathematical world.  Except for Tait and Gibbs, the majority of the
scientists preferred to work with the old fashioned Cartesian methods.  Even as recently as 1930’s the
vector could hardly be said to have come into its domain.

Answers

Exercise 5(a)

  I. 1. 600 2.  3=λ
3. 1λ = 4.  3 4 4= − + +c i j k

5. 1 2
Cos

3 46
−  

  
6.  

1

2
λ =

7. (i)  2( ), 2 3+ +i j k , (ii)  2( ),+ + −i j k j k

8. .(4 7 4 ) 6+ − = −r i j k 9.  1 52
Cos

74 65
−  

  × 

II. 1.
1

(3 4 )
5

± +i j 2.    600 3.  29

4. ( ). 3 2 2 2− − =r i j k , Cartesian form : 3x − 2y − 2z − 2 = 0 and the distance of  this plane from

the origin is 
2

17
.

III.  2. ( )7 33± − −i j k

Exercise 5(b)

  I. 1. 9 2. 210 3. ( )2 2 5 11i j k− + +

4. p = 12 5. 0 6. 2 2+x y
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7. 6 6i j k− − − 8. ( )1
2

6
i j k± − − 9.

3

2

10. 3 11. 5 3 12.
41

2

13. ( )1
3 2 6

7
± − + −i j k 14.

3 3

2
 II. 2. − 54 3. 3 4 5 , 5 2i j k− − 5. 50 2

6. ( )2i j k± + + 7. ( )1
2

6
± + +i j k 9. ( )2 2± + −i j k

10. 25 11. ( )1
3

10
i j± +

III. 2. ( ) 2 4 4× × = + −a b c i j k

3. 16 50 4 , 5 4 9 ,× = − − + × = − − +a b i j k a c i j k

                               ( )× +a b c 21 54 13= − − +i j k

4. ( )1
5 2 2

3
+ +i j k 5. 1 7. 2

8. (i) 120 i + 304 j  +  424 k   (ii)  −80

Exercise 5(c)

   I. 1. 0 2. − 20

3. (i) 0, (ii) 29 67 16− +i j k ,    (iii) −  40 i + 62 j + 130 k

4. (i) 12,                 (ii)  − 12 5. 5 6.  t = 1

7.  p = 2 8. λ  =  ± 4 9. 1/6 10. 0

11. λ = − 3 12. λ = 12 13. 3 14. 1

15. 12 3       16.   0

II. 3.
2 2

3
4. 6 11.11.11.11.11. λ = 5

12. r . (38i + 68j + 3k) = 153

13. x + y + z = a + b + c 14. 9 15. y − 3z + 6 = 0

III. 2. 4 / 3 3. 9 6 3 , 174− − −i j k 5. 5 114

8. 5 14, 54 9. 300  or  1500 11. 59

12. d  = ( )1
2

6
± + −i j k
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Introduction

In the earlier classes we have constructed in

geometry, triangles, quadrilaterals, pentagons, hexagons

and so on.  All these figures are generally called as polygons

with  n  sides.  When  n = 5,  it is called a pentagon,  when

n = 6,  it is called a hexagon,  when n = 10  it is called a

decagon etc.  On the same lines, when  n = 3, we can call

the polygon as  ‘trigon’  (instead of ‘triangle’). The word

‘trigonometry’ can be read as  ‘trigon-o-metry’.  This word

is derived from two Greek words

        (i)  trigonon    (ii) metron

The word  ‘trigonon’  means a triangle and the word

‘metron‘ means a measure.  Thus trigonometry is the

science that deals with measurement of triangles.

Trigonometry has great use in measurement of areas,

heights,  distances etc.

Varahamihira
(505 - 587)

Varahamihira, also called Mihira,
was an astronomer-mathematician,
born in Ujjain. Varahamihira’s
picture is found in the Indian
Parliament along side  Aryabhatta’s,
of whom he was a follower.  He was
considered to be one of the nine
jewels (Navaratnas) of the court of
legendary king Vikramaditya.
Varahamihira discovered Pascal’s
triangle and worked on magic
squares.  His most famous treatise
is ‘Pancha Siddhantika’ (575 A.D.).

“The acharya (master) title (in astronomy) is offered
on him  who has  acquired sufficient knowledge of
Trigonometry”

- Bhaskaracharya
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It has many applications in almost all branches of science in general and in Physics and Engineering

in particular.

To study properties of triangles, first we should learn properties of the angles of a triangle.

Though in geometry the angles of a triangle or a quadrilateral etc. are always less than two right angles,

in the study of trigonometry, we do not impose any restriction on the magnitude of an angle.  It can be

any real number (positive or negative or zero).

According to the great mathematician  ‘Euclid’,  angle is  ‘the inclination of two lines intersecting

at a point’.  We can formally define angle as follows.

An ‘angle’ is the union of two rays having a common end

point in a plane.  The amount of rotation in the plane that is necessary

to bring one ray into the position of the other ray is called the

‘magnitude of the angle’.  (see Fig. 6.1).  An angle is usually

denoted by  θ, α  etc.

In figure 6.1  angle AOB  is θ.  OA
����

 is called the initial side

and OB
����

 is called the terminal side of the angle  θ.   In the process of

rotation, OB
����

 will be collinear with OA
����

 but will have direction

opposite to that of OA
����

.  At this instant the angle formed by the two

rays is called a positive straight angle which is shown in Fig. 6.2.

A positive ‘right angle’ is defined as half of a positive straight

angle which is shown in Fig. 6.3.

We have learnt, in the previous classes, that there are three

systems for the measurement of angles.

 1. Sexagesimal system or British system

 2. Centisimal system or French system

 3. Circular measurement

Fig. 6.2

Fig. 6.1

Fig. 6.3

A

B

O

AB

A

B

Right Angle

Straight Angle

Angle  θ

O

O
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In the Sexagesimal system

1 right angle = 90 degrees (900)

1 degree = 60 minutes ( 60′ )

1 minute = 60 seconds ( 60′′ )

In the Centisimal system

1 right angle = 100 grades (100g)

1 grade = 100 minutes (100′ )

1 minute = 100 seconds (100′′ )

In the circular measure,  one radian  is defined as the amount of the angle subtended by an arc

of length ‘r’ units of a circle of radius ‘r’ units at the centre of that circle.  This angle is independent of the

size of the circle (i.e., the radius of the circle).  One radian is denoted by 1C.  In this measure

2 right angles = πC

Though we have used the same name  ‘minute‘ (or ‘second’) in both ‘sexagesimal system’ and

‘centisimal system’, it can be easily observed that they are not same.

1 minute in the sexagesimal system = 
1

90 60
th

×
 of  a right angle where as

1 minute in the centisimal system = 
1

100 100
th

×
 of a right angle.

The conversion from one system to the other can be easily done using the equation :

180 200

D G R

π= =    .

where D, G, R respectively denote degrees, grades and radians.

For example, to convert 300 into grades and radians, put D = 30 in the above equation and
find G, R as follows:

180 200

30 G R

π= = .         Hence  G = 
100

3
,  R = 

30

180

π
 = 

6

π

             Thus 300  =  
100

3 6

g C

= π
.

6.1 Trigonometric ratios - variation - Graphs and periodicity

A ratio is  
a

b
  where  a, b are two real numbers and  b  is non-zero.  If we take a right angled triangle

with  θ  as one of its acute angles, using the lengths a, b, c  of the three sides of the triangle (see Fig. 6.4) we

can form six ratios, namely, 
b a b c c a

, , , , ,
c c a b a b

.
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These six ratios are called the trigonometric ratios of the angle  θ.

Each of these ratios is given a name  (for example,  b

c
  is called  sine θ,

a

c
 is called  cosine θ, 

b

a
 is called tangent  θ  and so on).  Now we give

the definition of these trigonometric ratios formally in the following.  Later,

we observe that this definition is independent of the triangle.

6.1.1  Definition

Let  θ  be a real number and  0 2≤ ≤θ π   and  0r > .   Consider a rectangular coordinate

system with OX, OY as axes.   Draw a circle with centre O and radius  r.   Choose a point  P  on the

circle such that the line OP makes an angle  θ  radians with  OX
→  (positive X-axis) measured in

anti-clock wise direction (positive direction).   See the figures below.

Fig. 6.5(i)

Fig. 6.4

Fig. 6.5(ii)

Fig. 6.5(iii) Fig. 6.5(iv)

Y

M XO

P(x, y)

M

Y

X

P(x, y)

O

Y

OM X

P(x, y) P(x, y)

Y

X

M

O

θ
r θ

r

θ

r

θ

r
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Let (x,  y)  be the coordinates of  P  with reference to the coordinate axes  OX  and  OY.  First
observe that

0 � �y = ⇔ =    or   � π=

   0 �
2

x
π= ⇔ =   or   

3
�

2

π= .

We define the six trigonometric ratios of  θ  as follows :

Sine  of  θ    =
y

r

Cosine of   θ    =
x

r

Tangent  of   θ    =
y

x
   when  0x ≠   or  

3
�

2 2
,

π π ∉  
 

Cotangent of   θ    =
x

y    when  0y ≠   or  { }� �, π∉

Secant of   θ    =
r

x
   when  0x ≠   or  

3
�

2 2
,

π π ∉  
 

Cosecant of  θ    =
r

y    when 0y ≠    or   { }� �, π∉

First we observe that these trigonometric ratios are independent of the choice of  r.  Let us take two

circles with radii  1r   and  2r   with  1 2r r≠ .   We can take 1 2r r< .

Let  P
1 ( )1 1x , y   be a point on the circle with radius  r

1
  and centre ‘O’  such that angle 1XOP �=

and  P
2
 ( )2 2x , y   be a point on the circle with radius  r

2
 and centre  ‘O’ such that angle  2XOP �= .    Draw

perpendiculars 1 1P M  and  2 2P M   from  P
1
  and  P

2
 respectively to OX.   Then the triangles OM

1
P

1
 and

OM
2
P

2
 are similar (two right angled triangles with same angles � �

2 2
, ,

π π− ).   Hence the corresponding

sides are proportional.

Fig. 6.6(i) Fig. 6.6(ii)

Y

XM
1

P
1
(x

1
, y

1
)

O

Y

XM
2

P
2
(x

2
, y

2
)

O

θ

r
1

θ

r
2
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       Thus we get 1 1 1 1

2 2 2 2

OM M P OP

OM M P OP
= =   or  1 1 1

2 2 2

x y r

x y r
= = .

         Hence we get 1 2 1 2 1 2

1 2 1 2 1 2

y y x x y y
; ;

r r r r x x
= = =  so on.

Thus the above definitions of the six trigonometric ratios of  θ  are independent of the choice of  r

(or the size of the triangle).

The six trigonometric ratios of  θ  defined above are briefly written as sin �� ��� ��

tan �� ��� �� ��� �� ����� �  respectively.  From these definitions we can observe the following :

6.1.2  Note

  1.  sin � � � � �y= ⇔ = ⇔ =   or  � π= .

  2.  cos� � � �
2

x
π= ⇔ = ⇔ =   or  

3
�

2

π= .

  3.  If 0x ,≠   then sin �
tan �

cos �
=   and  

1
sec �

cos �
= .

  4.   If 0y ,≠  then 
cos �

cot �
sin �

=   and 
1

cosec �
sin �

= .

  5.  In triangle OMP, from Pythagoras theorem,  2 2 2x y r+ = .

         So  
2 2

1
x y

r r
   + =      

.

         Hence        2 2cos � �	
 � �+ =

If 
3

�
2 2

,
π π ∉  

 
, then cos � �≠  and hence on dividing both sides by 2cos � , we get

       2 21 tan � ��� �+ =

Similarly,  if  { }� �, π∉ , then we get

      2 21 cot � ����� �+ =

  6. From the definitions of the six trigonometric ratios given in 6.1.1 we can make the following important
observations.

(i) If P(x, y) is in the first quadrant  (but not on the coordinate axes), that  is,  if  0
2

π< θ < , then

x > 0  and  y > 0.   Hence all the six trigonometric ratios are positive. (see Fig. 6.5(i)).



Trigonometric Ratios upto Transformations 225

(ii) If P(x, y) lies in the second quadrant (but not on the coordinate axes), that is, if 
2

π < θ < π, then

x < 0  and  y  > 0.  Hence  sin θ  and consequently  cosec θ  are positive and other trigonometric
ratios are negative (see Fig. 6.5(ii)).

(iii) If P(x,  y) lies in third quadrant 
3

�
2

π π < <  
,  then  tan θ  and   cot θ  are positive and others are

negative (see Fig. 6.5(iii)).

(iv) If  P(x, y) lies in fourth quadrant 
3

2
2

π < θ < π  
,  then  cos θ  and sec θ are  positive and others

are negative (see Fig. 6.5(iv)).

In all the above 4 cases  P does not

lie on coordinate axes, that is,

[ ]� � �,∈ π   
3

0 2
2 2

, , , ,
π π π π 

 
.

The above facts can be easily

remembered by the adjacent

diagram.

The trigonometric ratios which are positive in various quadrants can also be remembered as follows.

   I   II  III   IV

All Silver Tea Cups

(all sine tan cos)

It is enough to know about the properties of sine,  cosine and tangent of the angle  θ  in the four

quadrants as the remaining trigonometric ratios are their reciprocals only.

So far, we have defined trigonmetric ratios only when [ ]� � �,∈ π .

That is we have taken subsets of [0, 2π] as domains for these trigonometric ratios.

Now we shall extend the domains of definitions of the trigonometric functions sin �� ��� � ...  to the
whole real number system.

6.1.3  Definition

For any real number  x,  let  n  be the largest integer such that 2n x.≤π   (That is,  n  is the

integral part of  
2

x

π ).  Write  � �x n .= − π    Then 0 � �≤ ≤ π .  We define

           ( )sin sin � �	
 �x x n= = − π
    and  ( )cos cos � ��� �x x n= = − π

sine > 0
(Silver)

ALL > 0
(All)

tangent > 0
(Tea)

cosine > 0
(Cups)

O X

Y  
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Note that, for any 0 � �π≤ <  and for any integer  n,  we have

 ( )sin 2 � �	
 �nπ + =

and  ( )cos 2 � ��� �nπ + =  etc.

For example, 
13 17

sin sin , cos cos
6 6 4 4

π π π π = =  
 etc.

If  the  angle ( )� � � �π≤ <  is  measured  in  anti-clockwise direction (starting from  the  initial

side OX), it is defined as positive angle and if the same angle θ is measured in clockwise direction, it is defined

as negative angle and it is identified with −θ. (see the Fig. 6.7.

     The trigonometric ratios of ‘− θ’  are defined as follows.

   ( ) ( )sin � �	
 � �
y

r

−− = − =π

     sin�
y

r
 = − = −  

  ( ) ( )cos � ��� � � ��� �
x

r
π− = − = = .

   If  
3

�
2 2

,
π π ∉  

 
,  then ( )tan � ��
 �− = − .

6.1.4  Definition

The angles 
3

0 2
2 2

, , , ,
π ππ π have their terminal side along either X-axis  or Y-axis.  Hence

these angles are called  “Quadrant angles”.

We have learnt the values of the trigonometric ratios of the angles  
6 4 3

, ,
π π π

 in earlier classes.   The

values of the trigonometric ratios of these angles and the quadrant angles are given in the following table.

Table 6.1

0C(00)
C

�

6
(300)

C
�

4
(450)

C
�

3
(600)

C
�

2
(900) πππππC(1800)

C3�
2

(2700) 2πππππC(3600)

sin θ
0

0
4

= 1 1

2 4
=

1 2

42
= 3 3

2 4
= 4

1
4

= 0 −1 0

cos θ
4

1
4

= 3 3

2 4
=

1 2

42
= 1 1

2 4
= 0

0
4

= −1 0 1

tan  θ 0
1

3
1 3 Not defined 0 Not defined 0

Fig. 6.7

Y

X

θ

r

−θ

r

2π − θ

Angle (θθθθθ)
Trigonometric

ratio



Trigonometric Ratios upto Transformations 227

We can put any real number α  in the form  �
2

nπα = +   as well as �
2

mπα = −  for some

� �
2

,
π ∈   

 and for some integers  n  and m.   Hence, in the following table we give the change that occurs

in a trigonometric ratio when applied on the angles in the form � � �
2 2

n
,

π π  ± ∈     
. When � �=  or 

2

π
,

some of the trigonometric ratios are undefined and hence we give their values separately.

Table 6.2

Angle (ααααα)
Trigonometric ratio

sin ααααα cos ααααα tan ααααα

nπ − θ (−1)n+1 sin θ (−1)n cos θ − tan θ

nπ + θ (−1)n sin θ (−1)n cos θ tan θ

(2n + 1) 
2

π
 − θ (−1)n cos θ (−1)n sin θ cot θ

(2n + 1) 
2

π
 + θ (−1)n cos θ (−1)n+1 sin θ − cot θ

The following useful observations can be made from the above table.

1. If a trigonometric ratio is applied on ( )�
2

n n
π ± ∈ Z , then

(i) When n is even, there is no change in the trigonometric ratio (sign may be + or −).

(ii) When  n  is odd, the change in the trigonometric ratio (sign may be + or −)  is as indicated below

tangent cotangen ssine co ecantsine; cosecantt; ↔↔↔ .

2. Whether we get  +  or  −  sign  in the answer, should be decided by taking into consideration the quadrant

in which the  angle �
2

n
π ±  lies.

Note: We usually take angles in radians.  In case, we take an angle θ in degrees we write θ0.  If nothing is
mentioned we assume that the angle is given in radians.

Example :  Find the values of

(i)  sin  2100 (ii) cos 5850 (iii) tan  4800

(iv) sec 5100 (v) cosec 7500 (vi) cot 7650

Solution

   (i)   ( )0 0 0 0 1
sin 210 sin 180 30 sin 30

2
= + = − = − .

          (or)  ( )0 0 0 0 1
sin 210 sin 270 60 cos 60

2
= − = − = − .
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  (ii)   ( ) ( )( )0 0 0 0 0 0 1
cos 585 cos 540 45 cos 3 180 45 cos 45

2
= + = + = − = − .

 (iii)   ( ) ( )( )0 0 0 0 0 0tan 480 tan 450 30 tan 5 90 30 cot 30 3= + = + = − = − .

 (iv)   ( ) ( )( )0 0 0 0 0 0 2
sec 510 sec 450 60 sec 5 90 60 cosec60

3
= + = + = − = − .

  (v)   ( )( )0 0 0 0cosec 750 cosec 2 360 30 cosec30 2= + = = .

 (vi)   ( )( )0 0 0 0cot 765 cot 2 360 45 cot 45 1= + = = .

Now we list the changes that occur in various trigonometric ratios when applied on angles of the form

�
2

nπ ± ,  where  � �=   or  2/π   and  n ∈ Z .

   (i)  sin 0 tann nπ π= =  and  hence  cosec , cotn nπ π are undefined.

  (ii)  ( )cos 1 sec
n

n nπ π= − = .

 (iii)  ( ) ( )cos 2 1 0 cot 2 1
2 2

n n
π π+ = = +  and hence ( ) ( )sec 2 1 , tan 2 1

2 2
n n

π π+ +   are  undefined.

 (iv)  ( ) ( ) ( )sin 2 1 1 cosec 2 1
2 2

n
n n

π π+ = − = + .

6.1.5  Definition

If  θ  is any angle then �
2

−π
  is called its   complement   and �−π   is called its  supplement.

In other words, two angles  �� φ  are said to be  complementary angles  if  �
2

+ = πφ   and

supplementary angles   if  � + =φ π .   For example, the angles 
6 3

,
π π

 are complementary

angles and  
5

6 6
,

π π
 are supplementary angles.

6.1.6  Solved Problems

1. Problem:  Find the values of

      (i)  
5

sin
3

π
   (ii) ( )0tan 855   (iii) sec 13

3

π 
  

Solution

(i)
5

sin
3

π
  =  

3
sin 2 sin

3 3 2

π ππ − = − = −  
.
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(ii) ( )0tan 855   = ( ) ( )( )0 0 0 0 0tan 900 45 tan 5 180 45 tan 45 1− = − = − = − .

(iii)  sec 13
3

π 
  

 = ( )sec 4 sec 2 2 sec 2
3 3 3

π π ππ π   + = + = =      
.

2. Problem:  Simplify

(i)
13

cot
2

π θ −  
(ii)  tan 23

3

π −  
Solution

(i)
13

cot
2

π θ −  
 = 

13 13
cot cot

2 2

 π  π   − − θ = − − θ        

      cot 6 cot
2 2

 π  π   = − π + − θ = − − θ        
      =  − tan θ.

(ii)      tan 23 tan 23
3 3

π π   − = −      

      
5

tan 6
3

π = − π +  

      
5

tan tan 2
3 3

π π   = − = − π −      

             tan 3
3

π= = .

3. Problem:  Find the value of  2 2 2 24 6 9
sin sin sin sin

10 10 10 10

π π π π+ + + .

Solution: 2 2 2 24 6 9
sin sin sin sin

10 10 10 10

π π π π+ + +

=
2 2 2 2sin sin sin sin

10 2 10 2 10 10

π π π π π ππ       + − + + + −              

= 2 2 2 2sin cos cos sin
10 10 10 10

π π π π+ + +

= 2  ( since, for any angle θ, 2 2sin � ��� � �+ = ).

4. Problem:  If  4
sin �

5
=   and  θ  is not in the first quadrant, find the value of cos θ.

Solution:  sin θ  is  positive and  θ  is not in the first quadrant. Hence θ  is in the second quadrant  and therefore
cos θ  <  0.
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We have
   2 2cos � �	
 � �+ =    (see note 6.1.2 (5))

 
2 2 16 9

cos � � �	
 � �
25 25

⇒ = − = − =

cos� � � �⇒ = ±
  ( )cos � �� � �	
�� ��� � �∴ = − < .

5. Problem:  If  
2

sec� ��
 �
3

+ = ,  find  the value of sin �   and  determine the quadrant in which θ lies.

Solution:  We know that 2 2sec � ��
 � � �− .

                      So  
1 3

sec� ��
 �
sec� ��
 � �

− = =
+

                                 ( ) ( ) 2 3
sec� ��
 � ���� ��
 �

3 2
∴ + + − = +

    
13 13

2sec� ����
6 12

⇒ = ⇒ = .

Again,   ( ) ( ) 2 3 5
sec� � ��
� ���� ��
�

3 2 6

−− − = − =

           
5 5

2 tan� ��
 � �
6 12

− −⇒ = ⇒  and 
5 13 5

sin � �
12 12 13

− −= ÷ .

Since  sec θ  is +ve  and  tan θ  is −ve,  θ  lies in the IV quadrant.

6. Problem:  Prove that 
2 3 7...cot . cot . cot cot 1

16 16 16 16

π π π π= .

Solution:  
2 3 7...cot cot cot cot

16 16 16 16

π π π π
. .

7 2 6 3 5 4
cot cot cot cot cot cot cot

16 16 16 16 16 16 16

π π π π π π π     =           
. . . . . .

2 2
cot . cot cot cot

16 2 16 16 2 16

      = − −            
. .

π π π π π π
.

             
3 3

cot cot cot
16 2 16 4

  −    
. .

π π π π

2 2 3 3
cot tan cot tan cot tan 1

16 16 16 16 16 16

π π π π π π     =           
. . . . .

1 1 1 1 1. . . .= =
7. Problem:  If  3sin � ����� �+ = ,  then find the value of 4sin � �����− .

Solution:  Given that 3sin � ����� �+ =
write  4sin � ����� a− =
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Squaring and adding we get ( ) ( )2 2 2 23sin � � ���� ��	
 � ����� � a+ + − = +
2 2 2 225 9sin � ����� � ���	
� ���� ���	
 �a⇒ + = + + + 29cos � ���	
 �����+ −

      2 225 sin � �� ��� � ��= + = .

2 0 0a a⇒ = ⇒ = .

      4 sin � � ��� � �∴ − = .

8. Problem:  If  cos� �	
 � � ��� ��+ =  prove that cos � �	
 � � �	
 �− = .

Solution:  Given cos � �	
 � � ��� �+ = ,  then  ( )2 1 cos� �	
 �− = .

On multiplying both sides by ( )2 1+ , we get

( )( ) ( )2 1 2 1 cos � � � �	
 �+ − = +

cos � � �	
 � �	
 �⇒ = +
   cos � �	
 � � �	
 �⇒ − = .

9. Problem:  Find the value of  ( ) ( )6 6 4 42 sin � ��� � � �	
 � ��� �+ − + .

Solution:  ( ) ( )6 6 4 42 sin � ��� � � �	
 � ��� �+ − +

( ) ( ){ } ( ) ( ){ }3 3 2 22 2 2 22 sin � ��� � � �	
 � ��� �= + − +

( ) ( ){ }32 2 2 2 2 22 sin � ��� � ��	
 � ��� � �	
 � ��� �= + − +

      − 3 ( ){ }22 2 2 2sin � ��� � ��	
 � ��� �+ −

( ) ( )2 2 2 22 1 3sin ���� � � � ��	
 � ��� �= − − −

1= − .

10. Problem:  Prove that  ( )2 2 2 2 2tan � ��� � ��� � ����� � ��� � ����� �+ = + = . .

Solution:    ( )2 2 2tan� ��� � ��
 � ��� � � ��
� ��� �+ = + +

       2 2tan � ��� � �= + +

       ( ) ( )2 21 tan � � ��� �= + + +

       2 2sec � ����� �= + .

 Again,  2 2
2 2

1 1
sec � ����� �

cos � �	
 �
+ = +

       
2 2

2 2
2 2 2 2

sin � ��� � �
sec � ��� �

cos � �	
 � ��� � �	
 �

+= = = .
. .

ec .
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11. Problem: If cos� �� ��
 � �	
 � m> + =  and tan � �	
 � n− = , then show that 2 2 4m n m n− = .

Solution:  Given that tan � �	
 �m = +   and  tan � �	
 �n = − .

         By adding, we get 2 tan �m n+ = .

         By subtracting,  we get  2 sin �m n− = .

         On multiplying these two equations, we get  2 2 4 tan� �	
 �m n− =

( ) ( )2 2 2 24 tan � �	
 � � ��
 � � ��� � �	
�� ���� �= = − >.

    2 24 tan � �	
 � � mn= − = .

12. Problem:  If  0tan 20 ,λ= then show that  
0 0 2

0 0

tan 160 tan 110 1

1 tan 160 tan 110 2

λ
λ

− −=
+ .

.

Solution:   L.H.S.
0 0

0 0

tan 160 tan 110

1 tan 160 tan 110

−=
+ .

( ) ( )
( ) ( )

0 0 0 0

0 0 0 0

tan 180 20 tan 90 20

1 tan 180 20 tan 90 20

− − +
=

+ − +.

       ( )( )
0 0 2

0 0

1
tan 20 cot 20 1

1 1 21 tan 20 cot 20

λ λλ
λ

− +− + −= = = =
++ − −

R.H.S.

Exercise 6(a)

I.1. Convert the following into simplest form

(i) tan (θ − 14π) (ii)  cot 
21

2

π − θ  
(iii)  cosec (5π + θ) (iv)  sec (4π − θ)

2. Find the value of each of the following

(i) sin (−4050) (ii) cos 
7

2

π −  
(iii)  sec(21000) (iv) cot (−3150)

3. Evaluate

(i) cos2450 + cos2 1350 + cos2 2250 + cos2 3150

(ii) 2 2 22 5 3
sin cos tan

3 6 4

π π π+ −

(iii) cos 2250 − sin 2250 + tan 4950 − cot 4950

(iv) (cos θ − sin θ)  if  (a) 7

4

πθ =   (b) 
11

3

πθ =
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4. (i) If sin 1

3
θ = −  and  θ does not lie in the third quadrant,  find the values of

(a)  cos θ (b)  cot θ

(ii) If  cos θ = t   (0 < t < 1)   and  θ does not lie in the first quadrant,  find the values of

(a)  sin θ  (b)  tan θ.

(iii) Find the value of  sin 3300 . cos 1200 + cos 2100 . sin 3000

(iv) If cosec θ  + cot θ = 
1

3
,  find cos θ  and determine the quadrant in which θ lies.

5. (i)  If  sin α + cosec α = 2, find the value of sinn α + cosecnα,  n ∈ Z.

(ii)  If  sec θ + tan θ = 5, find the quadrant in which  θ lies and find the value of sin θ.

II.

1. Prove that

(i)   
cos( A) . cot A cos( A)

2 cos A
3

tan( A) tan A sin(2 A)
2

π π − + −   =
π π + + π −  

.

(ii)   4

3
sin(3 A)cos A tan A

2 2
cos A

13
cosec A sec(3 A)cot A

2 2

π π   π − − −      
=

π π   + π + −      

.

(iii)  sin 7800 sin 4800 + cos 2400 . cos 3000 = 
1

2
.

(iv)
0 0 0

0 0

sin150 5cos300 7 tan 225
2

tan135 3sin 210

− + =−
+

.

(v)
3 5 7 9

cot .cot .cot .cot .cot 1
20 20 20 20 20

π π π π π          =                  
.

2. (i) Simplify

11 35 7
sin tan sec

3 6 3
5 7 17

cos cosec cos
4 4 6

π π π     − −          
π π π     

          

.

(ii) If  tan 200 =  p,  prove that  
0 0 2

0 2

tan 610 tan 700 1

tan 560 tan 470 1

p

p0
+ −=
− +

.

(iii) If  α, β are complementary angles such that b sin α = a,  then find the value of
(sin α cos β − cos α sinβ).
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  3. (i) If  cos A = cos B = 
1

2
−  and A does not lie in the second quadrant and B does not lie in the third

quadrant,  then find the value of   4sin B 3tan A

tan B sin A

−
+

.

(ii) If 8 tan A =  −15  and 25 sin B = −7 and neither A  nor B is in the fourth quadrant,  then show that

sinA cos B + cos A sin B = 
304

425

−
.

(iii) If A, B, C, D are angles of a cyclic quadrilateral,  then prove that

(a)  sinA − sinC = sin D − sin B  and

(b) cos A + cos B + cos C + cos D = 0.

  4. (i) If  a cos θ − b sin θ = c, then show that  a sin θ + b cos θ =  2 2 2a b c± + − .

(ii) If  3 sin A + 5 cos A = 5,  then show that 5 sin A − 3 cos A = +3.

(iii) If  tan2 θ =  (1 − e2), show that sec θ + tan3 θ . cosec θ =  (2 − e2)3/2.

III.
1. Prove the following:

(i) (tan sec 1) 1 sin

(tan sec 1) cos

θ + θ − + θ=
θ − θ + θ

.

(ii) (1 + cot θ − cosec θ)(1 + tan θ + sec θ) = 2.

(iii) 3(sin θ − cos θ)4 + 6(sin θ + cos θ)2 + 4(sin6 θ + cos6 θ) = 13.

2. Prove that

(i) (sin θ + cosec θ)2 + (cos θ + sec θ)2 − (tan2θ + cot2 θ) = 7.

(ii) cos4α + 2 cos2α 
4

2

1
1 (1 sin )

sec
 − = − α α 

.

(iii)
( )
( )

2

2

1 sin cos 1 cos

1 cos1 sin cos

+ θ − θ − θ=
+ θ+ θ + θ .

(iv) If  2sin
,

(1 cos sin )
x

θ =
+ θ + θ

  then find the value of   
(1 cos sin )

(1 sin )

− θ + θ
+ θ

.

3. Eliminate θ from the following:

(i) x = a cos3 θ ;  y = b sin3 θ

(ii) x = a cos4 θ ;  y = b sin4 θ

(iii) x = a(sec θ + tan θ);  y = b (sec θ − tan θ)

(iv) x = cot θ + tan θ ;      y = sec θ − cos θ
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6.1.7   Definition (Domain, Range and Graph of a function)

Let  A, B  be two sets and A Bf : →  be a function.   Let us recall that  A  is called the

domain of  f  and  B  is called the codomain of   f   and that the  set  { }( ) | Af x x∈   is called the

range   of  f  (range  of   f   is always  a subset of the codomain of  f ).   The subset

( )( ){ }Ax, f x x∈   of  A × B   is called the graph of the function  f .

6.1.8   Definition (Periodic function, Period)

Let  E ⊆ R   and  Ef : → R   be a function.  Then  f  is called a  ‘Periodic function’  if

there exists a positive real number ‘p’  such that

  (i)  ( + ) Ex p ∈   for all Ex ∈    and

 (ii)  ( ) ( )+f x p f x=   for all  Ex ∈ .

If  such a positive real number  ‘p’  exists,  then it is called ‘a period’  of  f.

It can be easily observed that if Ef : → R   is a periodic function  and  ‘p’  is a period of  f,

then for any positive integer  n,  we get

   (i)  ( )x n p E+ ∈   for  all  Ex ∈   and     (ii)  ( ) ( )+f x n p f x=   for all Ex ∈  .

Hence  ‘np’  is also a period of   f.

If  : Ef → R   is a periodic function and  if there exists smallest positive real number  p  such

that  ( ) ( )+f x p f x=    for all Ex ∈  then ‘p’  is called  ‘the period’  of  f.

It can be noted that a function  f  may be periodic without having  ‘the period’.   For example,  if we

take any constant function  : Ef →R .  (That is  ( ) =f x k   for all x ∈ R ),  then any positive real number
is a period  of   f   but  f  does not have  the period.

For  any real number  θ,  we have   observed that  θ  and  2 �π +   have same trigonometric ratios

(see definition 6.1.3) and hence all trigonometric functions ( ) ( )( )sin , cos .f x x f x x etc= =  are periodic.
Now we find  the periods  of the trigonometric functions.

6.1.9 Theorem

The sine function is periodic and  2π   is  the period.

Proof :  Define   f (x)  = sin x  for all  ∈ Rx .  Then

    ( ) ( ) ( )2 sin 2 sinf x x x f xπ π+ = + = =   for all  ∈ Rx .

Hence   ( ) sinf x x=   is a periodic function and 2π is a period  of  f.

Suppose 0 2k π< <   and  k  is a period of  f.   Then

( ) ( )f x k f x+ =   for all x ∈ R .    ... (1)
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In particular,   ( ) ( )2 2f k k f kπ π− + = −   (by taking  2x kπ= − )

             Thus  ( ) ( )2 2f k fπ π− = .

That is,            ( )sin 2 sin 2 0kπ π− = = .                ... (2)

Since  0 2k π< < ,  we get  0 2 2kπ π< − <   and  hence  we get  2 kπ π− =  from  (2).

Thus  k π= .  Now

 1 sin sin
2 2

π π = = +  
k   (taking 

2
x

π =  
  in  (1))

3
sin

2

π=     (since  k π= )

 =  − 1,  a  contradiction.

Thus  2π  is the least positive real number such that ( )sin 2 sinx xπ+ =   for all ∈ Rx .   Hence

2π  is  the period  of  f (x) = sin x.

We can prove the following theorem similarly.

6.1.10  Theorem

  1.   The function   f (x)  =  cos x   is periodic and  2π   is the period.

  2.   The function   f (x)  =  tan x is  periodic  and  π  is the period.

     While finding the period of a  periodic function,  the following points will be useful.

6.1.11 Note

  1. If  f  is periodic,  then so is  λ f , for any scalar  λ.

  2. Let  : →R Rf   be a periodic function and  p  be a period of  f.   Let  a, b, c  be real constants such

that  0a ≠ .  Then the function  : →R Rg   defined by ( ) ( )g x f ax b c= + +   for all ∈ Rx  is

also periodic and  
p

a
  is a period of  g.   Further,  if  p  is the period of  f,  then  

p

a
  is the period of  g.

  3. Let  : A → Rf ,  : B → Rg   be two periodic  functions,  p
1
  be a period of  f  and  p

2
  be a period

of  g.   Let  p  be a common integral  multiple of  p
1
  and  p

2
  and  C A B.= ∩ .  Then,  for any Cx ∈ ,

we have ( ) Cx p+ ∈ .  Now  f g , f g+ −   and   f g  are all periodic and  p  is  a period  of each

of them.  If  ( ) 0g x ≠   for  all C∈x , then  
f

g
  is also periodic and  p  is  a period   of  

f

g
.

6.1.12  Example
Find the period of the function  f  defined by

  (i)   ( ) ( )sin 5 3f x x= +    for all ∈ Rx

 (ii)   ( ) [ ]f x x x= −   for all  ∈ Rx ,  where [x]  =  integral  part of  x.



Trigonometric Ratios upto Transformations 237

Solution

  (i) ( ) ( )sin 5 3f x x= + .  We know that the function  ( ) sing x x=   for all ∈ Rx ,  has the period

2π .  Now  ( ) ( )5 3f x g x= + .  Hence by note  6.1.11(2) above,  we get that  f  is periodic and the

period of  f  is  
2 2

5 5

π π= .

 (ii) ( ) [ ] [ ]{ } [ ] ( )1 1 1 1 1f x x x x x x x f x+ = + − + = + − + = − =

∴   f   is a periodic function and 1 is a period of  f,  if  0 1λ< < .

Take 
1

2
x

λ−= . Then 0 ( ) 1x< + <λ . Therefore, [ ] [ ]0x xλ= = + .  Now

( ) [ ]f x x x xλ λ λ λ+ = + − + = +   and  ( ) [ ]f x x x x= − = .    Thus

( ) ( )f x f xλ + ≠ .

Hence  1  is the period  of  f .

6.1.13  Variation of trigonometric ratios

  (i) Variation of  sin x. (Fig 6.8)

As  x  increases  from  0  to  π/2     ,  sin  x   increases  from  0  to  1

As  x  increases  from  π/2  to  π     ,  sin  x   decreases  from  1  to  0

As  x  increases  from  π  to  3π/2   ,  sin  x   decreases  from  0  to  −1

As  x  increases  from  3π/2  to  2π ,  sin  x   increases  from  −1  to  0

(ii) Variation of  cos x. (Fig 6.9)

As  x  increases  from  0  to  π/2     ,  cos  x   decreases  from  1  to  0

As  x  increases  from  π/2  to  π     ,  cos  x   decreases  from  0  to  −1

As  x  increases  from  π  to  3π/2   ,  cos  x   increases  from  −1  to  0

As  x  increases  from  3π/2  to  2π ,  cos  x   increases  from  0  to  1

(iii) Variation of  tan x. (Fig 6.10)

As  x  increases  from  0  to  π/2     ,  tan  x   increases  from  0  to  ∞
As  x  increases  from  π/2  to  π     ,  tan  x   increases  from  −∞   to  0

As  x  increases  from  π  to  3π/2   ,  tan  x   increases  from  0  to  ∞
As  x  increases  from  3π/2  to  2π ,  tan  x   increases  from  −∞   to  0

Similarly, we can obtain the variations of  cosec , secx x  and cot x .  These variations can be

easily understood from the graphs of these trigonometric functions given in  6.1.15.
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6.1.14    Domain and Range of trigonometric functions

If we define ( ) sinf x x= ,  then it is called a trigonometric function corresponding to the trigonometric

ratio sine.   Similarly, the trigonometric functions corresponding to the other trigonometric ratios can be
defined.   The domain and range of each of these trigonometric functions are given in Table 6.3.

Table 6.3

Trigonometric function              Domain ( x ) Range ( y )

y = sin x R  [-1, 1]

y = cos x R [-1, 1]

y = tan x R  ( )2 1
2

n n
 

+ ∈ 
 

Z
π

R

y = cot x R  { }n n ∈ Zπ R

y = sec  x R  ( )2 1
2

n n
 

+ ∈ 
 

Z
π

 ( ] [ )1 1, ,− ∞ − ∪ ∞

y = cosec  x R { }n n ∈ Zπ ( ] [ )1 1, ,− ∞ − ∪ ∞

6.1.15    Graphs of trigonometric functions

We plot the graphs of the trigonometric functions by taking  x  in radians on  X-axis  and  y  on  Y-axis.
We first write the values of  y  corresponding to different values  of  x  in a table  and then by taking a suitable
scale we plot these points in the coordinate plane and join these points by a smooth curve to get the graph.

1.  Graph of  y = sin x

Table 6.4

x       −      −      −      −      − π    2/π−       0 2/π       π 3 2/π   2π   5 2/π   3π

   y = sin x      0     −     −     −     −     −  1       0 1       0 − − − − −  1   0   1   0

Fig. 6.8

Y

y = sin x

−π −π/2 π/2 3π/2π 2π 5π/2 3π

1

−1

0
X
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2.  Graph of  y = cos x

Table 6.5

       x        − π       2/π−       0    2/π       π 3 2/π   2π   5 2/π    3π 7 2/π

   y = cos x      −      −      −      −      − 1          0         1   0     −    −    −    −    − 1 0   1  0           −−−−−1  0

Fig. 6.9

3.  Graph of  y = tan x

First observe that though tan x  is not defined for  x = π / 2,   tan x → ∞   as  2x /π→  in the

interval  ( )0 2, /π   and tan → − ∞x   as  
2

x
π→   in  ( )2/ ,π π .  Similarly  at  

3 5

2 2
x ,

π π=   also.  We

keep these points in mind while drawing the graph of  y =  tan x.

Table 6.6

x  − π 2/π− 0 2/π π 3 2/π 2π 5 2/π 3π

 y = tan x 0 not 0 not 0 not 0 not 0
defined defined defined defined

Y

X

y = cos x

−π −π/2 π/2 3π/2π 2π 5π/2 3π 7π/2

1

−1

0



 Mathematics - IA240

      y = tan x

        Fig. 6.10

4.  Graph of  y = cot x

Before  drawing the graph note that  cot x  is undefined at 0 2, , ,π π π−  etc.  since  sin x = 0  at these

values of  x.   But  cot x → ∞  as  x 0→  in 0
2

,
π 

  
  and   cot x  → − ∞   as  0x →   in  0

2
,

π −  
.

Similarly  for 2,π π  etc.   We keep these points in mind while drawing the graph of  coty x= .

Table 6.7

x  − π 2/π− 0 2/π π 3 2/π 2π 5 2/π 3π

  y = cot x  not
0

not
0

not
0

not
0

not
  defined  defined defined defined defined

 y = cot x

Fig. 6.11

Y

−π −π/2 π/2 3π/2π 2π 5π/2 3π 7π/2

1

−1

0

−2

2

−π −π/2 π/2 3π/2π 2π 5π/2 3π 7π/20

Y

X

X
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5.  Graph of  y = sec x

Like  y = tan x, this function is also not defined  at 
3 5

2 2 2 2
, , ,

π π π π−
 etc. Also note that  sec x→ ∞

as  x
2

π→   in 0
2

,
π 

  
  and   sec x  → − ∞   as   

2
x

π→   in   
2

,
π π 

  
.   Similarly  for 

3 5

2 2
,

π π
 etc.

We keep these points in view while drawing the graph of  secy x= .

Table 6.8

x  − π  2/π− 0 2/π π 3 2/π 2π 5 2/π 3π

 y = sec x  −1 not 1 not −1 not 1 not −1
defined defined defined defined

y =  sec  x

Fig. 6.12

6.  Graph of  y = cosec x

Like the function  y = cot x, this function is also not defined at all  integral multiples of  π  like

−π,  0,  π,  2π  etc.   (since  sin x = 0   at these values of  x).  But note that cosec x → ∞   as   x 0→

in  0
2

,
π 

  
  and   cosec x  → − ∞   as   0x →   in   0

2
,

π− 
  

.   Similarly for 2 3, ,π π π etc.   We keep these

things in mind while drawing the graph of cosecy x= .

Y

X

−π −π/2 π/2 3π/2π 2π 5π/2 3π 7π/2

2

−1

1

−2

0



 Mathematics - IA242

Table 6.9

x   − π  −π/2 0 π / 2 π 3π /2 2 π 5π / 2 3 π

 y=cosec x not  −1 not 1 not  −1 not 1 not
  defined  defined defined defined defined

y =  cosec  x
Fig. 6.13

Exercise 6(b)

 I. Find the periods for the given 1 - 5 functions

 1.  cos (3x + 5) + 7 2.  tan 5x

 3.  
4 9

cos
5

x + 
  

4.  | sin x |

  5.  tan (x + 4x + 9x + .... + n2x) (n any positive integer)

 6.   Find a sine function whose period is 
2

3
.

 7.  Find a cosine function whose period is 7.

II. Sketch the graph of the following functions

1. tan x  between 0  and  
4

π
2. cos 2x  in the interval [0, π].

Y

−π −π/2 π/2 3π/2π 2π 5π/2 3π 7π/2

2

−1

1

−2

0 X
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3. sin 2x in the interval (0, π). 4. sin x in the interval [−π, +π]

5. cos2 x in [0, π]

III. Sketch the region enclosed by y = sin x, y = cos x and X-axis in the interval   [0, π].

6.2 Trigonometric ratios of compound angles

In this section, we define a compound angle and give formulae to find the trigonometric ratios of

compound angles.

6.2.1 Definition

The algebraic sum of two or more angles is called a  “Compound angle”.

If  A, B, C are three angles then  A + B,  A − C,  A + B + C,  A − B + C etc. are compound angles.

6.2.2   Theorem :  If A, B  are two real numbers, then

( )cos A +  B    =   cos A  cos B    sin A  sin B−

Proof:  We prove this theorem in various cases depending on the magnitudes of  A, B,  A + B.

Case (i):   A > 0,  B > 0   and   A + B  < 2 π.

Consider a rectangular Cartesian system  OXY.   Let  C be the circle in XY plane with centre at the

origin O(0, 0)  and radius 1 unit.   Suppose the circle cuts OX at P.   Then  P = (1, 0).   Let us take the points

Q, R on this circle such that POQ = A∠   and  POR = A + B∠   measured in  anti-clockwise (positive)

direction.   Let  S be the point on the circle such that  POS = B∠   measured in clockwise (negative)

direction.  Then the coordinates of  Q, R, S are respectively (cos A, sin A), (cos (A + B),  sin (A + B)),

(cos (−B),  sin (−B)).

Sub - Case (i):  A  +  B  <  πππππ.

Then the angles A, B,  A + B are as shown in Fig. 6.14.

In  triangle  POR,   OP =  OR = 1  unit and

POR = A + B∠   and  in triangle  QOS,  OQ  = OS =  1  unit

and  QOS = A + B∠ .  Therefore,   the two triangles POR and

QOS are congruent.  Hence  PR = QS .

Fig. 6.14

Y
A + B

X
P(1, 0)B

A

R
Q

S

O
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Sub - Case (ii):  A  +  B  =  πππππ.

Then the points P, O, R are collinear (lie on X-axis) and

the points  Q, O, S are collinear as shown in   Fig. 6.15.

Clearly PR =  2  =  QS   (diameters of the unit circle).

Sub - Case (iii):  A  +  B  >  πππππ  (Fig. 6.16).

Without loss of generality we can assume A< π.

In the triangle POR, ( )POR 2 A + Bπ∠ = −

(since  ( )2 A + B )− <π π  and

OP =  OR =  1 unit and in the triangle QOS,

( )QOS 2 A + Bπ∠ = −   and  OQ = OS  =  1 unit.

Hence the two triangles are congruent.  Therefore  PR = QS.

In all the 3 sub-cases above, we get

      2 2P R = QS PR = QS⇒ .

( )( ) ( )( )2 2
cos A + B 1 + sin A + B 0⇒ − −

 ( )( ) ( )( )2 2
= cos A cos B + sin A sin B− − − −

( ) ( ) ( )2 2cos A + B + 1 2 cos A + B + sin A + B⇒ −

( ) ( )2 2
= cos A cos B + sin A + sin B−

 ( ) 2 22 2 cos A + B = cos A + cos B 2cos A cosB⇒ − −  2 2+ sin A +sin B + 2sin A sin B

            ( )= 2 2 cos A cos B sin A sin B− −

( )cos A + B = cos A cos B sin A sin B.⇒ −                                   ...  (1)

Fig. 6.15

Fig. 6.16
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A+ B
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Case (ii):  A = 0  (or  B = 0) :  We consider the case A = 0.   The proof when B = 0 is similar.

Then A + B = B,  cos  A = 1   and   sin  A = 0.   Thus,

Cos A Cos B  −  sin A sin B  =  cos B =  cos (A + B).

Case (iii):   A ≥  0,  B ≥  0   and  A  +  B  = 2π

In this case,    ( )cos B cos 2 A cos Aπ= − =   and

         ( )sin B sin 2 A sin Aπ= − = − .  Thus,

   ( )2 2cos A cos B sin Asin B cos A sin A 1 cos 2 cos A B− = + = = = +π .

Case (iv):  [ ] [ ]A 0 B 2∈ ∈, , ,π π π   [ ) [ ]( )or A 2 B 0,∈ ∈, ,π π π .

Write  � B π= − .   Then  [ ]� �, π∈ .   Hence

( ) ( ) ( ) { }cos A + B cos A � ��� � � ���� ���� �	
� �	
 �π= + + = − + = − −
 (since  A � � �π+ ≤

   ( ) ( )cos A cos � �	
 � �	
 �π π= + − +
  cos A cos B sin A sin B= − .

Case (v):  ( ]A 2,π π∈   and   ( ]B 2,π π∈
Write  A B, .α π β π= − = −    Then  0 ,α β π≤ ≤   and hence

  ( ) ( ) ( )cos A + B cos cos 2π α π β π α β= + + + = + +

( )cos cos cos sin sinα β α β α β= + = −

( ) ( ) ( ) ( )cos cos sin sinπ α π β π α π β= + + − + +
cos A cos B sin A sin B= −

Thus we have proved the theorem for all A, B [ ]0 2, π∈ .

Finally, we prove the result in the general case.

Let A, B ∈ R .  Take  
A

2
m

π
 

=  
 

  and  
B

2
n

π
 

=  
 

.  Then

( )2 A 2 1m mπ π≤ < +   and  ( )2 B 2 1n nπ π≤ < + .

Write  A 2 mα π= −   and  B 2β π= − n .  Then [ )0 2, ,α β π∈   and we have

      ( ) ( ) ( )cos A + B cos 2 2 cosm nπ α π β α β= + + + = +
     =  cos cos sin sinα β α β−

Therefore   ( )cos A + B =  cos A cos B sin A sin B− .

The other formulae are derived from the above theorem as follows.

6.2.3 Corollary:  For any  A, B ∈ R

 (i)  ( )cos A B = cos A cos B + sin A sin B−
(ii)  ( )sin A + B sin A cos B + cos Asin B=
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(iii) ( )sin A B sin A cos B cos Asin B− = −

Proof: (i)    ( ) ( )( )cos A B cos A + B− = −

   ( ) ( )cos A cos B sin A sin B= − − −

   cos A cos B + sin A sin B=

               ( )since  cos B = cos B−   and   ( )sin B sin B− = −

(ii)     ( ) ( ) �
sin A + B cos A + B cos A B

2 2

π     = − = − −        

 
� �

cos A cos B + sin A sin B
2 2

   = − −      
 sin A cos B + cos A sin B.=

(iii)   ( ) ( )( )sin A B = sin A + B− −

  ( ) ( )= sin A cos B + cos A sin B− −

   = sin A cos B cos A sin B− .

6.2.4  Theorem

(i) If none of  A, B and (A + B)  is an odd multiple of  
2

π
, then

      ( ) tan A + tan B
tan A + B

1 tan A tan B
=

−

(ii) If none of  A, B  and (A + B) is an integral multiple of π, then

      ( ) cot B cot A 1
cot A + B =

cot B + cot A

−

Proof

  (i) Since none of A, B, A + B is an odd multiple of 
2

π
,  none of  cos A,  cos B,  cos A + B   is zero.  Now

( )
( )

sin A + B sin A cos B + cos A sin B
tan (A + B) = =

cos A + B cos A cos B sin A sin B−
.

On dividing the numerator and the denominator in R.H.S. by cos A cos B, we get

( )
sin A cos B cos A sin B

+
tan A + tan Bcos A cos B cos A cos B

tan A + B = =
cos A cos B sin A sin B 1 tan A tan B
cos A cos B cos A cos B

−− .
.
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 (ii)   Since none of A, B, (A + B) is an integral multiple of  π, none of  sin A, sin B,  sin (A + B)  is zero.  Now

( ) ( )
( )

cos A + B cos A cos B sin A sin B
cot A + B = =

sin A + B sin A cos B + cos A sin B

− .

On dividing the numerator and denominator in R.H.S. by sinA sinB  we get

( )
cos A cos B sin Asin B

cot A cot B 1sin A sin B sin Asin B
cot A + B = =

sin A cos B cos A sin B cot B + cot A
sin A sin B sin A sin B

−
−

+
.

6.2.5  Note

 1. If none of A, B,  A + B is an odd multiple of  
2

π
,  then  tan A,  tan B  are defined and

tan A  tan B ≠  1  (since  cos (A + B) ≠  0)  and hence the formula for tan (A + B)  given in the above
theorem is valid.

  2. If none of A, B, A + B is an integral multiple of π,  then  cot A, cot B are defined and cot B + cot A ≠ 0

(since  sin (A + B)  ≠  0)  and hence the formula for cot (A + B)  given in the above theorem  is valid.

On replacing ‘B’  by ‘− B’  in Theorem 6.2.4,  we get the following.

6.2.6  Corollary

  (i)  If none of A, B,  A − B  is an odd multiple of  
2

π
,  then

( ) tan A tan B
tan A B =

1 + tan A tan B

−−

 (ii)  If none of  A, B,  A − B  is an integral multiple of  π,  then

( ) cot A cot B + 1
cot A B =

cot B cot A
−

−

6.2.7  Theorem:  For any two real numbers A, B

  (i)  ( ) ( ) 2 2 2 2sin A +B sin A B = sin A sin B = cos B cos A− − − .

 (ii)  ( ) ( ) 2 2 2 2cos A +B cos A B = cos A sin B = cos B sin A− − − .

Proof  (i) ( ) ( )sin A + B sin A - B

= ( ) ( )sin Acos B + cos Asin B sin Acos B cos Asin B−.

= 2 2 2 2sin A cos B cos A sin B−

= ( ) ( )2 2 2 2sin A 1 sin B 1 sin A sin B− − −

= 2 2sin A sin B−
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= ( ) ( )2 21 cos A 1 cos B− − −

= 2 2cos B cos A− .

          (ii)  ( ) ( )cos A +B cos A B−

= ( ) ( )cosA cosB sin A sin B cosAcosB + sin A sin B−

= 2 2 2 2cos A cos B sin A sin B−

= ( ) ( )2 2 2 2cos A 1 sin B 1 cos A sin B− − −

= 2 2cos A sin B−
= ( ) ( )2 21 sin A 1 cos B− − −
= 2 2cos B sin A− .

Now we give the formulae for ( ) ( )sin A + B + C , cos A + B + C ,

( )tan A + B + C   and  ( )cot A + B + C  in the following.

6.2.8  Theorem:  If  A, B, C are real numbers,  then

      (i) ( )sin A + B + C = sin A cos B cosC + cos A sin B cosC

                      + cosA cosB sinC sinA sinB sinC− .

     (ii) ( )cos A + B + C = cosA cosB cosC cosA sin B sin C−

          sin A cos B sin C sin A sin B cos C− − .

   (iii) If none of  A, B, C  and  A + B + C  is an odd multiple of  
2

π
 and at least one

of  A + B, B + C,  C + A  is not an odd multiple of  
2

π
,  then

( ) tan A + tan B + tan C tan A tan B tan C
tan A + B + C =

1 tan A tan B tan B tan C tan C tan A

−
− − −

.

   (iv) If none of  A, B, C and  A + B + C  is an integral multiple of  π,  then

( ) cot A + cot B + cot C cot A cot B cot C
cot A + B + C =

1 cot A cot B cot B cot C cot C cot A

−
− − −

.

Proof

(i)  ( ) ( )( )sin A + B +C sin A + B +C=

( ) ( )= sin A + B cosC +cos A + B sin C

( ) ( )sin A cos B cos Asin B cosC cos Acos B sin Asin B sin C.= + + −

= sin A cos B cos C + cos A sin B cos C + cos A cos B sin C  sin A sin B sin C−
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This formula can be written as,

( ) ( )sin A + B + C sin A cos B cosC sin A sin B sin C= ∑ −

 (ii)  ( ) ( )( )cos A + B + C = cos A + B + C

( ) ( )= cos A + B cosC sin A + B sin C−

( ) ( )= cos A cos B sin A sin B cosC sin A cos B + cos Asin B sin C− −

= cos A cos B cos C sin A sin Bcos C sin A cos Bsin C− −  cos A sin Bsin C−
This can be written as

        ( )cos A + B + C cos A cos B cosC cos Asin Bsin C= − ∑

(iii) Suppose none of  A, B, C,   A + B + C  is an odd multiple of  
2

π
  and  assume,

without  loss of  generality, that A + B  is not an odd multiple of  
2

π
.   Then

( ) ( )( ) ( )
( )

tan A + B + tan C
tan A + B + C = tan A + B + C =

1 tan A + B tan C−

 

tan A tan B
tan C

1 tan A tan B

tan A tan B
1 tan C

1 tan A tan B

+ +
−=
 +− − 

 
( )

( )
tan A tan B tan C 1 tan A tan B

1 tan A tan B tan A tan B tan C

+ + −
=

− − +

 
tan A tan B tan C tan A tan B tan C

1 tan A tan B tan B tan C tan C tan A

+ + −=
− − −

.

This can be written as

( ) 1 3

2

tan A tan A
tan A + B + C

1 tan A tan B 1

−Σ − Π= =
− Σ −

s s

s

In the above formula,
   s

1
  =  Sum of the tangents taken  one  at a time.

   s
2
  =  Sum of the products of the tangents taken  two  at a time.

   s
3
  =  Sum of the products of the tangents taken  three  at a time.

(iv) Assume that none of A, B, C,  A + B + C  is an integral multiple of  π and  assume, without loss of
generality, that A + B  is not a multiple of π, then

       ( ) ( )( ) ( )
( )

cot A + B cot C 1
cot A B C cot A + B + C

cot C cot A + B

−
+ + = =

+
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cot A cot B 1
cot C 1

cot B cot A
cot A cot B 1

cot C
cot B cot A

 − − + = −+
+

cot A cot Bcot C cot C cot B cot A

cot Ccot B cot Ccot A cot A cot B 1

− − −=
+ + −

cot A cot B cot C cot A cot B cot C

1 cot A cot B cot B cot C cot C cot A

+ + −=
− − −

.

This can be written as

( ) 1 3

2

cot A cot A
cot A B C

1 cot A cot B 1

s s

s

−Σ − Π+ + = =
−Σ −

.

In the above formula

s
1
  =  Sum of the cotangents taken one at a time

s
2
  =  Sum of the products of the cotangents taken two at a time

s
3
  =  Sum of the products of the cotangents taken three at a time

6.2.9   Solved Problems
1.  Problem:  Find the values of  sin 750,  cos 750, tan 750  and  cot 750.

Solution

   (i) ( )0 0 0 0 0 0 0sin 75 sin 45 30 sin 45 cos30 cos 45 sin 30= + = +

         
1 3 1 1 3 1

2 22 2 2 2

+= + =. . .

 (ii)  ( )0 0 0 0 0 0 0cos 75 cos 45 30 cos 45 cos30 sin 45 sin 30= + = −

         
1 3 1 1 3 1

2 22 2 2 2

−= ⋅ − ⋅ = .

(iii)
( )

( ) ( )
2

0
0

0

3 1sin 75 3 1
tan 75 2 3

cos75 3 1 3 1 3 1

++= = = = +
− − +

.

 (iv)  
0

0

1 1
cot 75 2 3

tan 75 2 3
= = = −

+
.

2. Problem:  If  0 < A, B < 900.  cos A 5

13
=  and sin B 4

5
=  then  find sin(A + B).

Solution: 0 < A < 900 and cos A 5

13
=   12

sin A .
13

⇒ =

0 < B < 900 and  sin B 4

5
= 3

cos B .
5

⇒ =
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∴  sin(A + B) = sin A cos B + cos A sin B

       12 3 5 4 56
. .

13 5 13 5 65
= + = .

3. Problem:  Prove that  
0 0

2 21 1 3 1
sin 52 sin 22

2 2 4 2

+   − =      
.

Solution: Put 
0

1
A 52

2
 =   

  and  
0

1
B 22

2
 =   

.   Then

0 0
2 21 1

sin 52 sin 22
2 2

   −      
( ) ( )2 2sin A sin B sin A B sin A B= − = + −   (from Theorem  6.2.7(i))

=  
0 0 3 1 1 3 1

sin 75 sin 30
22 2 4 2

+ += ⋅ = .

4. Problem:  Prove that  0 0 0tan 70 tan 20 2 tan 50− = .

Solution:  ( )
0 0

0 0 0
0 0

tan 70 tan 20
tan 50 tan 70 20

1 tan 70 tan 20

−= − =
+ .

 ( )( )0 0 0 0 0 0tan 70 tan 20 tan 50 1 tan 70 tan 90 70⇒ − = + −.

( )0 0 0tan 50 1 tan 70 cot 70= + .
02 tan 50= .

5. Problem:  If  A + B = 
4

π
,  then  prove that

        (i) ( ) ( )1 + tan A 1 + tan B 2= , (ii)  ( ) ( )cot A 1 cot B 1 2− − = .
Solution

(i) A + B =
4

π

( )tan A + B tan 1
4

⇒ = =π

tan A tan B
1 tan A tan B 1 tan A tan B

1 tan A tan B

+⇒ = ⇒ + = −
−

tan A + tan B + tan A tan B 1⇒ =    ... (1)

Now, ( ) ( )1 + tan A 1 + tan B = 1 + tan A + tan B + tan A tan B 2= (from (1))

  (ii) A + B cot (A + B) cot 1
4 4

= ⇒ = =π π

                    
cot A cot B 1

1 cot A cot B 1 cot A cot B
cot B cot A

−⇒ = ⇒ − = +
+

                    cot A cot B cot A cot B 1⇒ − − =                ... (2)

Now,  ( ) ( )cot A 1 cot B 1 cot Acot B cot A cot B 1 2− − = − − + =  (from (2)).
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6. Problem: If  
1 1

sin , sin
10 5

α = β =  and α, β are acute, show that α + β = π/4.

Solution

Given  α is acute and  
1 1

sin tan
310

α = ⇒ α = .

β is acute and  
1 1

sin tan
25

β = ⇒ β = .

Therefore   tan (α + β) =  
tan tan

1 tan tan

α + β
− α β

1 1
3 2 1

1 1
1

3 2

+
= =

− ⋅

⇒ α + β = π/4.

7. Problem:  If  
12 3

sin A , cos B
13 5

= =   and neither A  nor  B  is in the first quadrant,  then find the

quadrant in which  A + B  lies.

Solution:  From hypothesis,  A lies in the second quadrant  and  B  in the fourth quadrant

so that  2 A 2
2

n n
ππ π π+ < < +

and  ( )3
2 B 2 2

2
m m

ππ π+ < < +   for some integers  m, n.

On adding, we get

2 2 2 A + B 2 2 2n m n mπ π π π π π π+ + < < + + +

That is  2 A + B 2k kπ π π< < +   where  1k m n= + +
Therefore,   A + B  lies either in first or in second quadrant .    ... (1)

Now    
2 2 2 2144 144 25

cos A sin A 1 cos A 1 cos A 1
169 169 169

+ = ⇒ + = ⇒ = − =

           
5

cos A
13

⇒ = ±

           
5

cos A
13

⇒ = −   (Since  A lies in 2nd quadrant)

Similarly, 2 2 2 9 16
cos B sin B 1 sin B 1

25 25
+ = ⇒ = − =

            
4 4

sin B sin B
5 5

⇒ = ± ⇒ = −

(Since B lies in 4th quadrant)
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Now,      ( )cos A + B cos Acos B sin A sin B= −
5 3 12 4 33

13 5 13 5 65

− −       = − =              
.

Therefore,  from (1),   A + B  lies in the first quadrant.

8. Problem:  Find  (i)  tan A
4

π +  
  interms of  tan A  and

      (ii) cot A
4

π +  
  interms of  cot A.

Solution

(i)
tan tan A 1 tan A4tan A

4 1 tan A1 tan tan A
4

π
π

π

+ + + = =  −  −
  (provided tan A  1≠ )

(ii)
cot cot A 1 cot A 14cot A

4 cot A 1cot A cot
4

π
π

π

− − + = =  +  +
  (only when cot A + 1 ≠ 0).

9. Problem:  Prove that 
0 0

0
0 0

cos9 sin 9
cot 36

cos9 sin 9

+ =
−

.

Solution:        L.H.S.  =  
0 0

0 0

cos9 sin 9

cos9 sin 9

+
−

              =  
0

0

1 tan 9

1 tan 9

+
−

 (on dividing  numerator and denominator by 0cos 9 )

          =   ( )0 0tan 45 9+   (by problem 8(i))

          =   ( )0 0 0tan 54 tan 90 36 cot 36= − =   =  R.H.S.

10. Problem:  Show that 0 0 0cos 42 cos 78 cos162 0+ + = .

Solution:      L.H.S.  =   ( ) ( ) ( )0 0 0 0 0 0cos 60 18 cos 60 18 cos 180 18− + + + −

          =  0 0 0 0 0 0cos 60 cos18 sin 60 sin18 cos 60 cos18+ +
     0 0 0sin 60 sin18 cos18− −

         0 0 0 0 01
2cos 60 cos18 cos18 2. .cos18 cos18 0

2
= − = − = .

11. Problem:  Express 3 sin cosθ + θ as a sine of  an angle.

Solution: 3 sin cosθ + θ 
3 1

2 sin cos
2 2

 
= θ + θ   
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       = 2(cos 
6

π
 sin θ + sin

6

π
 cos θ)

       =  2 . sin (θ + 
6

π
).

12. Problem:  Prove that  sin2 θ + sin2 (θ +
3

π
) + sin2 (θ − 

3

π
) = 

3

2
.

Solution:  L.H.S.  = sin2 θ + sin2 (θ + 
3

π
) + sin2 (θ − 

3

π
)

     =  sin2 θ + (sin θ cos 
3

π
 + cos θ sin 

3

π
)2  + (sin θ cos 

3

π
 − cos 

3

π
 sin θ)2

     =  sin2 θ + 2 (sin2 θ cos2 

3

π
 + cos2 θ sin2 

3

π
)

     
2 2 21 3

sin 2 sin . cos .
4 4

 = θ + θ + θ  

    
2 2 21 3

sin sin cos
2 2

= θ + θ + θ

    
2 2 2 23 3 3

sin cos (sin cos )
2 2 2

= θ + θ = θ + θ

     =  
3

2
  = R.H.S.

13. Problem:  If  A, B, C  are the angles of a triangle  and if none of them is equal to 
2

π
, then  prove that

        (i)   tan A + tan B + tan C = tan A tan B tan C .
        (ii)  cot A cot B + cot B cot C + cot C cot A = 1 .

Solution
(i) Given  A + B + C = π

( ) ( )A +B C tan A + B tan C⇒ = − ⇒ = −π π
tan A tan B

tan C
1 tan A tan B

+⇒ = −
−

( )tan A tan B tan C 1 tan A tan B tan C tan A tan B tan C⇒ + = − − = − +
tan A + tan B + tan C = tan A tan B tan C.⇒

(ii) Replacing tan A  by  
1

cot A
  etc.  in  (i)  above,  we get

1 1 1 1
+ + =

cot A cot B cot C cot A cot Bcot C.

cot A cot B + cot B cot C + cot C cot A = 1⇒ .
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14. Problem:   Let  ABC  be a triangle such that  cot A cot B cot C 3+ + = .  Then prove that
ABC  is an equilateral triangle.

Solution:  Given that  0A + B + C 180= ,  by problem 13(ii),

      we get  cot A cot B 1=∑ .  Now

     ( )2 2 2cot A cot B (cot A cot B 2cot A cot B)− = + −∑ ∑
2 2 22cot A 2cot B 2cot C 2cot A cot B= + + − 2cot B cot C 2cot C cot A− −

(on expanding)

( ){ }2
2 cot A cot B cot C 2cot A cot B 2cot B cot C 2cot C cot A= + + − − −

( )2 cot A cot B cot B cot C cot Ccot A− + +

( ) ( )2
2 cot A cot B cot C 6 cot A cot B cot Bcot C cot C cot A= + + − + +
2 3 6.1 0= ⋅ − =

cot A cot B cot C⇒ = =

( )3 1
cot A cot B cot C since cot A + cot B + cot C = 3

3 3
⇒ = = = =

A B C
3

⇒ = = = π
  (since  each angle  lies in the interval [0, π]).

15.  Problem :   Suppose  tan A, tan B, tan Cx y z= = = .

Suppose none of  A, B, C,  A − B,  B − C,  C − A  is an odd multiple of  
2

π
.

Then prove that  
1 1

   − −= Π   + +   
∑ x y x y

x y x y

Solution :  Observe that ( )tan A tan B
tan A B

1 1 tan A tan B

x y

x y

− −= = −
+ +

 etc.              ... (1)

      Write  P = A − B,  Q = B − C,  R = C − A.  Then  P + Q + R = 0.

P + Q R⇒ = −    ( )tan (P + Q) tan R⇒ = −
tan P tan Q

tan R
1 tan P. tan Q

+⇒ = −
−

( )tan P tan Q tan R 1 tan P tan Q⇒ + = − −
         tan R tan P tan Q tan R= − +

tan P tan Q tan R tan P tan Q tan R⇒ + + =
tan P tan P⇒ ∑ = Π

( ) ( )tan A B tan A B⇒ ∑ − = Π −

1 1

x y x y

x y x y

   − −⇒ ∑ = Π   + +   
   from   (1).
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6.2.10   Note
1. In problem 1,  we obtained the trigonometric ratios of 750.

Since  150  =  900 − 750  and 1050  = 1800  − 750,  we also get that

(i) 0 0 3 1
sin15 cos75

2 2

−= = .

(ii) 0 0 3 1
cos15 sin 75

2 2

+= = .

(iii)
0 0

0

1 1
tan15 cot 75 2 3

tan 75 2 3
= = = = −

+
.

(iv) 0 0cot15 tan 75 2 3= = + .

(v) ( )0 0 0 0 3 1
sin105 sin 180 75 sin 75

2 2

+= − = = .

(vi)
( )

0 0
3 1

cos105 cos 75
2 2

−
= − = − .

(vii) ( )0 0tan105 tan 75 2 3= − = − + .

(viii) ( )0 0cot 105 cot 75 2 3= − = − − .

6.2.11   Extreme values of  trigonometric functions

We have observed that, for any � ∈ R , 1 sin � �− ≤ ≤ .

Also we know that sin 1
2

π =   and  sin 1
2

 − = −  
π

.  Hence  the maximum and minimum values of

sin �   are respectively  1 and  − 1  as �   ranges over  R .   Each of  them is called an extreme value of

sin � .   Similarly, the maximum and minimum values of  cos �   are respectively  1 and  −1 over R .

6.2.12   Theorem

If  a, b, c  ∈ R   such that  2 2 0a b+ ≠ ,  then the maximum and minimum values of

sin cosa x b x c+ +  are respectively  2 2c a b+ +   and 2 2c a b− +  over R .

Solution:  Define  ( ) sin cosf x a x b x c= + +   for all x∈ R .

 Put  cos�a r=   and  sin �b r=   where  2 2r a b= + .  Then

 ( ) cos� �	
 �	
 � ���f x r x r x c= + +

( )cos� �	
 �	
� ���r x x c= + +

( )sin �r x c= + +                        ...  (1)
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We know that  ( )1 sin � �x− ≤ + ≤ .  So that

            ( )sin �r r x r− ≤ + ≤

and hence   ( ){ }sin �c r c r x c r− ≤ + + ≤ +   from  (1).

Hence the maximum and minimum values of  f   over  R  are respectively 2 2c a b+ +   and

2 2c a b− + .

6.2.13   Note

From the above theorem,  we get that the range of the function  f  is

2 2 2 2,c a b c a b − + + +  (since  f  is  “continuous” on  R)

6.2.14   Example

Find the maximum and minimum values of

(i)    3 sin x  − 4 cos x (ii)   cos 2 2 sin 3
3 3

x x
π π   + + + −      

Solution

(i) From Theorem 6.2.12, we get that the maximum value of  3 sin x  - 4 cos x is 9 16 5+ =  and the

minimum value is 9 16 5− + = − .

(ii) Again, from Theorem 6.2.12, we get that the maximum value of

cos 2 2 sin 3α α+ −   (where 
3

x
πα = + ) is 3 1 8 0− + + = and the minimum

value is 3 1 8 6− − + = − .

Exercise 6(c)

  I.1. Simplify the following

(i) cos 1000cos 400  + sin 1000 . sin 400 (ii)
0 0

0 0

cot 55 cot 35 1

cot 55 cot 35

−
+

(iii) tan . tan
4 4

π π   + θ − θ      
(iv) tan 750 + cot 750

(v) sin 11400 cos 3900 − cos 7800 sin 7500

2. Express

(i)
( )0 03 cos 25 sin 25

2

+
  as a sine of an angle.
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(ii) (cos θ − sin θ)  as a cosine of an angle.

(iii) tan θ in terms of tan α, if sin (θ + α) = cos (θ + α).

    3. (i) If  
0 0

0 0

cos11 sin11
tan

cos11 sin11

+θ =
−

  and θ is in the third quadrant,  find θ.

(ii) If 00 < A, B < 900,  such that 
5

cos A
13

=  and  
4

sin B
5

= , find the value of sin (A − B).

(iii) What is the value of tan 200 + tan 400 + 3 tan200 tan 400 ?

(iv) Find the value of  tan 560 − tan 110 − tan 560 tan 110.

(v) Evaluate  
2 2

sin(A+B)sin(A B)

cos A cos B

−∑  ;  if  none of cos A,  cos B, cos C is zero.

(vi) Evaluate  
sin(C A)

sin C sinA

−∑   if none of   sinA, sin B, sin C is zero.

 4. Prove that

(i) cos 350 + cos 850 + cos 1550 = 0

(ii) tan 720 = tan 180 + 2 tan 540

(iii) sin 7500 cos 4800 + cos 1200 cos 600 = 
1

2

−

(iv) cos A + cos (
4

3

π
 − A) + cos (

4

3

π
 + A) = 0

(v) cos2θ + cos2(
2

3

π
 + θ) + cos2(

2

3

π
 − θ) = 

3

2

5. Evaluate

(i)
0 0

2 21 1
sin 82 sin 22

2 2
− (ii)

0 0
2 21 1

cos 112 sin 52
2 2

−

(iii)
2 2A A

sin sin
8 2 8 2

π π   + − −       (iv)
0 0

2 21 1
cos 52 sin 22

2 2
− .

6. Find the minimum and maximum values of

(i) 3 cos x + 4 sin x (ii) sin 2x − cos 2x

7. Find the range of

(i) 7 cos x − 24 sin x + 5 (ii) 13 cos x + 3 3  sin x − 4
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  II.

     1. (i) If  
3

cos
5

−α =  and  
7

sin
25

β = ,  where 
2

π
 < α < π and  0 < β < 

2

π
, then find the values of

tan (α + β) and sin (α + β).

(ii) If  0 < A < B < 
4

π
 and sin (A + B) = 

24

25
  and cos (A − B) = 

4

5
,  then find the value of tan 2A.

(iii) If  A + B,  A are acute angles such that  sin (A + B) = 
24

25
 and tan A = 

3

4
,  then find the value of

cos B.

(iv) If tan α − tan β = m  and cot α − cot β = n,  then prove that 
1 1

cot( ) .
m n

α − β = −

(v) If  
7

tan( )
24

α −β =  and 
4

tan ,
3

α =  where α and β are in the first quadrant  prove that

α  + β = π/2.

  2.     (i)  Find the expansion of  sin (A + B − C).

         (ii)  Find the expansion of  cos (A − B − C).

       (iii)  In a  ∆ABC, A is obtuse.  If sin A = 
3

5
  and sin B = 

5
,

13
then show that sin  C = 

16
.

65

(iv) If   
sin( )

,
sin ( )

a b

a b

α + β +=
α −β −

  then prove that  a tan β = b tan α.

III.

1.  (i) If  A − B = 
3

,
4

π
 then show that (1 − tan A) (1 + tan B) = 2.

(ii) If A + B + C = 
2

π
 and if none of A, B, C is an odd multiple of  

2

π
,  then prove that

(a)  cot A + cot B + cot C = cot A cot B cot C

(b)  tan A tan B  + tan B tan C + tan C tan A = 1  and hence show that

(c)  
cos (B C)

2.
cos B cosC

+ =∑

   2. (i) Prove that  sin2α + cos2 (α + β) + 2 sinα sin β cos(α + β)  is independent of α.

(ii) Prove that cos2 (α − β)  + cos2β − 2 cos(α − β) cos α cos β is independent of β.
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6.3 Trigonometric ratios of multiple and sub-multiple angles

In this section,  we derive formulae for the trigonometric ratios of multiple angles 2A,  3A,  ...  in terms

of those of  A.  Also we discuss about the trigonometric ratios of the sub-multiple angles 
A A

, , ....
2 3

 of  A.

6.3.1 Definition

If   A  is an angle,  then its integral multiples  2A,  3A,  4A, ...  are called “Multiple angles of

A”  and the multiples of  A  by fractions like  
1 1

2 3
, ,  ... are called  “submultiple”  angles of  A.

6.3.2   Theorem

Let A  be any real number.  Then

(i) sin 2 A 2sin A cos A=

(ii) 2 2cos 2A = cos A sin A−

 2=  2cos A 1−

 2= 1 2sin A−

(iii) If   A  and  2A  are not odd multiples of  
2

π
,  then

2

2 tan A
tan 2A =

1 tan A−

(iv) If  2A  is not an integral multiple of  π ,  then
2cot A 1

cot 2A =
2 cot A

−

Proof: (i)  We know that   ( )sin A + B sin A cos B cos A sin B= + .

Hence, ( )sin 2A sin A + A sin A cos A cos A sin A= = +
             = 2 sin A cos A .

   (ii)    Similarly, ( )cos2A = cos A + A cosA cosA sin A sin A= −. .

  = 2 2cos A sin A− .

  ( )2 2 2= cos A 1 cos A 2cos A 1− − = −

 ( )2= 2 1 sin A 1− −

 2= 1 2 sin A− .
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  (iii)     ( ) tan A tan A
tan 2 A = tan A + A

1 tan A tan A

+=
− .

  2

2 tan A

1 tan A
=

−
.

  (iv) ( ) cot A cot A 1
cot 2 A = cot A + A

cot A + cot A

−= .
   

2cot A 1
=

2cot A

−
.

6.3.3   Theorem

 For any real number  A,  which is not an odd multiple of  
2

π
,

(i)   
2

2 tan A
sin 2 A

1 tan A
=

+
(ii) 

2

2

1 tan A
cos 2 A

1 tan A

−=
+

Proof
  (i)  From Theorem 6.3.2,    sin 2 A = 2sin A cos A

        2 2

2sin A cos A
=

cos A + sin A

        

2

2 2 2

2

2 sin A cos A
2 tan Acos A

cos A sin A 1 + tan A
cos A

= =
+

.

  (ii)  Also,  2 2cos 2 A = cos A sin A−

         

2 2

2 2 22

2 22 2 2

2

cos A sin A
cos A sin A 1 tan Acos A

cos A sin Acos A sin A 1 + tan A
cos A

−
− −= = =

++
.

On replacing  A  by  
A

2
  in the above Theorems  6.3.2, 6.3.3,  we get

6.3.4  Corollary

If  
A

2
  is not an odd multiple of  

2

π ,  then

   (i)   
2

A
2 tanA A 2sin A = 2 sin cos

A2 2 1 tan
2

=
+

.

  (ii)   
2 2 2 2A A A A

cos A = cos sin = 2cos 1 = 1 2 sin
2 2 2 2

− − − .
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2

2

A
1 tan

2=
A

1 tan
2

−

+
.

 (iii)   If 
A

2
 and  A  are not odd multiples of  

2

π
, then 

2

2 tan A 2
tan A

1 tan A 2
=

−
.

 (iv)   If  A  is not an integral multiple of  π,  then  
2cot A 2 1

cot A
2cot A 2

−= .

Now, we derive formulae for  sin 3A,  cos 3A,  tan 3A  and  cot 3A  in the following.

6.3.5  Theorem
For any real number A,

   (i)   3sin 3A 3sin A 4sin A= −

  (ii)   3cos 3A = 4cos A 3cos A−

 (iii)   If  3A  is not an odd multiple of  
2

π
,  then     

3

2

3 tan A tan A
tan 3A

1 3tan A

−=
−

 (iv)  If  3A  is not an integral multiple of  π, then   
3

2

3cot A cot A
cot 3A =

1 3cot A

−
−

Proof :  (i)  ( )sin 3A sin 2A + A sin 2A cos A cos 2A sin A= = +
( )2 22sin A cos A 1 2sin A sin A= + −

( )2 32sin A 1 sin A sin A 2sin A= − + −
33sin A 4sin A= − .

(ii)        ( )cos3A  =  cos 2A + A = cos 2A cos A sin 2Asin A−
( )2 22cos A 1 cos A 2  sin A cos A= − −

( )3 2= 2cos A cos A 2cos A 1 cos A− − −
34cos A 3cos A= − .

(iii) Assume that A is not an odd multiple of 
2

π
.  Then

( ) tan 2A tan A
tan 3A =  tan 2A + A

1 tan 2A tan A

+=
− .

( )22

2 2

2

2 tan A
tan A 2 tan A + tan A 1 tan A1  tan A

2 tan A 1 tan A 2 tan A1 tan A
1 tan A

+ −−= =
− −−

−
.
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3

2

3 tan A tan A

1 3tan A

−=
− .

(iv) ( ) cot 2 A cot A 1
cot 3A = cot 2 A + A

cot A + cot 2 A

−=

2

3

2 2 2

cot A 1
cot A 1

2cot A cot A cot A 2cot A
cot A 1 2cot A + cot A 1

cot A +
2cot A

 − −  − − = =
− −

3 3

2 2

cot A  3  cot A 3cot A cot A

3cot A 1 1 3cot A

− −= =
− −

Another way of proving this result is

( )22 2

3 2

3

3
1 cot A cot A 31 1 3tan A cot A

cot 3A =
3 1tan 3A 3tan A tan A 3cot A 1

cot A cot A

− −−= = =
− −−

            
3

2

3cot A cot A

1 3cot A

−=
−

.

6.3.6 Note

1. It can be verified independently that the formula for tan 3A  given in Theorem 6.3.5 (iii) above,  remains

valid even when 2A  is an odd multiple of  
2

π
.

2. Also,  the formula  for  cot 3A  given in Theorem 6.3.5 (iv) above remains valid even if  2A is an
integral multiple of  π  provided 3A is  not an integral multiple of  π.   (That is, 2A is an odd integral
multiple of  π)

On replacing A  by  
A

3
  in the above Theorem 6.3.5,  we get the following

6.3.7  Corollary
If  A  is any real number, then

(i) 3A A
sin A = 3sin 4 sin

3 3
− .

(ii)
3 A A

cos A = 4cos 3cos
3 3

− .

(iii) If  A  is not an odd multiple of  
2

π
,  then  

3

2

3tan A/3 tan A/3
tan A  =

1 3tan A/3

−
−

.

(iv) If  A  is not an integral multiple of  π,  then 
3

2

3cot A/3 cot A/3
cot A  =

1 3cot A/3

−
−

.
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6.3.8  Theorem

For any  A ∈ R ,

(i)
1  cos 2A

sin A =
2

−±

(ii)
1  cos 2A

cos A =
2

+±

(iii) If   A  is not an odd multiple of  
2

π
,  then  

1  cos 2 A
tan A =

1 cos 2A

−±
+

Proof

   (i) We know that  2cos 2A = 1  2sin A.−

 So  22sin A  =  1  cos 2 A−   and  hence  
1  cos 2A

sin A =
2

−± .

(ii)  2 2cos2A 2cos A 1 2cos A 1 cos2A= − ⇒ = +
1  cos2A

cosA
2

+⇒ = ± .

(iii) Assume that  A is not an odd multiple of  
2

π
.  Then

  
2

2
2

2sin A 1 cos 2A 1  cos 2A
tan A tan A

2cos A 1 cos 2A 1 cos 2A

− −= = ⇒ = ±
+ + .

On replacing  A  by  
A

2
  in Theorem 6.3.7,  we get the following.

6.3.9  Corollary

For any real number A,

(i)   
A 1 cos A

sin
2 2

−= ±

(ii)   
A 1 cos A

cos
2 2

+= ±

(iii) If  A  is not an odd multiple of  π,  then  
A 1 cos A

tan
2 1 cos A

−= ±
+

6.3.10  Example

Prove that  (i) 0 5 1
sin18

4

−=  (ii)  0 5 1
cos36

4

+=
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Solution : (i) Write 0A = 18 .   Then  05A = 90 .

Now 0 02 A = 90 3A sin 2 A = sin (90 3A) = cos3A− ⇒ −

             32sin A cos A =  4cos A - 3cos A⇒

 ( )2 02sin A = 4cos A - 3 since cos18 0⇒ ≠

             ( )22sin A = 4 1  sin A 3⇒ − −

             24sin A + 2sin A 1 = 0⇒ − .

This is a quadratic equation in  sin A,  so that

    
2 4 2 4 16 2 2 5

sin A =
2 8 8

b b a c

a

− ± − − ± + − ±= =

   
1 5

4

− ±=

Since A lies in first quadrant  sin A > 0.

Therefore  
5 1

sin A =
4

−
.   That is, sin 0 5 1

18
4

−= .

    (ii)              0cos36 cos 2 A=  (where  A = 180)

   
2

2 5 1
1 2sin A = 1 2

4

 −= − −    
   (from  (i)  above)

  
( )6 2 5 8 6 2 5 5 1

1
8 8 4

− − + += − = = .

6.3.11 Example

Find the values of  (i)  0sin 36        (ii)  0cos18

Solution:  (i)  0 2 0sin 36 1 cos 36= − (we take positive square root because 0sin 36 0> )

           
( )2 6 2 55 1

1 1
4 16

+ += − = −   
  

10 2 5

4

−
= .

   (ii)  Similarly, we can prove that 0 2 0 10 2 5
cos18 1 sin 18

4

+
= − = .

6.3.12  Solved Problems

1. Problem: Find the values of   (i) 
01

sin 22
2

  (ii) 
01

cos 22
2

  (iii) 
01

tan 22
2

   (iv)  
01

cot 22 .
2
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Solution:  If  
01

A = 22
2

,  then  02 A = 45 .  Therefore, from  Theorem  6.3.8,  we get

   (i)        
1 - cos 2A

sin A =  
2

   (since sin A 0> )

    
0 0

1
1

1 1 cos 45 2 12sin 22
2 2 2 2 2

−
− −∴ = = = .

(ii)  
01 1 cos 2A 2 1

cos 22
2 2 2 2

+ += = .

(iii)  
( )

0
2

0

0

1
sin 22 2 11 2 12tan 22 2 1

2 2 11 2 1
cos 22

2

−−= = = = −
−+

.

(iv)  
0

0

1 1 1
cot 22 2 1

2 1 2 1
tan 22

2

= = = +
−

.

2. Problem:  Find the values of

(i) 
01

sin 67
2

(ii) 
01

cos 67
2

(iii)  
01

tan 67
2

(iv) 
01

cot 67
2

Solution:  This is a direct consequence of problem 1 above since 
0 0

01 1
67 90 22

2 2
= − .

3. Problem:  Simplify 
1 cos 2

sin 2

− θ
θ .

Solution:      
1 cos 2

sin 2

− θ
θ

22sin sin
tan

2sin cos cos

θ θ= = = θ
θ θ θ

.

4. Problem:  If  
2 1

cos A
2 2

+= ,  find the value of cos 2A.

Solution:          cos 2A = 2cos2A − 1 = 
2 1 2 1 1

2 1 1
2 2 2 2

 + +− = − =   
.

5. Problem:  If   
5

cos
13

−θ =   and  ,
2

π<θ< π    find the value of sin 2θ.

Solution:     
2

π<θ< π  ⇒  sin θ > 0  and  
5 12

cos sin
13 13

θ = − ⇒ θ =

         ∴   sin 2θ  = 2 sin θ cos θ

 
12 5 120

2
13 13 169

− − = ⋅ =  
.
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6. Problem:  For what values of x in the first quadrant  
2

2 tan

1 tan

x

x−
  is positive ?

Solution:  
2

2 tan
0 tan 2 0

1 tan

x
x

x
> ⇒ >

−

   ⇒  0 2
2

x
π< <   (since x  is in the first quadrant)

   ⇒  0
4

x
π< < .

7. Problem:   If     
3

cos
5

−θ =   and  
3

2

ππ < θ < ,  find the value of tan θ /2.

Solution:              

3
11 cos 5tan

32 1 cos 1
5

+θ − θ= ± = ±
+ θ −

 = +2 .

     Given  
3

2

ππ < θ <   ⇒  
3

2 2 4

π θ π< <

           ⇒   tan θ/2 < 0

            ∴    tan θ/2 = −2.

8. Problem:  If  A is not an integral multiple of  
2

π
  ,  prove that

(i) tan A +  cot A = 2cosec 2 A  (ii) cot A tan A = 2cot 2 A−

Solution: (i) 
2 2sin A cos A sin A + cos A

tan A + cot A =
cos A sin A sin A cos A

+ =

      
1 2 2

2cosec 2 A
sin A cos A 2sin A cos A sin 2 A

= = = =
.

.

   (ii) 
21 1 tan A

cot A tan A = tan A =  2cot 2A
tan A tan A

−− − = .

9. Problem:  If  θ  is not an integral multiple of  
2

π
 ,  prove that

tan � � ��
 �� � ��
 �� ���� �� ��� �+ + + =

Solution:  From problem  8(ii)  above tan A = cot A 2cot 2 A−                  ... (1)

Therefore,  tan � � ��
 �� � ��
 �� ���� ��+ + +

( ) ( ) ( )cot� ���� �� � ��� �� ���� �� � ��� �� ������ ������= − + − + − +   (by  (1)  above)

cot �= .
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10. Problem:  For A∈ R ,  prove that

  (i)  
1

sin A sin + A sin A = sin 3A
3 3 4

   −      
π π

 (ii)  
1

cos A cos + A cos A = cos3A
3 3 4

   −      
π π

and hence deduce that

(iii) 
0 0 0 0 3

sin 20 sin 40 sin 60 sin 80
16

=

(iv)  
2 3 4 1

cos cos cos cos
9 9 9 9 16

π π π π= .

Solution

(i) sin A sin + A sin A
3 3

   −      
.

π π

2 2sin A sin sin A
3

 = −  
.

π
  (from  Theorem  6.2.7 (i)).

( )2

2
sin A 3 4sin A3

sin A sin A
4 4

− = − =  

( )31 1
3sin A 4sin A sin 3A

4 4
= − = .

(ii) cos A cos + A cos A
3 3

   −      
π π

2 2cos A cos A sin
3

 = −  
π

    (from  Theorem  6.2.7 (ii))

( )2

2
cos A 4cos A 33

cos A cos A
4 4

− = − =  

( )31 1
4cos A 3cos A cos3A

4 4
= − = .

(iii) Substituting  A = 200  in (i) above, we get

( ) ( ) ( )0 0 0 0 0 01
sin 20 sin 60 20 sin 60 20 sin 3 20

4
+ − =

0 0 0 01
sin 20 sin 80 sin 40 sin 60

4
=

On multiplying both sides of the above equation by 0sin 60 , we get

0 0 0 0 2 01 1 3 3
sin 20 sin 40 sin 60 sin 80 sin 60

4 4 4 16
= = =.
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Similarly, from  (ii)  above, we get

(iv)
0 0 0 01

cos 20 cos 40 cos80 cos 60
4

=

On multiplying both sides by  0cos60 , we get

0 0 0 0 2 01 1
cos 20 cos 40 cos 60 cos80 cos 60

4 16
= =

That is,  
2 3 4 1

cos cos cos cos
9 9 9 9 16

π π ππ = .

11. Problem:  If  3A  is not an odd multiple of  
2

π
,  prove that

( ) ( )0 0tan A tan 60 + A tan 60 A tan 3A− =. .

and hence find the value of  0 0 0 0tan 6 tan 42 tan 66 tan 78 .

Solution:  From problems 10(i)  and 10(ii)  above, we have

( ) ( )0 0 1
sin A sin 60 A sin 60 A sin 3A

4
+ − =. .       ... (1)

( ) ( )0 0 1
cos A cos 60 A cos 60 A cos3A

4
+ − =. .       ... (2)

On dividing (1)  and (2),  we get

( ) ( )0 0tan A tan 60 A tan 60 A tan 3A+ − =. .       ... (3)

Now, put  0A = 6 in  (3),  we get

0 0 0 0tan 6 tan 66 tan 54 tan18=. .      ... (4)

Again on substituting A = 180  in  (3) above,  we get
0 0 0 0tan18 tan 78 tan 42 tan 54=. .                   ... (5)

On multiplying (4) and (5), we get

( ) ( )0 0 0 0 0 0 0 0tan 6 tan 66 tan 54 tan18 tan 78 tan 42 tan18 tan 54=. . . . . .

Hence, we get 0 0 0 0tan 6 tan 42 tan 66 tan 78 1=. . . .

12. Problem:  For  ,α β ∈ R ,  prove that ( ) ( ) ( )2 2 2cos cos sin sin 4cos
2

α β
α β α β

−
+ + + = .

Solution:  ( ) ( )2 2
cos cos sin sinα β α β+ + +

2 2 2 2cos cos 2cos cos sin sin 2sin sinα β α β α β α β= + + + + +

( ) ( )2 2 2 22 2 cos cos sin sin since cos sin 1 cos sinα β α β α α β β= + + + = = +



 Mathematics - IA270

( )( )2 1 cos α β= + −

22. 2cos
2

α β− =   
  (by  from  6.3.2 (ii) )

24cos
2

α β−= .

13. Problem:  If a, b, c are nonzero real numbers and ,α β  are solutions of the equation

cos� �	
 �a b c+ =  then show that  (i)  
2 2

2
sin sin

b c

a b
α β+ =

+
    and (ii) 

2 2

2 2
sin sin

−=
+

.
c a

a b
α β .

Solution:  cos� �	
 �a b c+ =

cos� �	
 �a c b⇒ = −
2 2 2 2 2cos � � �	
 � �	
 �a c bc b⇒ = − +

( )2 2 2 2 21 sin � � �	
 � �	
 �a c b c b⇒ − = − +

( ) ( )2 2 2 2 2sin � � �	
 � �⇒ + − + − =a b b c c a .

This is a quadratic equation in  sin � , whose roots are  sinα  and  sin β  (since ,α β   are two
solutions of  the given equation).  Therefore,

sin sinα β+ =  sum of the roots 
2 2

2b c

a b
=

+

sin sin.α β     =  product of the roots 
2 2

2 2

c a

a b

−=
+

.

14. Problem:  If   θ  is not an odd multiple  of  
2

π
  and  

1
cos�

2
≠ − ,  prove that

     
sin � �	
 ��

tan �
1 cos� ��� ��

+ =
+ +

.

Solution:  
2

sin � �	
 �� �	
 � ��	
 � ����

1 cos� ��� �� ���� ���� �

+ +=
+ + +

  (from Theorem  6.3.2)

           
( )
( )

sin � � �����

cos� � �����

+
=

+

           
sin� �

sincecos�
cos� �

 = ≠ −  
  =  tan � .

15. Problem:  Prove that  4 4 4 43 5 7 3
sin sin sin sin

8 8 8 8 2

π π π π+ + + = .

Solution:  4 4 4 43 5 7
sin sin sin sin

8 8 8 8

π π π π+ + +
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4 4 4 4sin sin sin sin
8 2 8 2 8 8

     = + − + + + −          
π π π π π ππ

4 4 4 4sin cos cos sin
8 8 8 8

= + + +π π π π

4 42 sin cos
8 8

 = + 
 

π π

( )( )
2

22 2 2 2 2 22 sin cos 2sin cos since 2
8 8 8 8

a b a b ab
   = + − + = + −     

π π π π

2 22 1 2sin cos
8 8

 = −  
π π

2
2 22 4sin cos 2 2sin cos

8 8 8 8
 = − = −   

π π π π

2

2 sin
4

 = −   
π 1 3

2
2 2

= − = .

16. Problem:  If  none of  2A  and  3A  is an odd multiple of π/2, then prove that

tan 3A tan 2A tan A  tan 3A tan 2A tan A= − − .

Solution:  ( ) tan 2 A + tan A
tan 3A = tan 2 A + A

1 tan A tan 2 A
=

− .

( )tan 3A 1  tan A tan 2A tan 2A + tan A⇒ − =

tan 3A tan A tan 2A tan 3A  = tan 2A + tan A⇒ −
tan 3A tan 2A tan A = tan A tan 2 A tan 3A⇒ − − .

Exercise 6(d)

  I. 1. Simplify    (i)  
sin 2

1 cos 2

θ
+ θ (ii)  

3cos cos3

3sin sin 3

θ + θ
θ − θ

2. Evaluate the following

  (i)  6 sin 200 − 8 sin3 200  (ii)  cos2 720 − sin2 540 (iii)  sin2 420 − sin2 120

3. (i)  Express  
sin 4

sin

θ
θ  in terms of cos3 θ and cos θ.

(ii) Express cos6 A + sin6 A  in terms of sin 2A.

(iii) Express  1 cos sin

1 cos sin

− θ + θ
+ θ + θ

   in terms of tan θ/2.
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4. (i)  If  
3

sin ,
5

α =   where 
2

π < α < π, evaluate cos 3α and tan 2α.

(ii) If  
7

cos A
25

=   and  
3

A 2
2

π < < π, then  find  the value of cot A/2.

(iii)  If  0
8

π< θ < ,  show that 2 2 2 2cos 4 2cos( / 2)+ + + θ = θ .

5. Find the extreme values of    (i)  cos 2x + cos2 x. (ii) 3 sin2 x + 5 cos2 x

6. If cos 3 2 sin 6
4

a b
π ≤ θ + θ + + ≤  

, then find the largest value of a and smallest value of b.

7. Find the periods for the following functions

 (i)  cos4 x (ii)  2sin 3cos
4 3

x xπ π   +      
(iii)   sin2 x + 2cos2 x

(iv) 2sin cos
4

x x
π +  

(v)  
5sin 3cos

4sin 2 5cos

x x

x x

+
+

II.

1. (i)  If  0 A
4

π< < ,  and  4
cos A

5
= ,  find the  values of sin 2A and cos 2A.

(ii)  For what values of A in the first quadrant,  the expression  
3

2

cot A 3cot A

3cot A 1

−
−

 is positive ?

(iii) Prove that  
cos3A sin 3A

1 2sin 2A
cos A sin A

+ = +
−

.

 2. (i) Prove that 
cos 2

cot
4 1 sin 2

π θ − θ =  − θ 
  and hence find the value of cot 150.

(ii) If   θ lies in third quadrant and 
4

sin ,
5

−θ =  find the values of  cosec (θ/2) and tan  (θ/2.)

(iii)  If 4500 < θ < 5400 and  
12

sin ,
13

θ =   then calculate sin (θ /2) and cos (θ /2).

(iv)  Prove that  0 0

1 1 4

cos 290 3 sin 250 3
+ = .

3. Prove that

(i)  
sin 2A (1 cos A) A

. tan
(1 cos2A) cos A 2

− =
−

.

(ii)  sin 2 sec 2
. tan

(sec 1) (sec 2 1) 2

x x x

x x
 =  + +  

.

(iii)   
3 3(cos cos3 ) (sin sin 3 )

3
cos sin

θ − θ θ + θ+ =
θ θ

.
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4. (i)  Show that  
cos3A

cos A
(2cos 2A 1)

=
−

.  Hence  find the value of cos 150.

(ii)  Show that  
sin 3A

sin A
1 2cos 2A

=
+

 .  Hence find the value of sin 150.

(iii) Prove that 
sin 2

tan
1 cos 2

αα =
+ α

  and hence  deduce the values of  tan 150  and tan 
01

22
2

.

5. Prove that

(i)   0 0

1 3
4

sin10 cos10
− =

(ii) 0 03 cosec 20 sec 20 4− =

(iii)  tan 90 − tan 270 − cot 270 + cot 90 = 4.

(iv)  If  
sin cos

,
a b

α α=   then prove that  a sin2α + b cos 2α = b.

6. (i) In a ∆ABC;  if  
A 5

tan
2 6

=   and 
B 20

tan ,
2 37

=  then show that 
C 2

tan
2 5

  =  
.

(ii)  If  5
cos

13
θ =   and  2700 < θ < 3600,  evaluate  sin( θ/2)  and  cos (θ/2).

(iii)  If  1800 <  θ < 2700 and 
4

sin
5

−θ =  calculate sin 
2

θ 
  

 and cos 
2

θ 
  

.

7. (i)  Prove that  
2 2 2 23 5 7

cos cos cos cos 2
8 8 8 8

π π π π+ + + = .

(ii) Show that 
4 4 4 43 5 7 3

cos cos cos cos
8 8 8 8 2

π π π π       + + + =              
.

III.

1.   (i) If  
2

tan tan tan 3
3 3

x x x
π π   + + + + =      

, show that tan 3x = 1.

 (ii)   Prove that 
2 3 4 5

sin .sin .sin .sin
5 5 5 5 16

π π π π= .

(iii) Show that  
2 2 2 22 3 9

cos cos cos cos 2
10 5 5 10

π π π π       + + + =              
.
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2. Prove that

(i)  
1 sec8 tan 8

1 sec 4 tan 2

− α α=
− α α

(ii)   
3 7 9 1

1 cos 1 cos 1 cos 1 cos .
10 10 10 10 16

π π π π       + + + + =              

3. Prove that

(i)  
2 4 8 1

cos .cos .cos
7 7 7 8

π π π= .

(ii)
2 3 4 5 1

cos .cos .cos .cos .cos
11 11 11 11 11 32

π π π π π=

4. (i) If  3
cos

5
α =   and 

5
cos

13
β =   and  α, β are acute angles, then prove that

(a)  2 1
sin

2 65

α −β  =  
  and (b)  2 16

cos
2 65

α + β  =  

(ii) If  A is not an integral multiple of π,  prove that

cos A.  cos 2A . cos 4A. cos 8A =  
sin16A

16sin A
  and hence deduce that

    2 4 8 16 1
cos .cos .cos .cos

15 15 15 15 16

π π π π= .

6.4 Sum and product transformations

Making use of the formulae of ( ) ( ) ( )sin A + B , sin A B , cos A + B ,−  ( )cos A B−  etc., in this

section we give formulae to transform the sum (difference) of two trigonometric ratios  into  products and
vice-versa.

6.4.1 Theorem  (Transformation of product into sum)

For  A, B ∈ R   we have

1. 2sin A cos B = ( ) ( )sin A + B + sin A B−

2. 2cos A sin B = ( ) ( )sin A + B sin A B− −

3. 2cos A cos B = ( ) ( )cos A + B + cos A B−

4. 2sin A sin B = ( ) ( )cos A B cos A B− − +

Proof :  We know that, ( )sin A + B sin A cos B cos Asin B= +  and

 ( )sin A B sin A cos B cos A sin B− = −
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On adding these identities, we get

( ) ( )sin A + B sin A B 2sin A cos B+ − = . ... (1)

On subtracting, we get

( ) ( )sin A + B sin A B 2cos A sin B− − = . ... (2)

Similarly,  we have

( )cos A + B cos A cos B sin A sin B= −

( )cos A B cos A cos B sin A sin B− = + .

On adding, these two identities, we get

( ) ( )cos A + B cos A B 2cos A cos B+ − = . ... (3)

On subtracting, we get

( ) ( )cos A + B cos A B 2sin A sin B− − = −  (or)

( ) ( )cos A B cos A + B 2sin A sin B.− − = ... (4)

6.4.2   Note

The four identities in the above theorem can be remembered easily as follows

2sin A cos B = ( ) ( )sin sum + sin difference

2cos A sin B = ( ) ( )sin sum sin difference−

2cos A cos B = ( ) ( )cos sum + cos difference

2sin A sin B = ( ) ( )cos difference cos sum−

In the following theorem we give transformations from sum into products.

6.4.3   Theorem

For any two real numbers C and D, we have

1.    
C + D C D

sin C sin D 2sin cos
2 2

−   + =       

2.     
C + D C D

sin C sin D 2cos sin
2 2

−   − =       

3.   
C + D C D

cos C cos D 2cos cos
2 2

−   + =       

4.   
C D C D

cos C cos D 2sin sin
2 2

+ −   − = −       

Proof :  Write 
C + D

A =
2

  and  C D
B

2

−= .  Then  A + B = C  and A − B = D.

Now,  we get, from Theorem 6.4.1,  all the above 4 transformations.
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6.4.4   Solved Problems

1. Problem:  Prove that 0 0 5 1
sin 78 cos 132

4

−+ = .

Solution:   ( )0 0 0 0 0sin 78 cos132 sin 78 cos 90 42+ = + +
0 0 0 0

0 0 78 42 78 42
sin 78 sin 42 2cos sin

2 2

+ −= − =

0 0 1 5 1 5 1
2cos 60 sin18 2

2 4 4

− −= = ⋅ ⋅ = .

2. Problem:  Prove that 0 0 0 0 1
sin 21 cos9 cos84 cos 6

4
− = .

Solution:  0 0 0 0sin 21 cos9 cos84 cos 6−

( )( )0 0 0 0 01
2sin 21 cos9 2cos 90 6 cos 6

2
= − −

( ) ( )( )0 0 0 0 0 01
sin 21 9 sin 21 9 2sin 6 cos 6

2
= + + − −

( )0 0 0 01 1 1
sin 30 sin12 sin12 sin 30

2 2 4
= + − = = .

3. Problem:   Find the value of 0 0 0sin 34 cos 64 cos 4+ − .

Solution: ( )0 0 0sin 34 cos 64 cos 4+ −
0 0 0 0

0 64 4 64 4
sin 34 2sin sin

2 2

+ −= −     (by Theorem 6.4.3 (4))

 = 
0 0 0sin 34 2 sin 34 sin 30− . .

 =  0  (since 0 1
sin 30 =

2
).

4. Problem:  Prove that 
2 0 2 0 0 0 3

cos 76 cos 16 cos 76 cos 16
4

+ − = .

Solution:  2 0 2 0 0 0cos 76 cos 16 cos 76 cos 16+ −

( ) ( )2 0 2 0 0 01
cos 76 1 sin 16 2cos 76 cos16

2
= + − −

( ) ( ) ( )( )2 0 2 0 0 0 0 01
1 cos 76 sin 16 cos 76 16 cos 76 16

2
= + − − + + −

 = ( ) ( ) ( )0 0 0 0 0 01
1 cos 76 16 cos 76 16 cos92 cos 60

2
+ + − − +

0 0 0 01 1
1 cos92 cos 60 cos92 cos 60

2 2
= + − −
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0 01 1 1
1 cos92 cos92

2 2 4
= + − − (since  0 1

cos 60
2

= )

3

4
= .

5. Problem:  If  a, b ≠  0 and sin sinx y a+ =   and  cos cosx y b+ = ,  find the values of

        (i) tan
2

x y+
,   (ii)  sin

2

x y−
  interms of  a  and  b.

Solution

(i) sin sin 2sin cos
2 2

x y x y
x y a a

+ −   + = ⇒ =      
   ... (1)

          cos cos 2cos cos
2 2

x y x y
x y b b

+ −   + = ⇒ =      
   ... (2)

On dividing (1)  by (2),  we get  tan
2

+ =x y a

b
.

(ii)  First method

 ( ) ( )2 22 2 sin sin cos cosa b x y x y+ = + + +
2 2 2 2sin sin 2sin sin cos cos 2cos cosx y x y x y x y= + + + + +

( )2 2 cos cos sin sinx y x y= + +

 = ( )2 2 cos x y+ −

( )
2 2 2

cos
2

a b
x y

+ −∴ − =

Now  ( )
2 2 2 2

2 2 4
2sin 1 cos 1

2 2 2

x y a b a b
x y

− + − − −  = − − = − =  
2 24

sin
2 2

− −− ⇒ = ±  
a bx y

.

Second method
From (1)  and  (2),  we get

      
2 2 2 2 2 24sin cos 4 cos cos

2 2 2 2

+ − + −       + = +              
x y x y x y x y

a b

     
2 2 24 cos sin cos

2 2 2

− + +   = +     
x y x y x y

     
24 cos

2

− =   
x y

2 2
2cos

2 4

− + ⇒ =  
x y a b

.
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Now,  
2 2 2 2

2 2 4
sin 1 cos 1

2 2 4 4

− − + − −   = − = − =      
x y x y a b a b

Hence   
2 24

sin
2 2

− −−  = ±  
a bx y

.

6. Problem:  Prove that  0 0 0 0 1
cos12 cos84 cos132 cos156

2
+ + + = − .

Solution:  0 0 0 0cos12 cos84 cos132 cos156+ + +

( ) ( )0 0 0 0cos12 cos132 cos84 cos156= + + +
0 0 0 0 0 0 0 0132 12 132 12 84 156 156 84

2cos cos 2cos cos
2 2 2 2

+ − + −= +.

0 0 0 02cos 72 cos 60 2cos120 cos36= +.

0 01 1
2.sin18 2 cos36

2 2
 = + −  

.

0 0 5 1 5 1 1
sin18 cos36 .

4 4 2

   − += − = − = −         
7. Problem:  Show that,  for any  θ ∈ R ,

      
5� ��

4sin cos cos 3� �	
 � �	
 �� �	
 �� �	
 ��
2 2

= − + + .

Solution:  
5� �� �� ��

4sin cos cos 3� � ��	
 ��� �����
2 2 2 2

 =   
( )2 sin 4� �	
� �����= +

2sin 4� ����� ������ �	
�= +

( ) ( ) ( ) ( )sin 4 � � � �	
 �� �� �	
 �� � �	
 �� �= + + − + + − −
sin 7� �	
� �	
 �� �	
 ��= + + − .

8. Problem:  If  none of  A, B,  A + B  is an integral multiple of  π,  then

prove that  
( )
( )

1 cos A cos B cos A + B A B
tan cot

1 cos A cos B cos A + B 2 2

− + −
=

+ − −
.

Solution :    1 cos A cos B cos (A B)− + − +  ( ) ( )1 cos A + B cos A cos B= − − −

2 A + B A + B A B
2 sin 2 sin sin

2 2 2

−= +

A + B A + B A B
2sin sin sin

2 2 2

− = + 
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A + B A B
2 sin 2sin cos

2 2 2
 =  
 

    ... (1)

Now,  ( )1 cos A cos B cos A + B+ − −

( )( ) ( )= 1 cos A + B + cos A cos B− −

2 A + B A + B A B
= 2 sin 2 sin sin

2 2 2

−−

A + B A + B A B
2 sin sin sin

2 2 2

− = − 
 

A + B A B
2sin 2 cos sin

2 2 2
   =       

   ... (2)

From (1)  and  (2),  we get that

         
( )
( )

A + B A B
4 sin sin cos

1 cos A cos B cos A + B 2 2 2
A + B A B1 cos A cos B cos A + B 4 sin cos sin

2 2 2

 
 − + −  =

+ − −  
  

.

    
A B

tan cot
2 2

= .

9.  Problem:  For any α ∈ R , prove that  2 2 2 1
cos cos cos

4 12 12 2
     − + + − − =          

π π πα α α .

Solution:  2 2 2cos cos cos
4 12 12

      − + + − −            
π π πα α α

1 cos 2
2 sin sin

2 12 12 12 12

 + −             = + − + + ⋅ − − +                    

πα
π π π πα α α α

1 sin 2 1 1 1 1
sin 2 .sin sin 2 sin 2 .

2 6 2 2 2 2

+  = + − = + − =  
α πα α α

10. Problem:  Suppose ( )α β−   is not an odd multiple of  
2

π
,  m  is a non zero real number such that

1m ≠ −  and  
( )
( )

sin 1

cos 1

m

m

α β
α β

+ −=
− +

.  Then prove that tan tan
4 4

m   − = +      
.

π πα β .

Solution:  Given that ( )
( )

sin 1

cos 1

m

m

α β
α β

+ −=
− +

 .
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By using componendo and dividendo, we get

   
     

sin cos 1 1 2 1
sin cos ( ) 1 1 2

m m
m m m m

      
  

      

   

   
 (given that 0m  )

         sin cos sin cos        m        

   sin sin
2

m  
        


   

   sin sin
2

  
         


   

2 22 sin cos
2 2

   
          

    
   
   

.m

 
       

           
2 22cos sin
2 2

 
       
   

          
     

      
   

sin cos cos sin
4 4 4 4

       
             

       
. .m    

   

sin cos cos sin
4 4 4 4

       
            

       
.m    

   

(since  cos cos    and  sin sin    )

sin sin
4 4

cos cos
4 4

   
    

    
   

    
   

.m

 
 

 
 

tan tan
4 4

   
      

   
m  

  .

Exercise 6(e)

  I. 1. Prove that 0 0 0sin 50 sin 70 sin10 0   .

2. Prove that 
0 0

0 0
sin 70 cos 40 1
cos50 sin 20 3





.
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3. Prove that 0 0 0cos55 cos 65 cos175 0+ + = .

4. Prove that ( )0 04 cos 66 sin84 3 15+ = + .

5. Prove that 0 0 0 0 3 1
cos 20 cos 40 sin 5 sin 25

4

+− =  .

6. Prove that 0 0 3 5
cos 48 cos12

8

+=. .

II. 1. Prove that 
2 4

cos� ��� � ��� � �
3 3

   + + + + =      
π π

.

2. Prove that 2 2 2 1
sin sin sin

4 12 12 2
     − + + − − =          

π π πα α α .

3. If  
1

sin sin
4

x y+ =  and 
1

cos cos
3

x y+ = , then show that

(i)  
3

tan
2 4

x y+ = (ii)  ( ) 7
cot

24
x y+ =

4. If neither A
12

 −  
π

 nor  A
12
5 −  
π

 is an integral multiple of  π,  prove that

4cos2A
cot A tan A

12 12 1 2sin 2A
   − + + =    −   

π π
.

5. Prove that 0 0 0 04cos12 cos 48 cos 72 cos36= .

6. Prove that 0 0 0 0 0 0sin10 sin 20 sin 40 sin 50 sin 70 sin 80+ + + = + .

III. 1. If 
4

cos cos
5

x y+ =  and  
2

cos cos
7

x y− = ,  find the value of  14 tan 5 cot
2 2

x y x y− ++ .

2. If none of the denominators is zero, prove that

A B
2 cot ,cos A cos B sin A sin B

2
sin A sin B cos A cos B

0 ,

 −    + +   + =     − −    

.
n n n if n is even

if n is odd

3. If  sin A sin B=  and  cos A cos B,=   then prove that  A 2 Bnπ= +  for some integer  n.

4. If cos 0nα ≠  and  cos 0,
2

α ≠  then show that

( ) ( )
( ) ( )

sin 1 sin 1
tan

cos 1 2cos cos 1 2

n n

n n n

α α α
α α α

+ − −
=

+ + + −
.

5. If  ( ) ( )sec � ��� � �����+ + − =α α   and  cos 1,α ≠   then show that  cos� � ���
2

= ± α .
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6. If  none of  x, y, z  is an odd multiple of  
2

π
  and  if

( )sin ,y z x+ −  ( ) ( )sin , sinz x y x y z+ − + −   are in A.P.,  then  prove that

tan x,  tan y,  tan z  are also in A.P.
7. If x, y, z  are non zero real numbers and if

2 4
cos� ��� � ��� �

3 3
x y z

π π   = + = +      
 for some  �∈ R , then

show that 0xy yz zx+ + = .

8. If neither A  nor  A + B  is an odd multiple of  
2

π
 and if  m sin B = n sin (2A  +  B), then prove that

( ) ( ) ( )tan A tan A + Bm n m n+ = − .

9. If ( ) ( )tan A +B tan A B ,λ= −  then show that ( ) ( )1 sin 2B 1 sin 2Aλ λ+ = − .

6.4.5   Identities

When  A, B, C are 3 real numbers satisfying the conditions like A + B + C  = 0  or

A + B + C  =  
2

π
  or  A + B + C =  π   or   A + B + C =  2π   etc.,  we prove some identities relating to the

trigonometric ratios of A, B, C.

1. If A, B, C  are angles in a triangle, that is, if  A + B + C = π,  then we have the  following identities.

A  + B + C  =  π     ⇒      A + B = π − C

      So that, ( ) ( )0sin A + B = sin 180 C = sin C− .  Similarly,

( )sin B + C = sin A  and  ( )sin C + A = sin B .

       Also  ( ) ( )cos A +B = cos C = cosC− −π .  Similarly,

 ( )cos B + C = cos A− and  cos (C + A) =  − cos B.

    2.  If  A + B + C  = 
2

π
,  then we have

 ( )sin A + B = sin C = cosC
2

 −  
π ,  similarly, we get

 ( ) ( ) ( )sin B + C = cos A; sin C + A = cos B; cos A + B =sin C;

 ( ) ( )cos B + C = sin A; cos C + A =sin B .
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3. If  A + B + C =  π,  then  A B C
2 2 2 2

+ + = π   and hence we get that

  
A + B C C

sin sin cos .
2 2 2 2

   = − =      
π

  Similarly,

 
B + C A C + A B A + B C

sin cos ; sin cos ; cos sin
2 2 2 2 2 2

  = = =  

B + C A C + A B
cos sin ;cos sin

2 2 2 2
   = =      

.

4. If  A + B + C = 0 ,  then

 ( ) ( )sin A + B = sin C = sin C− − .  Similarly, we get

 ( )sin B + C = sin A−   and   ( )sin C + A = sin B−

Again,  ( ) ( )cos A +B = cos C = cosC− .  Similarly,

             ( )cos B + C = cos A   and   ( )cos C + A = cos B

We make use of all these identities in the following.

6.4.6   Solved Problems

1. Problem:  If  A, B, C are the angles of a triangle, prove that

(i)  sin 2A + sin 2B +sin 2C = 4 sin A sin Bsin C.

(ii) sin 2A + sin 2B sin 2C = 4cos A cos Bsin C− .
Solution

(i) sin 2A + sin 2 B +sin 2C

( ) ( )= 2sin A +  B cos A B + 2sin C cosC−

( )2sin C cos A B + 2 sin C cosC= −    (since  sin (A + B)  = sin C)

( ){ }2sin C cos A B + cos C= −

( ) ( ){ }2sin C cos A B cos A + B= − −     (since cos (A + B) =  − cos C)

( )= 2 sin C 2sin A sin B

= 4sin A sin B sin C .
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(ii) sin 2 A + sin 2 B sin 2C−

( ) ( )= 2sin A + B cos A B 2sin CcosC− −

( )= 2sin Ccos A B 2 sin C cosC− −

( ){ }= 2sin C cos A B cos C− −

( ) ( ){ }= 2sin C cos A B + cos A + B−

{ }= 2 sin C 2cos A cos B

= 4cos A cos Bsin C .

2.  Problem :   If  A, B, C are angles of a triangle, prove that

(i)  cos 2 A + cos 2B+cos 2C = 4cos A cos Bcos C 1− − .

(ii) cos 2 A + cos 2 B cos 2C = 1 4sin A sin Bcos C− − .
Solution

(i) cos 2 A + cos 2 B + cos 2C

( ) ( ) 2= 2cos A + B cos A B + 2cos C 1− −

( ) 2= 2cos C cos A B + 2cos C 1− − − (since  cos (A + B)  =  −cos C)

( ){ }= 2cos C cos A B cos C 1− − − −

( ) ( ){ }= 2cosC cos A B + cos A + B 1− − −

( )= 2cosC 2cos A cos B 1 = 4cos A cos B cosC 1− − − − .

(ii) cos 2 A + cos 2 B cos 2C−

( ) ( ) ( )2= 2cos A + B cos A B 2cos C 1− − −

( ) 2= 1 2cosCcos A B 2cos C− − −

( )( )= 1 2cosC cos A B +cosC− −

( ) ( ){ }= 1 2 cosC cos A B cos A +B− − −

( )= 1 2cosC 2sin Asin B−

= 1 4 sin Asin B cosC− .

3.  Problem :   If  A, B, C are angles in a triangle,  then prove that

 (i)  
A B C

sin A +sin B+ sin C = 4cos cos cos
2 2 2

.

(ii)  
A B C

cos A + cos B + cos C = 1 + 4 sin sin sin
2 2 2

.
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Solution

(i)  sin A +sin B +sin C

A + B A B C C
= 2sin cos + 2sin cos

2 2 2 2

−   
      

C A B C C
= 2 cos cos + 2sin cos

2 2 2 2

− 
  

 (since  
A + B C

sin cos
2 2

  =  
)

C A B C
= 2cos cos + sin

2 2 2

 − 
    

C A B A + B
= 2cos cos + cos

2 2 2

 −   
        

(since 
A + B C

cos sin
2 2

  =  
)

C A B
= 2cos 2cos cos

2 2 2
 
  

A B C
= 4cos cos cos

2 2 2
.

(ii) cos A + cos B + cos C

2A + B A B C
= 2cos cos + 1 2sin

2 2 2

−    −      
2C A B C

= 1 + 2sin cos 2sin
2 2 2

−  −  

C A B C
= 1 + 2 sin cos sin

2 2 2

 −  −    

C A B A + B
= 1 + 2 sin cos cos

2 2 2

 −   −        

C A B
= 1 + 2sin 2 sin sin

2 2 2
 
  

A B C
= 1 + 4 sin sin sin

2 2 2
.

4. Problem:  If   A + B + C = 
2

π
, then show that

(i)  sin2A + sin2B + sin2C = 1 − 2 sin A  sin B  sin C.

(ii) sin 2 A sin 2 B sin 2C 4 cos A cos B cos C+ + = .
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Solution

(i) 2 2 2sin A sin B sin C+ +

{ }2 2 21
2sin A 2sin B 2sin C

2
= + +

{ }1
1 cos 2A 1 cos 2B 1 cos 2C

2
= − + − + −

( ){ }1
3 cos 2A cos 2B cos 2C

2
= − + +

( ){ }1
3 1 4sin Asin B sin C

2
= − +  (from  problem 3(ii) since 2A + 2B + 2C = π )

( )1
2 4sin A sin B sin C

2
= −

1 2sin A sin B sin C= − .

(ii) since 2 A 2 B 2C+ + = π,   from   problem  3(i),  we get

    sin 2 A sin 2 B sin 2C 4cos A cos B cos C+ + = .

5. Problem:  If   A + B + C = 
3

2

π
,  prove that

  cos 2 A cos 2 B cos 2C 1 4sin A sin B sin C+ + = − .

Solution:  cos 2 A cos 2 B cos 2C+ +

( ) ( ) 22cos A B cos A B 1 2sin C= + − + −

( ) 22 sin C cos (A B) 1 2 sin C= − − + −

(since  cos(A + B)  = cos (
3

2

π
 − C)  =  − sin C)

( ){ }1 2sin C cos A B sin C= − − +

( ) ( ){ }1 2 sin C cos A B cos A B= − − − +     (as above)

( )1 2sin C 2 sin A sin B= −  1 4 sin A sin B sin C= − .

6. Problem:  If   A, B, C  are angles of a triangle ,  then prove that

2 2 2A B C A B C
sin sin sin 1 2cos cos sin

2 2 2 2 2 2
+ − = − .

Solution:  2 2 2A B C
sin sin sin

2 2 2
+ −



Trigonometric Ratios upto Transformations 287

2 2 21 A B C
2sin 2sin 2sin

2 2 2 2
 = + − 
 

( ) ( ) ( ){ }1
1 cos A 1 cos B 1 cos C

2
= − + − − −

( ){ }1
1 cos A cos B cos C

2
= − + +

21 A B A B C
1 2 cos cos 1 2sin

2 2 2 2

+ − = − + − 
 

 
21 C A B C A + B C

2 2sin cos 2sin since cos sin
2 2 2 2 2 2

−   = − − =      

C A B C
1 sin cos sin

2 2 2

− = − +  

C A B A B
1 sin cos cos

2 2 2

− + = − +  
   (as above)

C A B
1 sin 2cos cos

2 2 2
 = −   

A B C
1 2 cos cos sin

2 2 2
= − .

7. Problem:  If   A, B, C  are the angles in a triangle ,  then prove that

A B C A B C
sin sin sin 1 4 sin sin sin

2 2 2 4 4 4
− − −+ + = + π π π .

Solution:  
A B C

sin sin sin
2 2 2

+ +

A B A B A B
2 sin cos cos

4 4 2

+ − +     = +          
A B C

since cos sin
2 2

+ =  

2A B A B A B
2 sin cos 1 2 sin

4 4 4

+ − +     = + −          

A B A B A B
1 2 sin cos sin

4 4 4

 + − +     = + −            
C A B A B

1 2 sin cos cos
4 4 2 4

π π − − +   = + − −        
C B A

1 2 sin 2 sin sin
4 4 4

π π π − − − = + −     
A B C

1 4 sin sin sin
4 4 4

π π π− − −     = +           
.
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8. Problem:  If   A B C 0+ + = ,   then prove that

2 2 2cos A cos B cos C 1 2 cos A cos B cos C+ + = + .

Solution:  2 2 2cos A cos B cos C+ +

( ) ( ) ( )1 cos 2A 1 cos 2B 1 cos 2C

2 2 2

+ + +
= + +

{ }1
3 cos 2A cos 2B cos 2C

2
= + + +

( ) ( ){ }21
3 2cos A B cos A B 2cos C 1

2
= + + − + −

( ){ }21
2 2cosC cos A B 2 cos C

2
= + − +.

(since ( ) ( )cos A B cos C cosC)+ = − =

( )( )1 cos C cos A B cos C= + − +

( ) ( ){ }1 cos C cos A B cos A B= + − + +

( )1 cosC 2 cos A cos B= +

1 2 cos A cos B cos C= + .

9.  Problem:  If   A + B + C = 2S ,   then prove that

( ) ( ) ( ) A B C
cos S A + cos S B + cos S C + cosS = 4cos cos cos

2 2 2
− − − .

Solution:  ( ) ( ) ( )cos S A +cos S B + cos S C + cosS− − −

2S A B B A 2S C C
= 2cos cos + 2cos cos

2 2 2 2

− − − − −     
          

.

C B A A + B C
= 2cos cos + 2cos cos

2 2 2 2

−   
      

  (since 2 S − C  = A + B)

C A B A + B
= 2cos cos + cos

2 2 2

 −   
        

C A B
= 2cos 2cos cos

2 2 2
 
 
 

A B C
= 4cos cos cos

2 2 2
.
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Exercise 6(f )

I. 1. If  A, B, C are angles in a triangle,  then prove that

(i) sin 2A  − sin 2B  + sin 2C  =  4 cos A  sin B  cos C.

(ii) cos 2A − cos 2B  + cos 2C =  1 − 4 sin A  cos B  sin C.

2. If  A, B, C are angles in a triangle,  then prove that

(i)
A B C

sin A +sin B sin C = 4sin sin cos
2 2 2

− .

(ii)
A B C

cos A + cos B cos C = 1 + 4cos cos sin
2 2 2

− − .

3. If  A, B, C  are angles in a triangle, then prove that

(i) 2 2 2sin A +sin B sin C = 2sin A sin B cos C− .

(ii) 2 2 2cos A + cos B cos C = 1 2 sin A sin B cos C− − .

4. If  A + B + C = π,  then prove that

(i) 2 2 2A B C A B C
cos + cos + cos = 2 1 + sin sin sin

2 2 2 2 2 2
 
  

.

(ii) 2 2 2A B C A B C
cos + cos cos = 2cos cos sin

2 2 2 2 2 2
− .

5. In triangle ABC,  prove that

(i)
A B C � � � � � �

cos + cos + cos = 4cos cos cos
2 2 2 4 4 4

− − −

(ii)
A B C � � � � �� � �

cos + cos cos = 4cos cos cos
2 2 2 4 4 4

−−

(iii)
A B C � � � � � �

sin + sin sin 1 + 4 cos cos sin
2 2 2 4 4 4

− − −− = −

6. If  A + B + C = 
2

π
, then prove that cos 2 A + cos 2 B + cos 2C = 1 + 4 sin A sin Bsin C .

7. If  A + B + C = 
3

2

π
, then prove that

 (i) 2 2 2cos A + cos B cos C = 2cos A cos B sin C− − .
(ii) sin 2A + sin 2B sin 2C = 4 sin A sin B cosC− − .

8. If  A + B + C = 0, then prove that

 (i) sin 2 A + sin 2 B + sin 2C = 4 sin A sin B sin C− .

(ii)
A B C

sin A + sin B sin C = 4 cos cos sin
2 2 2

− − .
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9. If  A + B + C + D = 2π, then prove that

 (i)  
A + B A +C A + D

sin A sin B + sin C sin D = 4cos sin cos
2 2 2

− − − .

(ii) ( ) ( ) ( )cos2A +cos2B +cos2C +cos2D = 4 cos A + B cos A + C cos A + D .

10. If  A + B + C  = 2S,  then prove that

(i)  ( ) ( ) S A S B C
sin S A + sin S B + sin C = 4cos cos sin

2 2 2

− −− − .

(ii)  ( ) ( ) S A S B C
cos S A + cos S B + cos C = 1 + 4cos cos cos

2 2 2

− −− − − .

Key Concepts

� For any angle θ,  2 2cos � �	
 � �+ = .

� If  cos� ��≠   then  2 21 tan � ��� �+ =    or  2 2tan � ��� � �= − .

� If  sin � �≠ ,  then  2 21 cot � ����� �+ =   or  2 2cot � ����� � �= − .
� The trigonometric ratios that are positive in different quadrants are given by

Quadrant : I II III IV

Trigonometric : All sine tangent cosine
ratio that is +ve

Remember : All Silver Tea Cups

� ( ) ( ) ( )sin � �	
 �� ��� � ����� ��
 � ��
 �− = − − = − = −

� All trigonometric functions are periodic.

The period of ( ) sinf x x=   is  2π.

The period of ( ) cosf x x=   is  2π.

The period of ( ) tanf x x=   is  π.

� If ( )y f x=   is a periodic function with period k, then ( ) ( )g x f a x b= +  is a periodic function

with period 
k

a
.

� If  ( ), ( )y f x y g x= = are periodic functions with l, m as the periods respectively, then for

, ∈ Ra b , the function h,  defined by

( ) ( ) ( )h x a f x b g x= +

is a periodic function and the l.c.m  of {l, m} (if exists) is a period  of  h.
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� (i) The range of  sin x  or  cos x   is  [−1, 1].

(ii) The range of  tan x  or  cot x   is  R.

(iii) The range of  sec x  or  cosec x   is  ( ] [ ), 1 1,− ∞ − ∪ ∞ .

�� For any two angles A, B

( )sin A B sin A cos B cos A sin B+ = +
( )sin A B sin A cos B cos A sin B− = −
( )cos A B cos A cos B sin A sin B+ = −

( )cos A B cos A cos B sin A sin B− = +

�� If  none of A, B,  A + B,  A − B  is an odd multiple of  
2

π
 ,  then

( ) tan A tan B
tan A B

1 tan A tan B

++ =
−

.

( ) tan A tan B
tan A B

1 tan A tan B

−− =
+

.

�� If none of A, B,  A + B,  A − B  is an integral multiple of  π,  then

( ) cot A cot B 1
cot A B

cot B cot A

−+ =
+

.

( ) cot A cot B 1
cot A B

cot B cot A

+− =
−

.

�� If  A, B,  C∈ R

( ) ( )sin A B C sin A cos B cosC sin A sin B sin C+ + = −∑ .

( ) ( )cos A B C cos A cos B cosC cos A sin B sin C+ + = −∑ .

�� If none of  A, B, A + B + C  is an odd multiple of  
�

2
  and at least one of

A + B,  B + C,  C + A  is not an odd multiple of  
�

2
, then

( ) ( )
( )

tan A tan A
tan A B C .

1 tan A tan B

− Π
+ + =

−
∑

∑
�� If none of A, B, C,  A + B + C  is an integral  multiple of  π  and  at least one of

B + C,  C + A,  A + B  is not an integral multiple of  π,   then

( ) ( ) ( )
( )

cot A cot A
cot A B C

1 cot A cot B

− Π
+ + =

−
∑

∑ .
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�� For any A ∈ R ,

(i)
2

2 tan A
sin 2 A 2sin A cos A

1 tan A
= =

+
.

(ii) 2 2 2cos 2 A cos A sin A 2cos A 1= − = −

       
2

2
2

1 tan A
1 2sin A

1 tan A

−= − =
+

.

(iii) If  A  and  2A  are not  odd multiples of  
�

2
,  then  

2

2 tan A
tan 2 A =

1 tan A−
.

(iv) If  2A  is not an integral multiple  of  π, then  
2cot A 1

cot 2A =
2cot A

− .

��    For any  A ∈ R ,

(i)  3sin 3A = 3sin A 4 sin A− .

(ii)  3cos3A = 4cos A 3cos A− .

(iii)  If  3A  is not an odd multiple of  
�

2
,  then  

3

2

3 tan A tan A
tan 3A =

1 3tan A

−
−

.

(iv)  If  3A is not an integral multiple of  π,  then  
3

2

3cot A cot A
cot 3A =

1 3cot A

−
−

.

�� For any A ∈ R  ,

(i)  
1 cos 2A

sin A = ±
2

− .

(ii) 
1 +cos 2A

cos A = ±
2

.

(iii) If  A is not an odd multiple of  
�

2
,  then 

1 cos 2A
tan A = ±

1 +cos 2A

− .

�� For  any  A ∈ R ,

(i)  
A 1 cos A

sin = ±
2 2

−
(ii) 

A 1 +cos A
cos = ±

2 2
.

(iii) If  A is not an odd multiple of  π,   then  
A 1 cos A

tan = ±
2 1 + cos A

− .

�� Transformations from product to sums are

(i) ( ) ( )2sin Acos B = sin A + B + sin A B−

(ii) ( ) ( )2cos Asin B = sin A + B sin A B− −
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(iii) ( ) ( )2cos A cos B = cos A + B + cos A B−
(iv) ( ) ( )2sin A sin B = cos A B cos A + B− −

�� Transformations from sums to products are

  (i)  
C + D C D

sin C + sin D = 2 sin cos
2 2

−   
      

.

 (ii)  
C + D C D

sin C sin D = 2 cos sin
2 2

−   −       
.

(iii)
C + D C D

cos C + cos D = 2 cos cos
2 2

−   
      

.

(iv)
C + D C D

cos C cos D = 2 sin sin
2 2

−   − −       
.

�� If  A + B + C = π,  then

  (i) sin 2 A sin 2 B sin 2C 4 sin A sin B sin C+ + = .

 (ii) sin 2 A sin 2 B sin 2C 4 cos A cos B sin C+ − = .

(iii) cos 2 A cos 2 B cos 2C 1 4cos A cos B cos C+ + = − − .

(iv) cos 2 A cos 2 B cos 2C 1 4sin A sin B cos C+ − = − .

(v)
A B C

sin A sin B sin C 4cos cos cos
2 2 2

+ + = .

(vi)
A B C

sin A sin B sin C 4sin sin cos
2 2 2

+ − = .

(vii)
A B C

cos A cos B cos C 1 4 sin sin sin
2 2 2

+ + = + .

(viii)
A B C

cos A cos B cos C 1 4 cos cos sin
2 2 2

+ − = − + .

(ix)
A B C A B C

sin sin sin 1 4 sin sin sin
2 2 2 4 4 4

π π π− − −+ + = + . . .

(x)
A B C A B C

sin sin sin 1 4 cos cos sin
2 2 2 4 4 4

π π π− − −+ − = + .

(xi)
A B C A B C

cos cos cos 4 cos cos cos
2 2 2 4 4 4

π π π− − −+ + = .

(xii)
A B C A B C

cos cos cos 4 cos cos cos
2 2 2 4 4 4

π π π+ + −+ − = .



 Mathematics - IA294

Historical Note

In early Indian mathematics, trigonometry formed an integral part of Astronomy.  References to
trigonometric concepts are found in ‘Surya Siddhanta’, Varahamihira’s (505 - 587) ‘Pancha Siddantika’
and Brahmagupta’s (628 A.D.) ‘Brahmasphuta Siddhanta’.  A detailed and systematic study on the
subject was made by ‘Bhaskaracharya’ (12th century A.D.) in his ‘Siddhanta Siromani’.

Aryabhatta and Varahamihira were great astronomers and mathematicians of his times in India.
Varahamihira’s ‘Pancha Siddhantika’  is a monumental work in astronomy.  It gives the description of
the five siddhantas namely, Paulisa, Romaka, Vasista, Soura and Paitamaha of earlier period.  His
knowledge of trigonometry was amazing.  Several of his formulas are the standard results that we find
in modern trigonometry.  The technical terms he used for various trigonometric functions are very
interesting and highly meaningful.  His magnum opus is the well known “Brihat Samhita”.  Besides
being a mathematician - astronomer he was equally a great hydrologist and was an expert in locating the
ground water deposits.

Answers

Exercise 6(a)

    I. 1. (i)    tan θ (ii)  tan θ (iii)  − cosecθ (iv)  sec θ

2. (i)   
1

2
− (ii)  0 (iii)  2 (iv)  1

3. (i)    2 (ii)  
1

2
(iii)  0 (iv)  (a) 2, (b) 

( 3 1)

2

+

4. (i)   
2 2

3
 and 2 2− (ii)  (a) 21 t− − (b)   

21 t

t

− −

(iii)  1 (iv)  
4

,
5

−
 2nd quadrant

5. (i)     2 (ii) 1st quadrant and 
12

13

  II. 2.  (i)  
2

3
(iii)   

2 2

2

2a b

b

−
3.   (i)  

2

3

 III. 2. (iv)  x
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3.     (i)  
2 / 3 2 / 3

1
x y

a b
   + =      

(ii)   
1/ 2 1/ 2

1
x y

a b
   + =      

(iii)  xy = ab; (iv)  2 2 / 3 2 2 / 3( ) ( ) 1x y xy− =

Exercise 6(b)

    I. 1. 2

3

π 2.   
5

π 3.  
5

2

π

4.  π 5.   
6

( 1)(2 1)n n n

π
+ +

6.   sin 3πx

7.  
2

cos
7

π
x

Exercise 6(c)

 I.  1. (i)   
1

2
(ii)   0 (iii)  1 (iv)  4

(v)  
1

2

      2. (i) sin 850 (ii)  2 cos
4

π θ +  
(iii) 

1 tan

1 tan

− α
+ α

      3. (i)  2360 (ii)  
16

65
(iii) 3

(iv)  1 (v) 0 (vi)  0

      5. (i)   
3 3

4 2

+
(ii)  

( 3 1)

4 2

− +
(iii)  

1
sin A

2
(iv) 

3 3

4 2

−

      6. (i)   −5 and + 5 (ii)  2 and 2− +

      7. (i)  [−20, 30] (ii)  [−18, 10]

II. 1. (i)  
3

4

−
 and 

3

5
(ii) 

3

4
(iii)  

4

5

2. (i) sin A cos B cos C + cos A sin B cos C − cos A cos B sin C  + sinA sin B sin C

    (ii) cosA cosB cosC + sinA sinB cos C + sinA cos B sinC − cos A sinB sinC
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Exercise 6(d)

  I. 1. (i) tan θ  (ii) cot3θ

2.   (i)  3 (ii)  
5

4
−  (iii) 

( 5 1)

8

+

3. (i)  (8 cos3 θ − 4 cos  θ) (ii)  
21 sin 2A

4

3− (iii)  tan (θ/2)

4. (i)  
44 24

,
125 7

− (ii)  
4

3

−

5. (i)  −1 and 2 (ii)  3 and 5

6. a = 1 and b = 11

7. (i)  π (ii)  24 (iii)  π

(iv)  π (v)  2π

 II. 1. (i)  
24 7

,
25 25

(ii) 0 < A < π/6 or   π/3 < A < π/2

2. (i)  2 3+ (ii)   
5

2
,  −2 (iii)  

3 2
,

13 13

− −

4. (i) 
3 1

2 2

+
(ii)  

3 1

2 2

−
(iii)  (2 3), ( 2 1)− −

6. (ii) 
2 3

,
13 13

−
(iii)  

2 1
,

5 5

−

Exercise 6 (e)

III.     1.   0
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 Introduction

In earlier classes, we have solved equations

( ) 0f x =   such as  ax + b = 0 ( )0a ≠ ,  ax2 + bx+ c = 0

( )0a ≠   etc.   A solution for the equation f (x) = 0 means

a number 0x   that satisfies the given equation.  That is,

( )0 0f x = .  In this chapter,  we solve equations involving

the trigonometric functions like

    4  sin2 x  −  3  sin x  − 1  = 0

    3  tan2 x  +  4 tan x  − 7  = 0

Brahmagupta
(598(598(598(598(598−−−−−668)668)668)668)668)

Brahmagupta was born in
Bhinmal city in the state of
Rajasthan. Brahmasphuta
Siddhanta is his most famous
work. He lived and worked in the
great astro nomical centre of
ancient India - Ujjain.  He made
significant contributions to
Trigonometry.

“Brahmagupta was the first Indian writer, so far
as we know,  who applied algebra to astronomy to
a great extent”

−−−−− D.E. Smith
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7.1    General solutions of trigonometric equations

In this section we derive general solution of simple trigonometric equations like sin x = k,  cos x = k
etc.

7.1.1 Definition

An equation consisting of the trigonometric functions of a variable angle θ ∈  R is called a

‘trigonometric equation’.

7.1.2 Definition

The values of the variable angle θ, that is any number θ, satisfying the given trigonometric

equation is called a ‘solution’ of the equation.  The set of all solutions of a trigonometric equation

is called the ‘solution set’ of the equation.   A ‘general solution’ of the equation is an expression of

the form  θ
0
  +  f (n)  where  θ

0 
 is a particular solution and f (n)  is a function of  n ∈   Z  involving

π.

7.1.3 Example

The equation  sin θ = 
1

2
  has a solution  θ = 

6

π
.  But 

5 13

6 6
, ...

π πθ =  are also solutions of this

equation.   The general solution is � �
6

n
π= π +   or  ( )5

2
6

n n
ππ + ∈ Z .  If  θ  is a solution of a trigonometric

equation, then  2 n π  +  θ (n ∈  Z)  is also a solution of the same equation since 2π is a period of all
trigonometric functions.

Now we define the concept of the principal solution and give formula (or method) to find general
solution of trigonometric equations.

    7.1.4   Definition

   (a) The function  f (x) = sin x  has domain R and range [−1, 1]. But if we define the function

f : [ ]1 1
2 2

, ,
π π − → −  

 by   f (x)  = sin x,   then  f  is a bijection. Hence, for each  k∈  [−1, 1],

there exists unique  θ ∈  
2 2

,
−π π 

  
 such that  sin θ = k.  This  θ ∈  

2 2
,

−π π 
  

  is called the

‘principal solution’ of the equation sin x = k. If   k ∈  R    [−1, 1], then the equation sin x = k

has no solution.
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For example, the equation sin x = 
3

2
 has principal solution x = 

3

π
 and the equation

sin x = 
1

2

−
  has principal solution x = 

6

−π
    whereas  the   equation    sin x = 2    has  no solution.

Now we give the definitions of principal solutions of other trigonometric  functions in the following.

 (b) Cosine function is a bijection from [0, π] onto [−1, 1].   Hence for k ∈  [ − 1, 1], there exists

unique [ ]0,∈α π  such that cos α = k.  This ‘α’ is called the ‘principal solution’ of the

equation cos x =  k.

 (c) The tangent function is a bijection from 
2 2

,
π π −  

 onto R  so that, for any

k ∈∈∈∈∈  R , the unique  ∈α
2 2

,
π π −  

 such that  tan α  =  k  is the ‘principal solution’ of the

equation  tan x = k.

 (d) If  k ≠  0,  cot x = k  if and only if  tan x = 
1

k
 and  in this case tan x =  

1

k
 has a solution.

Therefore, when k ≠  0, these two equations (cot x = k;  tan x =  
1

k
) have same solution set.

But the principal solution of the equation cot x = k  is the unique real number ( )0,∈α π
such that cot α  = k.

 (e) Sec x = k  iff  cos x = 
1

k
.   The second equation has a solution if and only if  1k ≥ .  In this case,

the solution set of  sec x = k  is the same as the solution set of  cos x  = 
1

k
.  The principal solution

of cos x = 
1

k
 may be referred to as the principal solution of sec x = k.

 (f) Cosec x = k  if and only if  sin x = 
1

k
.   The second equation has a solution if and only if

1k ≥ .   The solution set of  cosec x = k  is the same as the solution set of   sin x = 
1

k
.  The

principal solution of sin x = 
1

k
 may be referred to as the principal solution of  cosec x = k.

7.1.5  General  solution of the equations  sin x = 0,  cos x = 0 and  tan x = 0

(i) If  θ ∈  2 2
, ,

π π −  
  then  sin θ = 0  if and only if  θ = 0.  Hence the principal solution of  sin x = 0  is 0.

Let θ be any real number such that sin θ = 0.   Then there exists an integer k such that



 Mathematics - IA300

( ) � �
2 � � � ����� ��� 	� 
����
���������
����

2 2
k k kπ π

π π
  ≤ < +     

That is, 0 � � �k≤ − π < π.

Since θ  and  θ  −  2 k π   are coterminal angles, we get

0 = sin θ = sin (θ  − 2 k π).

 Hence we get  θ − 2 k π  =  0  or  θ − 2 k π = π.

That is, θ = 2 k π   or   (2 k + 1) π.

Thus we get  sin θ = 0  if and only if  θ = n π  for some integer  n.  Hence the general solution of the

equation  sin x = 0   is   x = n π + 0 = n π,  n ∈  Z.

(ii) Clearly, the principal solution of the equation cos x = 0  is  x = 
2

.
π

  Now,

cos x = 0  sin 0
2

π ⇔ − =  
x      ,

2

π⇔ − = π ∈x n n Z

 ( )2 1
2 2

x n , n x n , n
π π⇔ = π + ∈ ⇔ = + ∈Z Z .

Therefore,  x = (2 n + 1) 
2

π
, n ∈  Z  is the general solution of cos x = 0.

(iii) Clearly, the principal solution of   tan x = 0  is    x = 0.

          tan x = 0  sin 0x x n , nπ⇔ = ⇔ = ∈ Z .

Now,  Therefore, the general solution of the equation  tan x = 0  is  x = n π,  n ∈  Z.

(iv) We know that x =
2

π
 is the principal solution of the equation cot x = 0. Now, for any x ∈ R ,

cot  x =  0  cos 0 (2 1) , .
2

x x n n
π⇔ = ⇔ = + ∈ Z

Therefore, the general solution of the equation cot x = 0 is  (2 1) , .
2

x n n
π= + ∈ Z

 7.1.6  General solution of the equation  sin x = k (−−−−−1 < k < 1)

Let  k ∈  [−1, 1] and  α  be the principal solution of the equation   sin x = k.

(That is, α ∈  
2 2

,
− π π 

  
 and  sin α = k).   Let  θ  be any solution of  sin x = k.
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Now

       sin θ  =  k  =  sin α   sin � �� �α⇔ − =

               
� �

2 cos sin 0
2 2

+ α − α   ⇔ =      

               
�

cos 0
2

+ α⇔ =   or 
�

sin 0
2

− α  =  
.

From 7.1.5 (ii) above, we get that

 ( )� �
cos 0 2 1 ,

2 2 2
n n

+ α + α π  = ⇔ = + ∈  
Z

  ( )� � �n , n⇔ = + π − α ∈ Z

Now, from 7.1.5 (i),

 
� �

sin 0 � �
2 2

n , n n , n
− α − α  = ⇔ = π ∈ ⇔ = π + α ∈  

Z Z .

Thus  �  =  ( )1 where
n

n , nπ + − α ∈ Z .

∴  General solution of the equation sin x = k ( )1 1k− ≤ ≤  is

                      ( )1
n

x n , n= π + − α ∈ Z,
where  α  is the principal (or any) solution of the equation.

Thus the solution set of the equation  sin x = k  is  ( ){ }1
n

n | nπ + − α ∈ Z .

 7.1.7  General solution of   cos x = k (−−−−−1 < k < 1)
Let  k ∈  [− 1, 1] and  α  be the principal solution of the equation  cos x = k.  (That is, α ∈  [0, π] ).

If  θ  is any solution of the equation  cos x = k, then

  cos θ  =  k  =  cos α
      cos� ��� �α⇔ − =

      
� �

2 sin sin 0
2 2

+ α − α   ⇔ =      

      �
sin 0

2

+ α⇔ =    or    
�

sin 0
2

− α =

Now     sin 
�

2

α+
 = 0       ⇔   

�

2

α+
  =  n π,   n ∈  Z    by   7.1.5 (i)

      ⇔   � �= −nπ α .

Again,     sin
�

2

− α
 = 0     ⇔   

�

2

− α
  =  n π,   n ∈  Z   as  above

      ⇔   � � n= π + α,   n ∈  Z

Hence, � � n= π ± α   where n ∈  Z.
Therefore, general solution of the equation  cos x = ( )1 1k k− ≤ ≤   is  2x n , nπ α= ± ∈ Z .

where  α  is the principal (or any) solution.
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Thus, the solution set of the equation  cos x = k  is  { }2 n n ,π ± α ∈ Z   where  α  is the principal
solution.

7.1.8  General solution of the equation  tan x = k (k ∈ ∈ ∈ ∈ ∈ R)

Let  k ∈  R  and α be the principal solution of tan x = k. observe  that 
2 2

, .
 − π π α ∈     

  If  θ

is any solution of  tan x = k,  then

tan θ  =  k  =  tan α  sin sin
sin cos cos sin 0

cos cos

θ α⇔ = ⇔ θ α − θ α =
θ α

.

( )sin � � � nα α π⇔ − = ⇔ − =  where n ∈ Z   from 7.1.5(i)

           � nπ α⇔ = + where n ∈ Z
Hence, the general solution of the equation tan x = k  (k ∈  R) is  x  =  n π  + α,  n ∈  Z,

where  α  is the principal (or any) solution of tan x = k.

Thus the solution set of the equation  tan x = k is  { }n nπ + α ∈ Z ,  where  α  is the principal

solution of  tan x = k.

7.1.9 General solution of the equation  sec x = k ( ] [ )( )1 1k , ,∈ − ∞ − ∪ ∞

As mentioned in 7.1.4 (e), the solution set of  sec x = k  is nonempty only when 1k .≥    Now let

( ] [ )1 1k , ,∈ − ∞ − ∪ ∞  and  α  be the principal solution of 
1

cos x
k

=   so that 0
2 2

, ,
π π   α ∈ ∪ π     

and  
1

cos
k

α =   and  hence  sec α = k.   Now, for any  x ∈  R,

sec x = k  
1

cos 2x x n
k

π α⇔ = ⇔ = ±  (by  7.1.7)

Thus the general solution of the equation  sec x = k  is  2 n , nπ ± α ∈ Z ,  where  α  is the

principal (or any) solution of  cos x = 
1

k
 .

7.1.10 General solution of the equation  cosec  x  =  k   ( ] [ )( )1 1k , ,∈ −∞ − ∪ ∞

As mentioned in 7.1.4 ( f ), the solution set is nonempty only when 1k ≥ .  Now let

( ] [ )1 1k , ,∈ −∞ − ∪ ∞  and  α  be the principal solution of 
1

sin x
k

= .  That is,

0 0
2 2

, ,
π π   α ∈ − ∪     

 and  sin α = 
1

k
.  Then  cosec α = k  (note that  k ≠ 0).  Now, for any  x ∈  R,
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( )1
cosec sin 1 ,

n
x k x x n n

k
= ⇔ = ⇔ = π + − α ∈ Z   (by 7.1.6)

Thus the general solution of the equation  cosec x = k  is  ( )1
n

n , nπ + − α ∈ Z ,

where α  is the principal (or any) solution of   sin x = 
1

k
.

7.1.11  General solution of the equation  cot x = k ( k ∈  R)

As in 7.1.4 (d)  the equation cot x = k  has a solution for all  k ∈ R.

Case (i) :  Let  k ∈  R  {0} and  α  be the principal solution of  cot x = k .

     So that ( )0,α π∈  and cot α = k.  Now, for any  x ∈  R,

1
cot tan ,x k x x n n

k
= ⇔ = ⇔ = π + α ∈ Z .

Case (ii) :  Let  k = 0 and  α  be the principal solution of  cos x = 0 (i.e.  cot x = 0).  Then

α ∈  (0, π)  and  cos α = 0.   Hence 
2

.
πα =    Now,  for any  x ∈  R,

( )cot 0 cos 0 2 1 ,
2

x x x n n
π= ⇔ = ⇔ = + ∈ Z

      , .
2

x n n n
π⇔ = π + = π + α ∈ Z

Thus, in either case, the general solution of the equation  cot x = k  is  n π + α, n ∈ Z ,  where α is

the principal (or any) solution of  cot  x = k.

7.1.12  Note

1. The solution sets of the  trigonometric  equations discussed above remain unchanged even if we take

any solution in place of α instead of the principal solution.

2. The principal solutions and general solutions of the  trigonometric  equations given above are summarized

in  table 7.1.
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Table 7.1

Serial The equation Range of k The interval in which the General Solution

No. f(x) = k principal solution a lies

1. sin  x = k [−1, 1] ,
2 2

π π −  
n π + (−1)n α, n ∈  Z

2. cos x = k [−1, 1] [0, π] 2n π +  α, n ∈  Z

3. tan x = k R ,
2 2

π π −  
n π +  α, n ∈  Z

4. cosec x = k ( , 1] [1, )−∞ − ∪ ∞ ,
2 2

π π −  
  {0} n π + (−1)n α, n ∈  Z

5. sec x = k ( , 1] [1, )−∞ − ∪ ∞ [0, π]  2

π 
 
 

2n π +  α, n ∈  Z

6. cot x = k R (0, π) n π +  α, n ∈  Z

7.1.13  General solution of the equation  sin2 x = k (k  ∈[0, 1] )

The equation  sin2 x = k  has a solution if and only if  [ ]0, 1k ∈ .  In this case there exists  α ∈ R   such

that  2sin kα = .   Now

Method (i) :  2 2 2 2 2sin sin sin 1 2 sin 1 2 sinx k x x= ⇔ = α ⇔ − = − α
     cos 2 cos 2x⇔ = α
     2 2 2 ,x n n⇔ = π ± α ∈ Z

     ,x n n⇔ = π ± α ∈ Z .

Thus,  the general solution of the equation  [ ]( )2sin 0, 1x k k= ∈   is  ,n nπ ± α ∈ Z  (where  α
is a solution of  sin2 x = k).

Method(ii) :  2 2sin sin sin sinx k x= = α ⇔ = α

or  ( )sin sin sinx = − α = −α   so that the solution set of 2sin x k=  is the union of the solution sets of

sin sinx = α   and  ( )sin sinx = − α  .   The general solution of  sin sinx = α   is  ( )1 ,
n

n nπ + − α ∈ Z

and the general solution of ( )sin sinx = −α  is ( ) ( ) ( ) 1
1 1 ,

n n
n n n

+π + − −α = π + − α ∈ Z .

Thus the general solution of 2sin x k=  is n π ± α (where α is a solution).

7.1.14  Note
As above we can prove that the general solutions of the equations

(i)   2cos x k=    is  ,n nπ ± α ∈ Z    if  [ ]0, 1k ∈   and  2cos α = k .

(ii)  2tan x k=   is   ,n nπ ± α ∈ Z   if  [0, )k ∈ ∞   and  2tan α = k .
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7.2  Simple trigonometric equations - solutions

In this section we solve a more general trigonometric equation.

7.2.1  General solution of the equation    a cos x  +  b sin x = c

when   a, b, c ∈  R  such that  a2 + b2 ≠ 0  and   a + c ≠ 0.

Method (i):  Given equation is  cos sina x b x c+ =

2

2 2

1 tan 2 tan
2 2

1 tan 1 tan
2 2

x x

a b c
x x

   −   
⇒ + =   

   + +
   

 ( 0, (2 1) )π+ ≠ ≠ +�a c x n

2 21 tan 2 tan 1 tan
2 2 2

x x x
a b c

   ⇒ − + = +      

( ) ( )2tan 2 tan 0
2 2

x x
a c b c a⇒ + − + − = .

This is a quadratic equation in  tan
2

x
,  so that

  
( )

( )

2 2 22 4 4
tan

2 2

b b c ax

a c

± − −
=

+

 ( )
2 2 2b b c a

a c

± − +
=

+

∴   The given equation has solution if and only if  2 2 2c a b≤ +

  i.e., 
2 2 2 2c ,a b a b ∈ − + +  

          If 2 2 2 2,c a b a b ∈ − + +   , then we solve tan
2

x
k=  where

         
2 2 2b b a c

k
a c

± + −
=

+
.

Let  
2 2 2 2 2 2

1 2,
b b a c b b a c

k k
a c a c

+ + − − + −
= =

+ +
.

If  α
i
  is  the principal solution of  tan

2 i
x

k=  , α
i
 lies in the interval ,

2 2

π π −  
,

and the general solution is given by
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           ,
2 i
x

n n= π + α ∈ Z   (i = 1, 2)

    or    2 2 ,ix n n= π + α ∈ Z  (i = 1, 2).

Method (ii):  As observed above, the given equation has a real solution if and only if

2 2 2 2,c a b a b ∈ − + +   .

That is  2 2≤ +c a b   or   c ≤ r   where  2 2r a b= +   1
c

r
⇒ ≤ .

Choose  β  such that  cos
a

r
β =   and   sin

b

r
β =    ( If  a ≠  0,  β  is  chosen such that  tan

b

a
β =

since the range of  tan x  is  R.  If  a = 0  then  b = r± .  Hence we take  β  to be  
2

π±   accordingly).  Then

cos sina x b x c+ =

 ( )cos cos sin sinr x x c⇒ β + β =

 ( )cos
c

x
r

⇒ − β =   and  1
c

r
≤ .

        Hence there exists [ ]0,α∈ π  such that cos .
c

r
α =  That is, ( )cos cos .x − β = α  Thus x α β= +

is the principal solution.  Hence  2 ,x n nπ α β= ± + ∈ Z  is the general solution.

7.2.2 Note: The above equation can also be solved by choosing a φ ∈ R   such that  sina r= φ  and

cosb r= φ.   But it is same as second method in which  �
2

π= − φ.

7.2.3   Solved Problems

1. Problem:  Solve  
1

sin
2

x = .

Solution

Method 1:  
1

sin sin
42

x
π= =   and  ,

4 2 2

π π π ∈ −  
.   Thus by 7.1.6,  

4
x

π=   is the principal solution

and ( )1 ,
4

n
x n n

π= π + − ∈ Z   is the general solution.  Therefore, the solution

set = 
7 5 3... ..., , , ,
4 4 4 4

− π − π π π 
 
 

.
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Method 2:  Put  a = 0,  b = 1, c = 
1
2

  7.2.1 (Method (ii)).   Then 
2


   and  
4


  .   Hence

2 ,
4 2

x n n 
     Z .  It can be observed that here also the solution set

= 7 5 3... ..., , , ,
4 4 4 4

      
 
 

.

2. Problem:   Solve  5 1sin 2θ
4


 .

Solution:  5 1sin 2θ sin
4 10
 

  and  ,
10 2 2
   
  
 

.

      2θ
10


    and  hence 
20
    is the principal solution.

General solution is given by   2θ 1 ,
10

nn n
    Z   or

         θ 1 ,
2 20


   

nn
   n Z .

Note:  It is important to note that in the above problem we obtained the principal solution as  2θ
10


  or

θ
20


 .   Then we get  general solution for  2   only  (not for since  we  are solving the equation

sin 2θ  k . That means general solution is  2θ 1 ,
10

nn n
    Z   but not   θ 1

20
nn 

    .

3. Problem:  Solve  2tan θ 3 .

Solution:  2tan θ 3 tan θ 3 tan
3
 

      
 

  and  ,
3 2 2
    

   
 

.

3


     are the principal solutions of the given equation.  General solution is given by

,
3

n n
  Z .

4. Problem:  Solve  3cos 4 sinec x x .

Solution:  Given that  2 34sin 3 sin
2

x x    .

   Principal solutions are 
3

x 
  .

     General solution is given by ,
3

x n n
   Z .



 Mathematics - IA308

5. Problem:   If  x   is acute and  ( ) ( )0 0sin 10 cos 3 68x x+ = − ,   find  x in degrees.

Solution:  Given that

( ) ( ) ( ) ( )0 0 0 0 0sin 10 cos 3 68 sin 90 3 68 sin 22 3+ = − = + − = +x x x x

    ( ) ( ) ( )0 0 010 180 1 22 3
n

x n x∴ + = + − +

If   n  =  2k,  then   ( )0 0 010 2 180 22 3x k x+ = + +

( ) ( ) ( )
0 0

0 0 0 0
360 12

2 360 12 180 6
2

k
x k x k

− −
⇒ = − − ⇒ = =− − .

This is not valid because for any integer k,  x  is not acute.

If  n  = 2k  + 1,  then  ( ) ( )0 0 010 2 1 180 22 3x k x+ = + − −

( ) ( )0 0 0 04 2 1 180 32 2 1 45 8x k x k⇒ = + − ⇒ = + − .

Now,  00 37k x= ⇒ = ,   for  other integral values of  k,  x  is not  acute.

∴    The  only solution  is  037x = .

6. Problem:  Solve cos 3� �� ��= .

Solution:  cos 3� �� �� ��� ��
2

π = = −  

3� � �� 	
2

n n
π ⇒ = π ± − ∈  

Z

( )5� � �
2

n
π⇒ = +   or   ( )� � � 	

2
n n

π= − ∈ Z

( )� � � 	
10

n n
π⇒ = + ∈ Z    or   ( )� � � 	

2
n n

π= − ∈ Z .

7. Problem:   Solve 2 27 sin � ���� � �+ = .

Solution:  Given that  2 27 sin � ���� � �+ =

( )2 27sin � � � �� � �⇒ + − =
2 1

4sin � � �� �
2

⇒ = ⇒ = ± .

∴   Principal solutions are  �
6

π= ± ,

and the general solution is given by  � 	
6

n n
π= π ± ∈ Z .
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8. Problem:   Solve  22 cos � � �� � � �− + = .

Solution:  22 cos � � �� � � �− + =
22sin � � �� � � �⇒ + − =

( ) ( )2sin � � �� � � �⇒ − + =

3
sin �

2
⇒ =    (since sin � �= −   cannot  happen)

�
3

π∴ =   is the principal solution and general solution is  given  by

( )� � 	
3

n
n n

π= π + − ∈ Z .

9. Problem:  Find all values of  x ≠ 0 in  ( ),π π−   satisfying the equation

        
21 3cos cos ...8 4x x+ + + = .

Solution: For x ≠  0,   we have  cos 1x < .

Then  2 1...1 cos cos
1 cos

x x
x

+ + + =
−

 .

Now,  
2 3 2 21 cos cos ... ...8 4 8 1 cos cos 2x x x x+ + + = = ⇒ + + + = .

1 1
2 cos

1 cos 2
x

x
⇔ = ⇔ =

−

3
x

π⇔ =   or   
3

− π
   (since  ( , )x π π∈ − ) .

10. Problem:  Solve  tan 3cot 5secθ + θ = θ.

Solution:  First observe that the equation is valid  only  when  cos 0θ ≠  and  sin 0θ ≠ .
  Now        tan θ + 3 cot θ                = 5sec θ

⇒   sin2 θ + 3cos2 θ           = 5 sin θ

⇒   sin2 θ + 3 − 3 sin2 θ         = 5 sin θ

⇒   2 sin2 θ + 5 sin θ  − 3      = 0

⇒  (2 sin θ − 1)  (sin θ + 3)   = 0

⇒   sin θ = 1/2   (since  sin 3θ = −   has no solution as  sin 1θ ≤ always)

∴   Principal solution  is 
6

πθ =  and general solution is ( )1 ,
6

n
n n

ππ + − ∈ Z .
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11. Problem: Solve  21 sin � ��� � ����+ = .

Solution:  Clearly cos� �	≠  so we divide both sides by 2cos θ , and  we get
2 2sec � 
� � � 
� �+ = .

22 tan 3 tan 1 0⇔ θ − θ + =
( ) ( )2 tan 1 tan 1 0⇔ θ − θ − =

tan � �⇔ =   or   
1

tan �
2

= .

Now  tan � �=  when �
4

π=  and the general solution is � 	
4

n n
π= π + ∈ Z .

Let α  be the  principal solution of  
1

tan �
2

= .

Then the general solution is  nθ = π + α.

12. Problem:  Solve  ( )2 sin cos 3x x+ = .

Solution:  On dividing both sides by 2,  we get

                        
1 1 3

sin cos
22 2

x x+ =

3
sin sin cos cos

4 4 2
x x

π π⇒ + =

3
cos

4 2
x

π ⇒ − =  

∴   The principal solution  is  
4 6

x
π π− =    i.e.,  

5

12
x

π= .

The general solution is given by,  2 ,
4 6

x n n
π π− = π ± ∈ Z

or  2
12

x n
5π= π +   or   2 ,

12
x n n

π= π + ∈ Z .

13. Problem:  Find general solution of  θ  which satisfies both the equations

1
sin

2
θ= −   and  

3
cos

2
θ= − .

Solution:  Given 
1

sin sin
2 6

πθ = − = −

        sin = sin 2
6 6

π π   = π + π −      

         
7 11

sin = sin
6 6

π π= .
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Therefore considering only angles in (0, 2π),  the only values of θ satisfying 
1

sin
2

θ= −  are 
7 11

or
6 6
π π

.

3
cos cos

2 6

πθ = − = −

         cos or cos
6 6
π π   = π − π +      

        
5 7

cos or cos
6 6

π π= .

∴  Considering only angles in (0, 2π), the only values of  θ satisfying 
3

cos
2

θ= −  are 5 7
or

6 6
π π.

Thus 
7

6
π

 is the only angle which satisfies both the equations.

Hence general solution for θ  is

7
2 , .

6

πθ = π+ ∈n n Z

14. Problem:  If  1 2,θ θ   are solutions of the equation  cos 2 sin 2a b cθ + θ = , 1 2tan tanθ ≠ θ   and

0a c+ ≠ ,  then  find the values of

(i)  1 2tan tanθ + θ  (ii) 1 2tan tanθ θ.

Solution:  cos 2 sin 2a b cθ + θ =

2

2 2

1 tan � � 
� �

1 tan � � 
� �
a b c

   −⇔ + =   + +  

2 2tan � � 
� � 
� �⇔ − + = +a a b c c

( ) ( )2tan 2 tan 0a c b c a⇔ + θ − θ + − =        ... (1)

This is a quadratic equation in tan θ .  Since  1 2,θ θ   are the solutions of the given equation, we get

that  1 2tan , tanθ θ  are the solutions  of  (1) .

∴   1 2
2

tan tan
b

a c
θ + θ =

+

and 1 2tan � 
� �
c a

c a

−=
+

. .
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15. Problem:  Solve 4sin sin 2 sin 4 sin 3x x x x= .

Solution:   ( )sin 3 2sin 2sin 2 sin 4x x x x=

    ( )2sin cos 2 cos6x x x= −

    2cos 2 sin 2cos 6 sinx x x x= −
    sin 3 sin 2cos 6 sinx x x x= − −

2cos 6 sin sin 0x x x⇒ + =

( )sin 2cos6 1 0x x⇒ + =

sin 0x⇒ =   or  
1

cos 6
2

x = − .

(i)  sin 0 0x x= ⇒ =  is the principal solution and  ,x n nπ= ∈ Z  is the general solution.

(ii)  
1 2

cos 6 6
2 3

x x
π= − ⇒ =   or  

9
x

π=   is the principal  solution.

The general solution is given by 
2

6 2 ,
3

x n n
π= π ± ∈ Z

  ,
3 9

n
x n

π π= ± ∈ Z .

16. Problem:   If  0 ,θ π< <   solve  
1

cos cos 2 cos3
4

θ θ θ =. .

Solution:   1 4cos cos2 cos3= θ θ θ

          ( )2cos2 2cos3 cos= θ θ θ

          ( )2cos 2 cos 4 cos 2= θ θ + θ

      22cos 4 cos 2 2cos 2= θ θ + θ

      2cos 4���� �� ��� �� �⇒ + =

      ( )cos 4� ���� �� � �⇒ + =

         cos 4 0⇒ θ =   or   
1

cos 2
2

θ = − .

(i)  cos 4� �=  4�
2

π⇒ =   is the principal solution and

                    4� �
2

π= π ±n is the general solution

  so that   � 	
2 8

= ± ∈ Z
n

n
π π   is the general solution

       Put   n =  0, 1, 2.  We get 
3 5 7

, , ,
8 8 8 8

π π π π
  are the solutions that lie in (0, π).
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(ii) 
1 2

cos 2� ��
2 3

π= − ⇒ =   is the principal solution and

                             
2

2� � 	
3

n n
π= π ± ∈ Z   is the general solution

           � 	
3

n n
π⇒ = π ± ∈ Z  is the general solution

       Put  n  = 0, 1  we get  
2

,
3 3

π π
  are the solutions that lie in the interval (0, π).  Hence the solutions of the

given equation in (0, π) are 
3 5 2 7

, , , , ,
8 3 8 8 3 8

π π π π π π
.

17. Problem:  Given p ≠ +q,  show that the solutions of cos pθ + cos qθ = 0 form two series each of
which is in A.P.   Find also the common difference of each  A.P.

Solution:  cos pθ + cos qθ  = 0

2 cos cos 0
2 2

   + −   ⇒ θ θ =            
p q p q

cos 0 or cos 0
2 2

+ −   ⇒ θ = θ =      
p q p q

cos
2

+ ∴ θ  
p q

0 = cos
2

π=

2

+ ⇔ θ  
p q

    2
2

π= π ±n  (4 1)
2

π= ±n

             ⇔                    
(4 1)

= ,
( + )

± πθ ∈n
n

p q
Z

The solutions

3 5
, , , , ...

p q p q p q p q

π π π π−
+ + + +

 form an A.P. with common difference 
2

( )p q

π
+

 .

Similarly the solutions of  cos 0
2

−  θ =  
p q

 are

3 5
, , , , ....

p q p q p q p q

π π π π−
− − − −

 which form another A.P. with common difference 
2

( )p q

π
−

.
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18. Problem:  Solve  sin 2 cos 2 sin cosx x x x− = − .

Solution:   ( ) ( )sin 2 sin cos 2 cos 0x x x x− − − =
3 3

2cos sin 2sin sin 0
2 2 2 2

x x x x⇒ + =

3 3
2sin cos sin 0

2 2 2

x x x ⇒ + =  

sin 0
2

x⇒ =    or    
3 3

cos sin 0
2 2

x x+ =

sin 0
2

x⇒ =   or  
3

tan 1
2

x = − .

(i)  sin 0 ,
2 2

x x
n nπ= ⇒ = ∈ Z  2 ,x n nπ⇒ = ∈ Z .

(ii) 
3 3

tan 1
2 2 4

x x π= − ⇒ = −   is the principal solution and the general solution is

  
3

2 4

x
n

ππ= −    or   
2

,
3 6

n
x n

π π= − ∈ Z .

∴   Solution set for the given equation is  { }2 | 2 |
3 6

n n n n
π ππ  ∈ ∪ − ∈ 

 
Z Z .

Exercise 7(a)

 I. 1. Find the principal solutions  of the angles in the equations

(i) 2cos2 θ = 1 (ii) 3 sec 2 0θ+ =

(iii) 3tan2 θ = 1

2. Solve the following equations

 (i)  
5 1

cos 2 , [0, 2 ]
4
+θ = θ∈ π (ii)  2tan 1, [ , ]θ = θ∈ −π π

(iii)  
3

sin3 , [ , ]
2

θ = θ∈ −π π (iv)  
2 3

cos , [0, ]
4

θ = θ∈ π

(v)  22sin sin , (0, )θ = θ θ∈ π

3. Find general solutions of the following equations.

(i)   
3 1

sin � 	 ����
2 2

= = − (ii) 
1 2

tan , sec
3 3

x x= − =

(iii)  cosec� �	 ��
 � �= − = −
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4. (i)   If  sin (2700 − x) = cos 2920, then find  x  in (0, 3600).

(ii)  If  x < 900 and sin (x + 280) = cos (3x − 780), then find x.

5. Find  general solutions of the following equations.

(i)   2 sin2 θ = 3 cos θ. (ii)   sin2 θ − cos θ = 
1

4

(iii)  5 cos2 θ + 7 sin2 θ = 6 (iv)  3 sin4 x + cos4 x = 1

II. 1. Solve the following equations and write general solutions.

(i)   22sin 4 5cosθ − = θ (ii)  2 3 sec 4cos 2 3x x+ − =

(iii)  2 cos2 θ + 11 sin θ = 7 (iv)  6 tan2 x − 2 cos2 x = cos 2x

(v)   24cos 3 2( 3 1) cosθ+ = + θ (vi)  1 + sin 2x = (sin 3x − cos 3x)2

(vii)  2 sin2 x + sin2 2x  = 2

2. Solve the following equations

(i)   3 sin cos 2θ − θ = (ii)  cot cosec 3x x+ =

(iii)  sin 3 cos 2x x+ =

3. Solve the following equations

  (i) tan sec 3, 0 2θ+ θ = ≤ θ ≤ π

 (ii)  
3

cos3 cos 2 sin sin ; 0 2
2 2

x x
x x x+ = + ≤ ≤ π

(iii)  
2cot ( 3 1) cot 3 0; 0

2

π− + + = < <x x x

(iv)  sec cos5 1 0; 0 2⋅ + = < < πx x x

III. 1. (i) Solve sin x + sin 2x + sin 3x  = cos x + cos 2x + cos 3x.

 (ii)  If  
2

3
x y

π+ =  and sin x + sin y = 
3

2
 find x and y.

(iii)  If  sin 3x  + sin x + 2 cos x = sin 2x + 2 cos2 x, find the general solution.

 (iv) Solve cos 3x − cos 4x = cos 5x − cos 6x.

2. Solve the following equations.

  (i) cos 2θ + cos 8θ = cos 5θ  (ii)  cos θ − cos 7θ = sin 4θ

(iii)  sinθ + sin 5θ = sin 3θ,  0 < θ < π.

3. (i)  If tan pθ = cot qθ, and  ( )p q≠ −  show that the solutions are in A.P. with common difference

    
p q

π
+

.
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 (ii) Show that the solutions of   cos pθ = sin qθ form two series each of which is an
A.P.  Find also the common difference of each A.P.  (p ≠ +q)

(iii) Find the number of solutions of the equation  tan x + sec x = 2 cos x;

cos x ≠  0, lying in the intervial (0, π).

(iv) Solve sin 3α = 4 sin α  sin(x + α) sin (x − α)  where  α ≠  nπ, n ∈  Z.

    4. (i) If tan (π cos θ)  =  cot (π sin θ),  then prove that 
1

cos
4 2 2

π θ − = ±  
.

(ii) Find the range of  θ  if  cos θ + sin θ is positive.

5. If  α, β are  the solutions of the equation a cos θ + b sin θ = c, where a, b, c ∈  R
and if a2 + b2 > 0, cos α ≠  cos β and sin α ≠  sin β   then show that

(i) 2 2

2
sin sinα + β =

+
bc

a b
(ii)  2 2

2
cos cosα + β =

+
ac

a b

(iii)
2 2

2 2
cos .cos

−α β =
+

c b

a b
(iv) 

2 2

2 2
sin .sin

−α β =
+

c a

a b

  6. (i) Find the common roots of the equations  cos 2x + sin 2x = cot x and 2 cos2x + cos22x = 1.

(ii) Solve the equation 26 cos 7sin cos 0− + + =x x x .

(iii) If  |tan x | = tan x + 
1

cos x
  and  x ∈   [0, 2π],  find the value of  x.

Key Concepts

� If  [ ]1, 1k ∈ − ,  then the principal solution θ of sin x k=  lies in ,
2 2

π π −  
 and the general solution

is given by ( )1 �
n

nπ + − , n∈ Z .

� If [ ]1, 1k ∈ − , then the principal solution θ of sin x k=  lies in [ ]0, π  and the general solution is

given by 2 �nπ ± , n∈ Z .

� If  k ∈ R , then the principal solution θ of tan x k=  lies in ,
2 2

−π π 
  

 and the general solution is

given by �nπ ± , n∈ Z .

� If ( , 1] [1, )k ∈ −∞ − ∪ ∞ , then the principal solution θ of cosec x = k  lies in [ , 0) (0, ]
2 2

π π− ∪

and the general solution is given by ( 1) �	nn nπ + − ∈ Z .
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� If ( , 1] [1, )k ∈ −∞ − ∪ ∞ , then the principal solution �  of sec x = k  lies in [0, ) ( , ]
2 2

π π∪ π

and the general solution is given by 2 �nπ ± , n∈ Z .
� If  k ∈ R ,  then the principal solution θ of cot x = k  lies in (0, π) and the general solution is given

by �	n nπ + ∈ Z .

� If  [0, 1]k ∈ , then the general solution of the equation 2sin x k=  is ,n nπ ± α ∈ Z
(where 2sin kα = ).

� If [0, 1]k ∈ , then the general solution of the equation 2cos x k=  is ,n nπ ± α ∈ Z
(where 2cos kα = ).

Similarly, we get that the general solutions of the equations 2tan x k= , 2cot x k= , 2sec x k= ,
2cosec x k=  are of the form nπ α±  whenever a solution exists.

� The equation sin cosa x b x c+ =  ( , ,a b c ∈ R and 2 2 0a b+ ≠ ) has a solution if and only

if 2 2 2c a b≤ + .

Historical Note

Brahmagupta (7th century A.D.) is one of the most celebrated mathematicians of ancient India.
He wrote a standard treatise “Brahmasphuta siddhanth” on ancient Indian Astronomy.  Brahmagupta
is famous for many contributions to astronomy, trigonometry, algebra and geometry.  The simple rule

to help the memory for the sine function, ( )0
(0, 1, 2, 3, 4) / 4 sin 0, 30, 45, 60, 90=  is found in

the works of Brahmagupta.  This shows  the level of advancement of trigonometry in those days.

The historian  al-Biruni (ca - 1050) in his book Tariq al-Hind states that the Abbasid Caliph al-
Ma’mun had an embassy in India and from India a book was brought to Baghdad which was translated
into Arabic as Sindhind. It is generally presumed that Sindhind is none other than Brahmagupta’s
Brahmasphuta-Siddhanta.

Bhaskaracharya hailed Brahmagupta as “Ganakachakra Chudamani”, precious jewel amidst
the circle of Mathematicians.

Answers

Exercise 7(a)

I. 1.  (i)   450, 1350 (ii)   1500 (iii)  + π/6

2. (i)    
9 11 19

, , ,
10 10 10 10

π π π π
(ii)   

3
,

4 4

π π± ±

(iii)  
5 4 2 7 8

, , , , ,
9 9 9 9 9 9

π π π π π π− − (iv)  
5

,
6 6

π π
(v)  

5
,

6 6

π π
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     3. (i)
2

2 ,
3

n n
ππ + ∈ Z (ii) 2 ,

6
n n

ππ − ∈ Z

(iii) 2 ,
6

n n
ππ − ∈ Z

    4. (i) 1120,  2480 (ii)  80, 350

    5. (i) 2 ,
3

ππ ± ∈ Zn n (ii)  2 ,
3

ππ ± ∈ Zn n

(iii) ,
4

n n
ππ ± ∈ Z (iv)  or ,

4
n n n

ππ π ± ∈ Z

II.  1. (i) 2
2 ,

3
n n

ππ ± ∈ Z (ii)  
5

2 or 2 ,
3 6

n n n
π ππ ± π ± ∈Z

(iii) ( 1) ,
6

ππ + − ∈ Znn n (iv)  ,
6

n n
ππ ± ∈ Z

(v) 2 or 2 ,
3 6

n n n
π ππ ± π ± ∈ Z (vi)  or (2 1) ,

4 4

π π+ ∈n
n n Z

(vii) (2 1) , ,
2 4

π π+ π± ∈n n n Z

     2. (i) ( 1) ,
4 6

π πθ = π + − + ∈ Znn n (ii)  2 ,
3

n n
ππ + ∈ Z

(iii)
5

2 , 2 ,
12 12

π ππ + π − ∈ Zn n n

     3.   (i)
6

π
(ii)  

5 9 13
, , , ,

7 7 7 7

π π π ππ (iii)  ,
6 4

π π

(iv)
3 5 5 7 11 7

, , , , , , ,
6 4 4 6 4 6 6 4

π π π π π π π π

III.  1. (i)
2

2 , ,
3 2 8

π π ππ ± + ∈ Z
n

n n

(ii) 2 , = 2 or
2 6

x n y n
π π= π + − π     2 , = 2 ,

6 2
x n y n n

π π= π + − π ∈ Z

(iii) (2 1) , , 2 ,2 ,
2 4 2

n n n n n
π π π+ π − π + π ∈Z (iv) (2 1) , ,

9
n n n

π+ π ∈ Z

    2.  (i) 2
(2 1) , ,

10 3 9

n
n n

π π π+ ± ∈ Z (ii)  or ( 1)
4 3 18

nn nπ π π+ − (iii)  
2 5

, , ,
6 3 3 6

π π π π

    3. (ii)
2π
±p q

             (iii)  2 (iv)  
3

n
ππ ±

    4. (ii)
3

2 , 2
4 4n

n n
∈

π π π − π +  Z
�

    6. (i) (2 1) ,
4

π+ ∈ Zn n (ii)  No solution (iii)   
11

6

π
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Introduction

Let us recall that if A, B are sets and  f  :  A →B is a

bijection, then  g  :  B→  A  is the inverse of the function  f  if

g o f  =  I
A
 (Indentity on A)  and   f o g  = BI .

This function  g  is unique and it is denoted by  f −1.

Equivalently, a function  f  :  A → B has inverse if  and

only if   f   is a bijection. The inverse  f −1  :  B →  A   of  f  is

defined by  f −1 (x) = y ,  where  f (y) = x.

We have come across many functions which possess

inverse and functions which do not possess inverse.   All

trigonometric functions possess inverses if we take the domain

suitably.  In this chapter, we learn about inverse functions of all

trigonometric functions.

James Gregory
(1638 - 1675)

GregoryGregoryGregoryGregoryGregory was professor of
mathematics at St. Andrews and at
Edinburgh.  He was equally
interested in physics and published
a work on optics in which he
described the reflecting telescope,
now known by his name.  In
mathematics he expanded functions
in infinite series and was one of the
first who distinguished  between
convergent and divergent series.

“If there be light, then there is darkness;  if cold,
heat;  if height, depth, if solid, fluid;  if hard, soft;
if rough, smooth;  if calm, tempest; if prosperity,
adversity; if  life, death”

  −−−−− Pythagoras
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8.1  To reduce a trigonometric function into a bijective function

Let us consider the function [ ]1 1f : ,→ −R  defined by ( )f x = sin x, for all x ∈ R .

       This function  f  is a surjection,  but  not an

injection on R since ( )2f n x+π  ( )f x=  for all

n ∈ Z  and  x ∈ R  which means that, for any

[ ]1 1t ,∈ − ,  there are infinitely many x ∈ R  such

that ( )f x t= . But, for any [ ]1 1t ,∈ − , there

exists unique 
2 2

x ,
 −π π∈  
 

 such that ( )f x t= .

Also 2 2
,

 −π π
 
 

 is a subinterval of

 largest length on  which sine function is a bijection
(see Fig. 8.1).

In other words, the function [ ]: 1 1
2 2

g , ,
 −π π → − 
 

 defined by ( )g x  =  sin x  for all

2 2
x ,

 −π π∈  
 

 is a bijection and hence it has inverse.   The inverse  g −1  of  g  is a function from [ ]1 1,−  onto

2 2
,

 −π π
 
 

.

We denote this function  g  by  sin  and its inverse g−1  by  Sin−1 or  arc  sin.

8.1.1  Definition:  The function [ ]1Sin : 1, 1 ,
2 2

−  −π π− →  
 

  defined by

1Sin � � �
2 2

x−  −π π= ⇔ ∈  
 

 and  sin � x= ,

for all [ ]1 1x ,∈ − ,  is called the  ‘inverse sine function’.   This function is also denoted by  ‘arc sin’.

8.1.2 Note:  If [ 1, 0),x ∈ −  then -1Sin 0
2

x ,
 −π∈ 
 

 and if (0, 1]x ∈ , then -1Sin 0
2

π ∈   
x ,  and

1Sin 0 0− = .    We can define the inverse trigonometric functions of cosine, tangent, cotangent, secant, cosecant

similarly by taking the domain suitably as given below.

Fig. 8.1

1

−1

−2−4 0

π/2

2 4

−π/2

−1−3 31
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    8.1.3  Definitions

(i) The function [ ] [ ]1Cos : 1, 1 0, π− − →   is defined for all [ ]1 1x ,∈ − by

1Cos �x− =   if and only  if  [ ]� �, π∈  and cos � x= .

(ii) The function 1Tan : ,
2 2

π π− − →   
R   is defined  for all x ∈ R  by

1Tan �x− =  if  and only if  �
2 2

,
π π− ∈   

  and   tan � x= .

(iii) The function ( ] [ )1Sec : , 1 1, 0, ,
2 2

π π π−    −∞ − ∪ ∞ → ∪     
  is defined for all

( ] [ )1 1x , ,∈ −∞ − ∪ ∞  by  1Sec �x− =   if and only if  � �
2 2

, ,
π π π   ∈ ∪     

 and sec � x= .

(iv) The function   ( ] [ )1Cosec : , 1 1, , 0 0,
2 2

π π− −   −∞ − ∪ ∞ → ∪     
 is defined for all

( ] [ )1 1x , ,∈ −∞ − ∪ ∞  by 1Cosec �x− =   if and only if

                        � � �
2 2

, ,
π π−   ∈ ∪     

  and  cosec � x=  .

(v) The function    ( )1Cot 0,: π− →R  is defined for all x ∈ R   by  ( )1Cot �x− = if

 and  only  if ( )� �, π∈  and cot � x= .

All the above facts can be understood easily from the following table.

8.1.4   Domains and  ranges of the inverse trigonometric functions

Table 8.1
Inverse trigonometric    Domain (x) Range (y)

  function  y = f (x)

y  =  1Sin x− [-1, 1]
2 2

,
π π− 

  
y  =  1Cos x− [-1, 1] [0, π]

y  =  1Tan x− R
2 2

,
π π− 

  

y  =  1Cosec x− ( ] [ )1 1, ,−∞ − ∪ ∞ 0 0
2 2

, ,
π π−   ∪     

y  =  1Sec x− ( ] [ )1 1, ,−∞ − ∪ ∞ 0
2 2

, ,
π π π   ∪     

y  =  1Cot x− R (0, π)



 Mathematics - IA322

8.2  Graphs of Inverse trigonometric functions

In Chapter 6,  we have given the graphs of all the six trigonometric functions.

Now we draw the graphs of the six inverse trigonometric functions by taking the domain on X-axis
and range on Y-axis.

      Fig. 8.4                        Fig. 8.5

 Fig. 8.6           Fig. 8.7

Fig. 8.3
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Fig. 8.2

π/2

0 1

−π/2

−2 −1

y = Sin−1 x

π/2

1

−π/2

y = Tan−1 x

X

Y

−1 0
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X

Y

−1

π

π/2

10

1 X

π

y = Cot−1 x

Y

0−1

−π/2
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8.3    Properties of inverse trigonometric functions

In this section we learn some elementary properties of inverse trigonometric functions defined in 8.1.
These properties will be useful to solve easily many problems on inverse trigonometric functions.

8.3.1  Theorem

(i) For  1 1 1
[ 1, 0) (0, 1], Sin Cosecx x

x
− −∈ − ∪ = .

(ii) For  1 1 1
[ 1, 0) (0, 1], Cos Secx x

x
− −∈ − ∪ = .

(iii) For  x > 0,   1 1 1
Tan Cotx

x
− −= .

(iv) For 1 1 1
0, Tan Cotx x

x
− −< = − π.

Proof

(i) Let [ 1, 0) (0, 1]x∈ − ∪  and  suppose  1Sin .x− = θ    Then � �
2 2

− π π ∈   
,

sin � x=   and  0θ ≠ .   Hence  
1 1

cosec
sin x

θ = =
θ

.

Therefore,  1 1
Cosec

x
−θ =   or  1 1 1

Sin Cosecx
x

− −= .

 (ii) We can prove this as above.

 (iii)  Let ( )0,x ∈ ∞   and suppose  1Tan x− =θ .

Then � ��
2

π ∈   
 and  tan � x= .  Then 

1
cot �

x
=   and  � ��

2

π ∈   
.

1 11
Cot � ��� �x

x
− −∴ = =

(iv) Now,  let ( ), 0x ∈ −∞  and -1Tan �x = .  Then � � �
2

π ∈ −  
and tan xθ = .

That is,

       ( )� � ��� 	�� �
2

x
π + π∈ π π + =  

.

Therefore,  
1

� � ��� 
�	 �
2 x

π + π ∈ π =  
.

 
1 11 1

Cot � ���
x x

− −∴ = + π = π +  or   1 11 1
Tan Cot

x x
− −= − π.
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8.3.2  Theorem

(i) For  ( )1� � � �� �� � �
2 2

−− π π ∈ =  
,

(ii) For [ ] ( )11, 1 , sin Sinx x x−∈ − = .

Proof

(i) Let  � �
2 2

π π ∈ −  
  and  write  sin �x = .   Then  [ ]1, 1x∈ − .

Hence  1Sin �x− = .  That is  ( )1Sin sin � �− =

 (ii) Let  [ ]1, 1x ∈ −  and suppose  1Sin �x− = .  Then

       � �
2 2

π π ∈ −  
  and  sin � x= .  That is,  ( )1sin Sin x x− = .

We can prove similar results for other inverse trigonometric functions also.   We state them in the
following theorem without proof.

8.3.3 Theorem

1. If  [ ]� �� �∈ π  then  ( )1Cos cos � �− =   and  if [ ]1, 1x∈ −   then

( )1cos Cos x x− = .

2. If   � � �
2 2

π π ∈ −  
  then   ( )1Tan tan � �− =  and  if  ,x∈ R  then

( )1tan Tan x x− = .

3. If  ( )� �� �∈ π then  ( )1Cot cot � �− = and  if  ,x∈ R  then  ( )1cot Cot x x− = .

4. If  � �� �
2 2

π π   ∈ ∪ π     
,  then  ( )1Sec sec� �− =  and

If  ( ] [ ), 1 1,x∈ − ∞ − ∪ ∞ ,  then  ( )1sec Sec x x− = .

5. If  � � � ��
2 2

π π   ∈ − ∪     
,  then ( )1Cosec cosec � �− =  and

if  ( ] [ ), 1 1,x∈ − ∞ − ∪ ∞ ,  then  ( )1cosec Cosec x x− = .
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In the following we check which of the trigonometric functions are odd or even or neither.  In otherwords
we find the formulae for  f (−x) where  f  is an inverse trigonometric function.

8.3.4  Theorem

1. If  [ ]1, 1 ,x∈ −   then ( )1 1Sin Sinx x− −− = − .

2. If [ ]1, 1 ,x∈ −   then  ( )1 1Cos Cosx x− −− = π − .

3. If  ,x∈ R  then  ( )1 1Tan Tanx x− −− = − .

4. If x∈ R , then  ( )1 1Cot Cotx x− −− = π − .

5. For ( ] [ ) ( )1 1, 1 1, , Sec Secx x x− −∈ − ∞ − ∪ ∞ − = π − .

6. For ( ] [ ) ( )1 1, 1 1, , Cosec Cosecx x x− −∈ − ∞ − ∪ ∞ − = − .
Proof

1. Let [ 1, 1]x∈ − ,  then  [ 1, 1]x− ∈ − .  If  ( )1Sin x− − = θ, then  � �
2 2

π π ∈ −  
and  sinx− = θ. So that ( )sin sinx =− θ = − θ  and ,

2 2

π π − θ ∈ −  
.   Hence  1Sin x− = − θ.

Thus  1Sin x−θ = − .  Therefore ( )1 1Sin Sinx x− −− = − .

2. If  [ ]1, 1x∈ − , then [ ]1, 1x− ∈ − .  Let  ( )1Cos x− − = θ.  Then  0 ≤ θ ≤ π and

cosx− = θ.  So that  cosx = − θ  =  ( )cos π − θ  and  0 ≤ π− θ ≤ π.

Thus  1Cos x− = π − θ.  That is,  1Cos x−θ = π − .  Hence

( )1 1Cos Cosx x− −− = π − .
Similarly, we can prove (3) to (6).

8.3.5  Theorem

1. If  [ ]0,θ∈ π , then  ( )1Sin cos
2

− πθ = − θ.

2. If  � �
2 2

π π ∈ −  
, then  ( )1Cos sin

2
− πθ = − θ.

3. If  ( )0,θ∈ π , then  ( )1Tan cot
2

− πθ = − θ.

4. If  ,
2 2

π π θ∈ −  
, then  ( )1Cot tan

2
− πθ = − θ.

5. If  , 0 0 ,
2 2

π π   θ ∈ − ∪     
,  then  ( )1Sec cosec

2
− πθ = − θ.

6. If  0 , ,
2 2

π π   θ∈ ∪ π     
, then ( )1Cosec sec

2
− πθ = − θ.
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Proof

1. Let [ ]� ��∈ π .  Then  1 cos� �− ≤ ≤ .  Now

( )1 1Sin cos� �� �� �
2

− −  π = −    
  and  � �

2 2 2

π − π π − ∈   
.

Hence  ( )1Sin cos� �
2

− π= − ,  by Theorem 8.3.3(1).

2. Let � �
2 2

π π ∈ −  
.  Then  1 sin 1− ≤ θ ≤ .  So that

( )1 1Cos sin � ��� 
�� �
2

− −  π = −    
  and  [ ]� ��

2

π − ∈ π .

Hence  ( )1Cos sin � �
2

− π= − , by  Theorem  8.3.3 (1).

Similarly, we can prove the remaining results.

8.3.6  Theorem

1. 1 1 2Sin Cos 1x x− −= −   if  0 1x≤ ≤ .

2. 1 1 2Sin Cos 1x x− −= − −  if 1 0x− ≤ < .

Proof

1. Let 0 1x≤ ≤   and  1Sin �x− = .  Then  0 �
2

π≤ ≤ .

Now sin � x=   and  hence  2cos� � x= −  and  20 1 1x≤ − ≤ .

Therefore  1 2 1Cos 1 � ��x x− −− = = .

2. Suppose  1 0x− ≤ <   and  1Sin �x− = .  Then  � �
2

π− ≤ < .

So that  sin � x=   and 2cos� � x= −  (since  cos� �> ).  Now

( ) 2cos � � x− = −  and  0 �
2

π< − ≤ .

Hence ( )1 2 1Cos 1 � ��x x− −− = − = − . Therefore, 1 1 2Sin Cos 1x x− −= − − .

We can prove the following theorem as above.

8.3.7  Theorem

1. 1 1

2
Sin Tan

1

x
x

x

− −
 
 =
 − 

  if  ( )1, 1x∈ − .

2. 1 1 2Cos Sin 1x x− −= −   if  [ ]0, 1x∈ .

3. 1 1 2Cos Sin 1x x− −= π − −   if  [ 1, 0)x∈ − .
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4. 1 1 1

2 2

1
Tan Sin Cos

1 1

x
x

x x

− − −
   
   = =
   + +   

  for  0x > .

Now we prove an important theorem.

8.3.8  Theorem

1. 1 1Cos Sin
2

x x− − π+ =   for all [ ]1, 1x∈ − .

2. 1 1Tan Cot
2

x x− − π+ =   for all x∈ R .

3. 1 1Sec Cosec
2

x x− − π+ =   for all ( , 1] [1, )x∈ − ∞ − ∪ ∞ .

Proof

1. Let  [ ]1, 1x∈ −   and  1Sin ��x− =   Then  ,
2 2

π π θ ∈ −  
 and  sin � x= .  Now

sin cos �
2

x
π = θ = −  

  and  � ��� �
2

π − ∈ π .  So that

1 1Cos � ��
2 2

x x− −π π= − = − .

Therefore,  1 1Cos Sin
2

x x− − π+ =   for all [ ]1, 1x∈ − .

2. Let x∈ R   and  1Tan �x− = .  Then  �
2 2

π π− < <   and  tan � x= .

Now,  tan � 
�	 �
2

x
π = = −  

  and  0 �
2

π< − < π.

Thus  1 1Cot � ���
2 2

x x− −π π= − = − .

Hence 1 1Tan Cot
2

x x− − π+ =   for all x∈ R .

3. Let  ( , 1] [1, )x∈ −∞ − ∪ ∞   and  1Sec x− = θ .  Then  � �� �
2 2

π π   ∈ ∪ π     
 and

sec xθ = .  Now

sec cosec �
2

x
π = θ = −  

  and  � � � ��
2 2 2

π − π π   − ∈ ∪     
.

Thus 1 1Cosec � ��
 �
2 2

x x− −π π= − = −   Therefore,

1 1Sec Cosec
2

x x− − π+ =   for all  ( ] [ ), 1 1,x∈ − ∞ − ∪ ∞ .
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8.3.9  Theorem

If  0, 0x y≥ ≥   and  2 2 1x y+ ≤ ,  then

{ }1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −+ = − + − .

Proof

Suppose  0, 0x y≥ ≥   and  2 2 1x y+ ≤ .   Let  1Sin x− = α  and 1Sin y− = β .

Then , 0,
2

π α β ∈   
  and  sin , sinx yα = β = .   So  2cos 1 xα = −  and

2cos 1 yβ = −   (since  cos , cosα β   are non negative as  , 0,
2

π α β ∈   
).

Now  0 ≤ α + β ≤ π   ... (1)

Also      ( )cos cos cos sin sinα + β = α β − α β

      2 21 1x y x y= − − −   ... (2)

Now    2 2 2 2 2 2 2 2 2 21 1 0 1x y x y x y x y x y+ ≤ ⇒ − − ≥ ⇒ − − + ≥

      ( ) ( )2 2 2 21 1x y x y⇒ − − ≥

      ( )2 21 1x y x y⇒ − − ≥ (since  0x y ≥ ).

Hence  from  (2),  ( )cos 0α + β ≥ .   So  0
2

π≤ α + β ≤   from (1)

Now         ( )sin sin cos cos sinα + β = α β + α β

        2 21 1x y x y= − + − .

Hence         ( )1 2 2Sin 1 1x y y x−+ = − + −α β

or ( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −+ = − + − .

We can prove the following formulae also as above.  We state them without proof.

8.3.10  Theorem

1. If  1 , 1, 0x y x y− ≤ ≤ <   and  2 2 1x y+ > ,  then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −+ = − + − .

2. If  0 , 1,x y< ≤  and  2 2 1x y+ > , then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −+ = − − + −π .

3. If  1 , 0x y− ≤ <   and  2 2 1x y+ > ,  then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y xπ− − −+ = − − − + − .
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4. If  1 , 1x y− ≤ ≤   and  2 2 1x y+ ≤ ,  then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −− = − − − .

5. If  0 1x y< ≤   and  2 2 1x y+ > , then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −− = − − − .

6. If  0 1, 1 0x y< ≤ − ≤ <   and   2 2 1x y+ > ,  then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −− = − − − −π .

7. If  1 0, 0 1x y− ≤ < < ≤ and  2 2 1x y+ > ,  then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −− = − − − − −π .

8. If  1 , 1x y− ≤ ≤  and  0x y+ ≥ , then

( )1 1 1 2 2Cos Cos Cos 1 1x y x y x y− − −+ = − − − .

9. If  1 , 1x y− ≤ ≤   and  0x y+ <  then

( )1 1 1 2 2Cos Cos 2 Cos 1 1x y x y x y− − −+ = − − − −π .

10. If  1 , 1x y− ≤ ≤   and  x y≤  then

( )1 1 1 2 2Cos Cos Cos 1 1x y x y x y− − −− = + − − .

11. If  1 0, 0 1y x− ≤ ≤ < ≤  and  x y≥   then

( )1 1 1 2 2Cos Cos Cos 1 1x y x y x y− − −− = − − − − .

Now we derive a formula for 1 1Tan Tanx y− −+  in the following.

8.3.11  Theorem

Suppose  0x >   and  0y >

(i) If  1x y < , then  1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  ++ =  − 

.

(ii) If  1x y > , then  1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  ++ = +  − 

π .

(iii) If  1x y = , then  1 1Tan Tan
2

x y− −+ = π
.

(iv) 1 1 1Tan Tan Tan
1

x y
x y

x y
− − − −− =

+
.
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Proof:  Let  1Tan x−=α   and  1Tan y−=β .   Then  tan x=α   and  tan y=β .  Since  x, y  are  positive,

we get , 0,
2

 ∈   
πα β .  Hence  0 < + <α β π .

If  1x y ≠ , then  tan tan 1α β ≠. ,  so that 
2

+ ≠ πα β   and

( ) tan tan
tan

1 tan tan 1

x y

x y

+ ++ = =
− −

α βα β
α β   ... (1)

(i) Let < 1x y .  Then ( )tan 0
1

x y

x y

++ = >
−

α β ,   by (1).   Hence 0
2

< + < πα β .

∴   from  (1)   1Tan
1

x y

x y
−  ++ =  − 

α β .

Therefore  1 1 1Tan Tan Tan
1

x y
x y

x y
− − − ++ =

−
.

(ii) Let  xy > 1.  Then  from (1),  ( )tan 0+ <α β .  So

     
2

< + <π α β π .   Thus   0
2

− < + − <π α β π   and

( ) ( )( ) ( )tan tan tan
1

x y

x y

++ − = − − + = + =
−

α β π π α β α β   from  (1).

            
1Tan

1

x y

x y
− +∴ + − =

−
α β π

Thus     1 1 1Tan Tan Tan
1

x y
x y

x y
− − − ++ = +

−
π .

(iii) Let  xy = 1.    Then  
1

y
x

= .

 Now  1 1 1 1 1 11
Tan Tan Tan Tan Tan Cot

2
x y x x x

x
− − − − − −+ = + = + = π

.

(iv) Let  x  > 0  and  y > 0.    Suppose  1Tan x− = α   and  1Tan y β− = .

Then    , 0,
2

 ∈   
πα β  and  tan , tanx y= =α β .

Now    ,
2 2

− − ∈   
π πα β   and  ( ) tan tan

tan
1 tan tan 1

x y

x y

α βα β
α β
− −− = =

+ +.
.

Hence,  1Tan
1

x y

x y
− −− =

+
α β .
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Therefore,  1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  −− =  + 

.

Similar to the results in the above Theorem  8.3.11,  we also have the following.   We state these results
without proof.

8.3.12  Theorem

(i) If 0, 0x y< <  and  1x y < ,  then  1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  ++ =  − 

.

(ii) If 0, 0x y< <  and  1x y > ,  then

1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  ++ = − +  − 

π .

(iii) If 1x y > − ,  then  1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  −− =  + 

.

(iv) If 0, 0x y> <   and  1x y < − ,  then

1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  −− = +  + 

π .

(v) If 0, 0x y< >  and 1x y < − , then

1 1 1Tan Tan Tan
1

x y
x y

x y
− − −  −− = − +  + 

π .

(vi) If , ,x y z   have same sign and  1xy yz zx+ + <

then  1 1 1 1Tan Tan Tan Tan
1

x y z x y z
x y z

x y y z z x
− − − −  + + −+ + =  − − − 

.

         On  substituting  x = y  in the above formulae, we get the following .

8.3.13  Corollary

1. 12 Sin x− = ( )1 2Sin 2 1x x− − ,   if   
1 1

,
2 2

x
− ∈   

= ( )1 2Sin 2 1x xπ −− − ,  if   
1

, 1
2

x
 ∈   

= ( )1 2Sin 2 1x xπ −− − − ,  if  
1

1,
2

x
− ∈ −  

.

2.  12 Cos x− = ( )1 2Cos 2 1x− −  ,   if   [0 ,1]x∈

= ( )1 22 Cos 2 1xπ −− − ,  if  [ 1,0]x∈ − .
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3. 12 Tan x− = 1
2

2
Tan

1

x

x
−

−
,  if  ( )1, 1x∈ −

= 1
2

2
Tan

1

x

x
π −+

−
,  if ( )1,x∈ ∞

= 1
2

2
Tan

1

x

x
π −  

− +  − 
,  if  ( ), 1x∈ −∞ − .

4. 12 Tan x− = 1
2

2
Sin

1

x

x
−

+
,  if  [ ]1, 1x∈ −

=
1

2

2
Sin

1

x

x
π −−

+
,  if  ( )1,x∈ ∞

= 1
2

2
Sin

1

x

x
π −− −

+
,  if  ( ), 1x∈ −∞ − .

5. 12 Tan x− =
2

1
2

1
Cos

1

x

x
−  −

 
+ 

,  if  [ )0,x∈ ∞

=
2

1
2

1
Cos

1

x

x
−  −−  

+ 
,  if  ( ], 0x∈ − ∞ .

6. 13 Sin x− = ( )1 3Sin 3 4x x− − ,  if  
1 1

,
2 2

x
− ∈   

= ( )1 3Sin 3 4x xπ −− − ,  if  
1

,1
2

x
 ∈   

= ( )1 3Sin 3 4x xπ −− − − ,  if  
1

1,
2

x
− ∈ −  

.

7. 13 Cos x− = ( )1 3Cos 4 3x x− − , if 
1

, 1
2

x
 ∈   

( )1 32 Cos 4 3x x−= − −π ,  if  
1 1

,
2 2

x
 ∈ −  

( )1 32 Cos 4 3x x−= + −π ,  if  
1

1,
2

x
− ∈ −  

.

8. 13 Tan x− =
3

1
2

3
Tan

1 3

x x

x
−  −

 
− 

,  if  
1 1

,
3 3

x
− ∈  

 
3

1
2

3
Tan

1 3

x x

x
−  −= +  

− 
π ,  if  

1
,

3
x

 ∈ ∞ 
 

3
1

2

3
Tan

1 3

x x

x
−  −= − +  

− 
π ,  if  

1
,

3
x

 ∈ − ∞ − 
 

.
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8.3.14   Solved Problems

1. Problem:  Find the values of the following.

(i) 1 1
Sin

2
−  −  

(ii) 1 3
Cos

2
−  

−   
(iii) 1 1

Tan
3

−  
 
 

(iv) ( )1Cot 1− − (v) ( )1Sec 2− − (vi) 1 2
Cosec

3
−  

 
 

Solution

(i)
1

sin
6 2

π − − =  
  and   1 1

, Sin
6 2 2 2 6

π π π π−− − − −   ∈ ⇒ =     
.

(ii)
3

cos cos
6 6 2

π ππ − − = − =  
 and

[ ] 15 3 5
0, Cos

6 2 6

π ππ −  −∈ ⇒ =   
.

(iii)   
1

tan
6 3

π =   and  1 1
, Tan

6 2 2 63

π π π π−−   ∈ ⇒ =      
.

(iv)
3

cot cot cot 1
4 4 4

π π ππ = − = − = −  
  and

( ) ( )13 3
0, Cot 1

4 4

π ππ −∈ ⇒ − = .

(v)
3

sec sec sec 2
4 4 4

π π ππ = − = − = −  
   and

( )13 3
, Sec 2

4 2 4

π π ππ − ∈ ⇒ − =  
.

(vi)
2

cosec
3 3

π =   and  1 2
0, Cosec .

3 2 33

π π π− ∈ ⇒ =  
2. Problem:  Find the values of the following .

(i) 1 4
Sin sin

3
−  

  
π

    (ii) 1 4
Cos cos

3
−  

  
π

(iii)  1 4
Tan tan

3
−  

  
π

Solution

 (i)    1 1 14
Sin sin Sin sin Sin sin

3 3 3

π π ππ− − −      = + = −            

        
1Sin sin , since ,

3 3 3 2 2
−  − − − −   = = ∈        

π π π π π
.
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(ii)  1 1 14
Cos cos Cos cos Cos cos

3 3 3

π π ππ− − −      = + = −            

        ( )1 2 2 2
Cos cos , since 0,

3 3 3

π π π π−  = = ∈  
.

(iii)  1 1 14
Tan tan Tan tan Tan tan

3 3 3

π π ππ− − −      = + =            

       , since ,
3 3 2 2

π π π π− = ∈   
.

3. Problem:  Find the values of the following.

(i)  1 5
sin Cos

13
− 

  
(ii) 1 25

tan Sec
7

− 
  

(iii)  1 24
cos Tan

7
− 

  
Solution:

    (i)  1 15 12 12
sin Cos sin Sin

13 13 13
− −   = =      

.

    (ii)  1 125 24 24
tan Sec tan Tan

7 7 7
− −   = =      

.

    (iii)  1 124 7 7
cos Tan cos Cos

7 25 25
− −   = =      

.

4. Problem:  Find the values of the following.

  (i)  2 1 3
sin Tan

4
− 

  
(ii) 1 4

sin Sin
2 5

− π  − −    

(iii)  1 12 2
cos Cos Sin

3 3
− −    − −        

(iv)  ( ) ( )2 1 2 1sec Cot 3 cosec Tan 2− −+

Solution

(i) 1 13 3 3
sin Tan sin Sin

4 5 5
− −   = =      

Therefore, 
2

2 1 13 3 9
sin Tan sin Tan

4 4 25
− −    = =        

.

  (ii)   1 14 4
sin Sin sin Sin

2 5 2 5
− −   π − π   − = +            

 (since ( )1 1Sin Sin− −− = −x x )

          
1 14 3 3

cos Sin cos Cos
5 5 5

− −   = = =      
.
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(iii) 1 1 1 12 2 2 2
Cos Sin Cos Sin

3 3 3 3
− − − − −     − = π − −           

             (since ( )1 1Cos Cosx x− −− = π − )

         
1 12 2

Cos Sin
3 3

− − = π − +  

         
2 2

π π= π − = .

Hence   1 12 2
cos Cos Sin cos 0

3 3 2
− − − π  − = =    

.

(iv) If  1Cot 3 �− = ,  then  show that cot � �= .

Therefore   
2

2 2 1 10
sec � � 	�� � �

3 9
 = + = + =  

.

That is,  ( )( )2 1 10
sec Cot 3

9
− = .

Again, if 1Tan 2− = α ,  then  tan 2α = .

Therefore,  
2 2 1 5

cosec 1 cot 1
4 4

α α= + = + = .

Thus,  ( )2 1 5
cosec Tan 2

4
− = .

Hence  ( ) ( )2 1 2 1 10 5 85
sec Cot 3 cosec Tan 2

9 4 36
− −+ = + = .

5. Problem:  Find the value of  1 11 1
Cot Cot

2 3
− −  +   

.

Solution:  We know that  1 11
Cot Tan 2

2
− −=  and  1 11

Cot Tan 3
3

− −  =  
.

By 8.3.11, (ii)

           
1 1 1 1 1 2 31 1

Cot Cot Tan 2 Tan 3 Tan
2 3 1 6

− − − − −  ++ = + = π +  − 

       ( )1Tan 1
4

− π= π + − = π −     
3

4

π= .

6. Problem:  Prove that  1 1 14 7 117
Sin Sin Sin

5 25 125
− − −+ = .

Solution
Method  (i):

Let        1 4
Sin

5
α− =   and  1 7

Sin
25

− = β .

Then     
4

sin
5

α =  and  
7

sin
25

β =   and  , 0 ,
2

π α β ∈   
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so that  
3 24

cos , cos
5 25

α = β =   and  ( )0,α + β ∈ π

Now     ( )cos cos cos sin sinα + β = α β − α β

           
3 24 4 7 44

0
5 25 5 5 125

= − = >. . .

Hence   0,
2

π α + β ∈   
.   Now,

( ) 4 24 3 7
sin sin cos cos sin

5 25 5 25
α + β = α β + α β = +. .

       
96 21 117

125 125

+= =

1 117
Sin

125
−  ∴ α + β =   

.

Hence,  1 1 14 7 117
Sin Sin Sin

5 25 125
− − −+ = .

Method (ii)

We know that ( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −+ = − + − .

if  0, 0x y> >   and   2 2 1x y+ <

Therefore,  1 1 14 7 4 49 7 16
Sin Sin Sin 1 1

5 25 5 625 25 25
− − −   + = − + − 

  

             1 14 24 7 3 117
Sin . Sin

5 25 25 5 125
− −   = + =      

.

7. Problem:   If  ( )1, 1x∈ − ,  prove that  1 1
2

2
2Tan Tan

1

x
x

x
− −=

−
.

Solution: Let ( )1, 1x∈ −  and 1Tan x− = α .  Then tan xα =  and 
4 4

π π− < α < .  Now

( )1 1 1
2 2

2 2 tan
Tan Tan Tan tan 2 2

1 1 tan

x

x
− − −   α= = α = α   − − α   

,  since  2 ,
2 2

π π α∈ −  

1 1
2

2
Tan 2Tan .

1

x
x

x
− −∴ =

−
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8. Problem:  Prove that  1 1 14 5 16
Sin Sin Sin

5 13 65 2
− − − π + + =  

.

Solution:  Let  1 4
Sin A

5
− =  and  1 5

Sin B
13

− = .  Then A, B are acute angles

and 
4 5

sin A , sin B
5 13

= = .  Hence   
3 12

cos A , cos B
5 13

= = .  Now,

( )cos A + B cos A cos B sin A sin B= −

                    
3 12 4 5 16

. .
5 13 5 13 65

= − = .

1 1 1 1 116 4 5 16 16
A + B Cos Sin Sin Cos Sin

65 5 13 65 2 65
− − − − −π  ⇒ = ⇒ + = = −   

.

1 1 14 5 16
Sin Sin Sin

5 13 65 2
− − − π⇒ + + = .

9. Problem:  Prove that  1 1 41
Cot 9 Cosec

4 4
− − π+ = .

Solution:  Write  1Cot 9− = α   and  1 41
Cosec

4
− = β .

Then  cot 9α =   and  
41

cosec
4

β = .

0 ,
2

π⇒ < α β <   and  
1 4

tan , tan
9 5

α = β = .   Now

( )
1 4 41

tan tan 9 5 45tan 1
1 4 411 tan tan 1 .
9 5 45

+α + βα + β = = = =
− α β −

.

Since  
1 4 4

. 1
9 5 45

= < ,  we get  
4

πα + β =  .

Hence  1 1 41
Cot 9 Cosec

4 4
− − π+ = .

10. Problem:  Show that 1 113 2
cot Sin sin Tan

17 3
− −   =       

 .
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Solution:  Let  1 13
Sin

17
− = α .  Then  

13
sin

17
α =

Hence  
2

cot
13

α = .  That is  1 13 2
cot Sin

17 13
− 

=   
.

Suppose  1 2
Tan

3
− = β .   That is  

2
tan

3
β = .

So that 
2

sin
13

β = .  That  is  1 2 2
sin Tan

3 13
−  =  

.

Hence 1 113 2
cot Sin sin Tan

17 3
− −   =       

.

11. Problem:  Find the value of  1 1
tan 2Tan

5 4
− π  −    

.

Solution:  Let  1 1
Tan

5
− = α .   Then  0

2

π< α <   and  
1

tan
5

α = .

So that 2

1
22 tan 2 25 55tan 2

1 5 24 121 tan 1
25

×αα = = = × =
− α −

.

Now,  1 1
tan 2Tan

5 4
− π  −    

tan 2 tan
4tan 2

4 1 tan 2 tan
4

πα −π = α − =  π  + α .

5
1 7 12 712

5 12 17 171 .1
12

− − −= = × =
+ .

12. Problem:  Prove that 1 14 1
Sin 2Tan

5 3 2
− − π+ = .

Solution:  Let  1 1
Tan

3
− = β.    Then  

1
0 , tan

2 3

π< β < β = .

     Now  2

1
22 tan 2 9 33tan 2

1 3 8 41 tan 1
9

ββ = = = × =
− β −

.
.  Thus  0 2

2

π< β <

         
4

cos 2
5

⇒ β = .
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     Thus   1 4
2 Cos

5
−β = .

      Now   1 1 1 14 1 4 4
Sin 2 Tan Sin Cos

5 3 5 5 2
− − − − π+ = + = .

13. Problem:  Prove that 1 11 1
cos 2Tan sin 4Tan

7 3
− −   =      

.

Solution:  Let 1 1
Tan

7
− = α   and  1 1

Tan
3

− = β .

 Then  
1

tan
7

α =   and  
1

tan
3

β = .   Also  0 ,
2

π< α β <

Now,    
2

1
2

1
11 1 tan 48 2449cos 2Tan cos 2

17 50 251 tan 1
49

−
−− α  = α = = = =  + α  +

... (1)

 2

1
21 2 tan 2 9 33tan tan 2

13 3 8 41 tan 1
9

.ββ = ⇒ β = = = × =
− β −

.

Now,    ( ) ( )( )1 1
sin 4 Tan sin 4 sin 2 2

3
−  = β = β  

               
2

3
22 tan 2 3 16 244

9 2 25 251 tan 2 1
16

.β= = = × =
+ β +

   ... (2)

Therefore,  from (1) and (2), we get  1 11 1
cos 2Tan sin 4Tan

7 3
− −   =      

.

14. Problem:  If  1 1 1Sin Sin Sinx y z− − −+ + = π, then prove that

( )4 4 4 2 2 2 2 2 2 2 2 24 2x y z x y z x y y z z x+ + + = + + .

Solution:  Let  1 1Sin , Sinx y− −= α = β   and  1Sin z− = γ .  Then

sin , sinx yα = β =  and sin zγ =  and α + β + γ = π  (given)

Now  α + β = π − γ

( ) ( )cos cos cos cos sin sin cos⇒ α + β = π − γ ⇒ α β − α β = − γ

2 2 21 1 1x y x y z⇒ − − − = − −

2 2 21 1 1x y x y z⇒ − − = − − .
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On squaring both sides we get

( ) ( )2 2 2 2 2 21 1 1 2 1x y x y z x y z− − = + − − −

2 2 2 2 2 2 2 21 1 2 1x y x y x y z x y z⇒ − − + = + − − −

2 2 2 22 1x y z x y z⇒ − = + − .

Again on squaring both sides, we get

( ) ( )22 2 2 2 2 24 1x y z x y z− = + −

2 2 2 2 24 4⇒ −x y x y z          4 4 4 2 2 2 2 2 22 2 2= + + + − −x y z x y y z x z

4 4 4 2 2 2 2 2 2 2 2 24 2 2 2x y z x y z x y y z x z⇒ + + + = + + .

15. Problem:  If  1 1Cos Cos
p q

a b
α− −+ = , then prove that

2 2
2

2 2

2
cos sin

p p q q

a ba b
− α + = α. .

Solution:   Let  1Cos A
p

a
− =   and  1Cos B

q

b
− = .

Then  cos A , cos B
p q

a b
= =   and A + B = α  (given)

 Now,  ( )cos cos A + B cos A cos B sin A sin Bα = = −

       
2 2

2 2
1 1

p q p q

a b a b
= − − −. .

2 2

2 2
1 1 cos

p q p q

a ba b
⇒ − − = − α.

On squaring both sides, we get

                                            

22 2

2 2
1 1 cos

p q p q

aba b

     
− − = − α     

    
.

2 2 2 2 2 2
2

2 2 2 2 2 2

2
1 cos cos

p q p q p q p q

a ba b a b a b
⇒ − − + = − α + α

2 2
2 2

2 2

2
cos 1 cos sin

p p q q

a ba b
⇒ − α + = − α = α .
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16. Problem:  Solve  
5 12

arc sin arc sin
2x x

π  + =  
  (x > 0).

Solution:  Given that 1 15 12
Sin Sin

2x x
− − π+ =   and  0x >

            
1 1 1 1

2

5 12 12 144
Sin Sin Cos Sin 1

2x x x x
− − − −π⇒ = − = = −

            2

5 144
1

x x
⇒ = −

On squaring both sides we get

2
2 2

25 144
1 169 13 13x x x

x x
= − ⇒ = ⇒ = ± ⇒ =   (since  0x > ).

17. Problem:  Solve 1 1 13 4
Sin Sin Sin

5 5

x x
x− − −+ = .

Solution:  1 1 13 4
Sin Sin Sin

5 5

x x
x− − −+ =

1 13 4
sin Sin Sin

5 5

x x
x − − ⇒ = +  

            
2 23 16 4 9

1 1
5 25 5 25

x x x x= − + −

0x⇒ =   or   2 225 3 25 16 4 25 9x x= − + −

0x ≠ 2 24 25 9 25 3 25 16x x⇒ − = − − .

On squaring both sides, we get

( ) ( )2 2 216 25 9 625 150 25 16 9 25 16x x x− = − − + −

2 2 2400 144 625 150 25 16 225 144x x x⇒ − = − − + −

2150 25 16 450x⇒ − =

2 225 16 3 25 16 9x x⇒ − = ⇒ − =

216 16 1x x⇒ = ⇒ = ± .

Thus,  we get  1, 0, 1x = − .   We can verify that all these values of x  satisfy the given equation.
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18. Problem:  Solve 1 1Sin Sin 2
3

x x− − π+ = .

Solution:  Given that  1 1Sin Sin 2
3

x x− − π+ =

( )1 1cos Sin Sin 2 cos
3

x x− − π⇒ + =

2 2 1
1 1 4 .2

2
x x x x⇒ − − − =

2 2 2 1
1 1 4 2

2
x x x⇒ − − = +

On squaring both sides, we get

     ( ) ( )
2

2 2 2 1
1 1 4 2

2
x x x

 − − = +  

2 41 5 4⇒ − +x x   
4 2 1

4 2
4

= + +x x

2 23 3 3
7

4 28 2 7
x x x⇒ = ⇒ = ⇒ = ± .

But  
3

2 7
x =−   does not satisfy the given equation since  1Sin x−   and 1Sin 2 x−   both are

negative in this case.

∴   Only solution is  
3

2 7
x = .

19. Problem:  If  ( ){ }1 1sin 2Cos cot 2Tan 0x− −  =  
, find x.

Solution:  ( ){ }1 1sin 2Cos cot 2Tan 0x− −  =  

( ){ }1 12Cos cot 2Tan 0x− −⇔ =   or  π  or  2 π

(Since  the range of  1Cos − is [0, π])

( ){ }1 1Cos cot 2Tan 0x− −⇔ =    or   
2

π
   or   π

( )1cot 2 Tan x−⇔ =  1 or  0  or  − 1

12Tan
4

x− π⇔ = ± or    
2

π±    or   
3

4

π±

1Tan
8

x− π⇔ = ±   or  
4

π±   or  
3

8

π±

( )2 1x⇔ = ± −   or  1±   or  ( )2 1± + .
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20. Problem:  Prove that  ( ){ }
2

1 1
2

1
cos Tan sin Cot

2

x
x

x
− − +  =   +

.

Solution:  Let  1Cot �x− = .   Then  cot � x=   and  0 �< < π.

      ( )1

2 2

1 1 1
sin Cot sin �

cosec� 1 cot � �
x

x

− = = = =
+ +

 (since  0 < � � π)

Now ( )( )1 1 1

2

1
Tan sin Cot Tan

1
x

x

− − −
 
 = = α
 + 

 (say)

Then  
2

1
tan

1 x
α =

+
  and  0

2

π< α <

( ){ }1 1

2

1 1
cos Tan sin Cot cos

sec 1 tan
x− −  = α = =   α + α

                         

2

2

2

1 1

21
1

1

x

x

x

+= =
++

+
.

Exercise 8(a)

 I. 1. Evaluate the following.

  (i)  1 3
Sin

2
−  

−  
 (ii)   1 1

Cos
2

−  
  

(iii)  ( )1Sec 2− − (iv)   ( )1Cot 3− −

 (v)  1 1
Sin Sin

3 2
− π  − −    

(vi)   1 5
Sin Sin

6
−  π 

    

(vii) 1 5
Cos Cos

4
− π 

  
2. Find the values of

  (i)  
1 3

sin Cos
5

− 
     (ii)  1 65

tan cosec
63

− 
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(iii) 1 4
sin 2Sin

5
− 

   (iv)   1 33
Sin sin

7
− π 

  

(v)  1 17
Cos cos

6
− π 

  
3. Simplify each of the following.

 (i)   1 sin
Tan

1 cos

x

x
−  

 + 
  (ii)  1Tan (sec tan )x x− +

(iii)  1 1 cos
Tan

1 cos

x

x
− −

+

 (iv)  1 2 1 2Sin (2cos 1) Cos (1 2sin )− −θ − + − θ

(v)  1 2tan 1 ;x x x−  + + ∈  
R

II. 1. Prove that

  (i)  1 1 13 8 36
Sin Sin Cos

5 17 85
− − −+ =

(ii)  1 1 13 12 33
Sin Cos Cos

5 13 65
− − −+ =

(iii)  
1 1 41

tan Cot 9 Cosec 1
4

− − 
+ = 

 

 (iv) 1 1 14 3 27
Cos Sin Tan

5 1134
− − −+ =

2. Find the values of

   (i)  1 13 12
sin Cos Cos

5 13
− − +  

(ii)  1 13 5
tan Sin Cos

5 34
− − + 

 

 (iii) 1 13 5
cos Sin Sin

5 13
− − +  

  3.    Prove that

(i)   
1 11 3

cos 2Tan sin 2Tan
7 4

− −   =      

(ii) 1 5 1
tan 2Tan 2

2
−  − =     

(iii) 1 11 2 3
cos 2 Tan Tan

4 9 5
− −  + =    
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4. Prove that

(i)   1 1 11 1 2
Tan Tan Tan 0

7 13 9
− − −+ − =

(ii)  1 1 11 1 1
Tan Tan Tan

2 5 8 4
− − − π+ + =

(iii) 1 1 13 3 8
Tan Tan Tan

4 5 19 4
− − − π+ − =

(iv) 1 1 1 11 1 201
Tan Tan Cot Cot

7 8 43
− − − −+ = + 18

5. (i)   Show that 2 1 2 1sec (Tan 2) cosec (Cot 2) 10− −+ = .

(ii)  Find the value of 1 14 2
tan Cos Tan

5 3
− − +  

.

(iii) If 1 1Sin Cos ,
6

x x− − π− =  then find x.

III. 1. Prove that

 (i)  1 1 13 5 323
2Sin Cos Cos

5 13 325
− − −− =

(ii) 1 14 1
Sin 2 Tan

5 3 2
− − π+ =

(iii) 1 1 11 1 1
4Tan Tan Tan

5 99 70 4
− − − π+ − =

2. (i) If  
2 2

1

2 2

1 1
Tan

1 1

x x

x x

−
 + − −α =  

+ + −  
, then prove that x2 = sin 2α.

(ii) Prove that 
2

1 1 1
tan 2Tan

x
x

x
−

  + −  =  
   

.

(iii) Prove that 
2

1 1
2 2

2 1
sin Cot Cos 1

1 1

x x

x x
− −  −+ =  − +  

.

(iv) Prove that 1 11 1 2
tan cos tan cos

4 2 4 2

a a b

b b a
− −π  π    + + − =            

.

3.  (i)  If Cos−1 p + Cos−1q + Cos−1 r = π, then prove that p2 + q2 + r2 + 2pqr = 1.
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(ii)  If 
2

1 1 1
2 2 2

2 1 2
Sin Cos Tan

1 1 1

p q x

p q x
− − −   −  − =    + + −    

 then prove that

      
1

p q
x

pq

−=
+

.

(iii) If a, b, c are distinct  non-zero real numbers having  the same sign. prove that

     
1 1 11 1 1

Cot Cot Cot or 2 .
ab bc ca

a b b c c a
− − −+ + +     + + = π π          − − −

(iv) If  Sin−1 x + Sin−1y + Sin−1 z = π, then prove that

      2 2 21 1 1 2 .x x y y z z xyz− + − + − =

(v) (a)  If  Tan−1 x + Tan−1y + Tan−1 z = π, then prove that  x + y + z = xyz.

     (b)  If  Tan−1 x + Tan−1y + Tan−1 z = 
2
π

, then prove that xy + yz + zx = 1.

4. Solve the following equations for x :

(i) 1 11 1
Tan Tan

2 2 4

x x

x x
− −− + π   + =      − +

 (ii)  1 1 1
2

1 1 2
Tan Tan Tan

2 1 4 1x x x
− − −     + =          + +

(iii)  
2

1 1 1
2 2 2

2 1 2
3Sin 4Cos 2Tan

31 1 1

x x x

x x x
− − − − π   − + =       + + − 

 (iv)  1 1Sin (1 ) 2Sin
2

x x− − π− − =

5. Solve the following equations.

  (i)  1 11 1 1
Cot Cot , 0 and 1

1 2

x
x x

x x
− −+   = > ≠      −

 (ii) 1 11 1
Tan Cos Sin Cot ; 0

2
x

x
− −   = ≠      

(iii) 1 1Cos Sin
2 6

x
x− − π+ =

 (iv) ( )1 1Cos 3. Cos
2

x x− − π+ =

 (v)  1 11
Sin Sin Cos 1

5
x− −   + =    
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Key Concepts

� If  sin θ = x  and  � �
2 2

π π ∈ −  
,  then  Sin−1 x = θ.

� If  cos θ = x  and  � ��� �π∈ ,  then  Cos−1  x = θ.

� If  tan θ = x  and  � � � �
2 2

π π∈ − ,  then  Tan−1  x = θ.

� If  cot θ = x  and  � ��� �π∈ ,  then  Cot−1  x = θ.

� If  sce θ = x  and  � ��� � � � �
2 2

π π π∈ ∪ ,  then  Sce−1  x = θ.

� If  cosec θ = x  and  � � ��� ��� �
2 2

π π∈ − ∪ ,  then  Cosce−1  x = θ.

� If  [ 1,1] {0},x∈ − −  then  Sin−1  x = Cosec−1  
1

( )
x

.

� If  [ 1,1] {0},x∈ − −  then  Cos−1  x = Sec−1   
1

( )
x

.

� (i) If  x > 0,  then  Tan−1  x = Cot−1   
1

( )
x

 and

(ii) If  x < 0, then  Tan−1  x = Cot−1   
1

( )
x

π− .

� If  � �� � ��
2 2

π π∈ − then Sin−1 (sin θ) = θ and  if x∈  [ 1,1],− then

sin (Sin−1  x) =  x.

� If  � �� �� ��π∈  then Cos−1 (cos θ) = θ and if x∈  [ 1,1],− then

cos (Cos−1  x) =  x.

� If  � � � �
2 2

π π ∈ −  
then Tan−1 (tan θ) = θ and, for any  x∈ R,

tan (Tan−1  x) =  x.

� If  � ��� � �π∈  then Cot−1 (cot θ) = θ and, for any  x∈ R, cot (Cot−1  x) =  x.
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� If  � ��� � � � �
2 2

∈ ∪π π π   then Sec−1 (sec θ) = θ and if  ( , 1] [1, ) ,x∈ − ∞ − ∪ ∞  then

 sec ( Sec−1 x ) = x.

� If  � � � �� ��� ��
2 2

π π∈ − ∪  then Cosec−1 (cosec θ) = θ and if ( , 1] [1, ) ,x∈ − ∞ − ∪ ∞  then

cosec ( Cosec−1 x ) = x .

� If  x∈  [ 1,1],− then  Sin−1  1( ) Sin ( )x x−− = − .

� If  x∈  [ 1,1],− then  Cos−1  ( −x) = 1Cos ( )xπ −− .

� For any x∈ R , Tan−1  1( ) Tan ( )x x−− = − .

� For any x∈ R ,   Cot−1 1( ) Cotx xπ −− = − .

� If  ( , 1] [1, ) ,x∈ −∞ − ∪ ∞ then 1 1Sec ( ) Secx xπ− −− = − .

� If  ( , 1] [1, ) ,x∈ −∞ − ∪ ∞ then 1 1Cosec ( ) Cosecx x− −− = − .

� If �∈  [0, ],π then Sin−1 ( cos θ) = �
2

π − .

� If �∈  [ , ],
2 2

π π− then Cos−1 (sin θ) = �
2

π − .

� If �∈ (0, )π , then Tan−1 (cot θ) = �
2

π − .

� If  � �
2 2

π π ∈ −  
, then  1Cot (tan �� �

2

π− = − .

� If 
� �

� � ��� ��� ��
2 2

∈ − ∪  then Sec−1 (cosecθ) = �
2

π − .

� If 
� �

� ��� � � � ���
2 2

∈ ∪  then Cosec−1 (secθ) = �
2

π − .

� (i)  If 0 1,x≤ ≤  then 1 1 2Sin Cos ( 1 )x x− −= − .

(ii)  If  −1 0,x≤ <  then  1 1 2Sin Cos ( 1 )x x− −= − − .



Inverse  Trigonometric  Functions 349

(iii) If  −1 < x < < < < < 1, 1 1

2
Sin Tan

1

x
x

x

− −
 
 =
 − 

.

� (i) If  0 1,x< ≤  then ( )
2

1 1 2 1 1
Cos Sin 1 Tan

x
x x

x
− − −

 −
 = − =
  

.

(ii) If 1 0,x− ≤ < then

( )
2

1 1 2 1 1
Cos Sin 1 Tan

x
x x

x
− − −

 −
 = − − = +
  

π π .

� If  x > 0, then 1 1 1

2 2

1
Tan Sin Cos

1 1

x
x

x x

− − −
   
   = =
   + +   

.

� (i) If 1 1,− ≤ ≤x  then 1 1Sin Cos
2

x x− −+ = π
.

(ii) For any 1 1, Tan Cot
2

x x x
π− −∈ + =R .

(iii) If  ( , 1] [1, ) ,x∈ − ∞ − ∪ ∞  then 1 1Sec Cosec
2

x x
π− −+ = .

� (i) If  x, y ∈  [0, 1] and 2 2x y+ ≤ 1, then

               1 1 1 2 2Sin Sin Sin ( 1 1 )x y x y y x− − −+ = − + − .

(ii) If , [0, 1]x y∈  and 2 2 1x y+ > , then

( )1 1 1 2 2Sin Sin Sin 1 1x y x y y xπ− − −+ = − − + − .

(iii) If , [0, 1]x y∈ , then  ( )1 1 1 2 2Sin Sin Cos 1 . 1x y x y xy− − −+ = − − − .

� (i) If  x, y ∈  [0, 1],  ( )1 1 1 2 2Sin Sin Sin 1 1x y x y y x− − −− = − − − .

(ii) If  0 1y x≤ ≤ ≤ , then

( )1 1 1 2 2Sin Sin Cos 1 1x y x y xy− − −− = − − + .
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� (i) If  x, y ∈  [0, 1],  then

( )1 1 1 2 2Cos Cos Cos 1 1x y xy x y− − −+ = − − − .

(ii) If  x, y ∈  [0, 1] and  2 2 1x y+ ≥ , then

   ( )1 1 1 2 2Cos Cos Sin 1 1x y y x x y− − −+ = − + − .

� (i) If  0 1,x y≤ ≤ ≤  then

( )1 1 1 2 2Cos Cos Cos 1 . 1x y xy x y− − −− = + − − .

(ii) If  x, y ∈  [0, 1] , then

( )1 1 1 2 2Cos Cos Sin 1 1x y y x x y− − −− = − − − .

� (i) If 0, 0x y> > , then

-1 1Tan x Tan y−+ = 

1

1

1
1

1
1

1
2

x y
Tan if xy

xy

x y
Tan if xy

xy

if xy

π

π

−

−

  + <  − 
  + + >  − 


=


(ii) If 0, 0x y< < , then

1 1Tan Tanx y− −+ = 

1

1

1
1

1
1

1
2

x y
Tan if xy

xy

x y
Tan if xy

xy

if xy

π

π

−

−

  + >  − 
  + − + <  − 


− =


�     If  x . y > 0   then  1 1 1Tan Tan Tan
1

x y
x y

xy
− − −  −− =  + 

.

�     If  x,  y,  z  have the same sign and  xy +  yz + zx  < 1,  then

        
1 1 1 1Tan Tan Tan Tan

1

x y z x y z
x y z

xy yz zx
− − − −  + + −+ + =  − − − 

.
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Historical Note

The power series of  
3 5

1 ...Tan
3 5

x x
x x− = − + −  for | | 1x ≤  is generally known as Gregory

(1667 AD) series, named after James Gregory of Scotland.  Madhava’s rule leads us to the series
3 5tan � 	�� � ...� 	�� �

3 5
= − +   which is the same as Gregory series.

Madhava of Sangama-grama (1350 - 1425 A.D.) was a mathematician - astronomer of India (Kerala).

He was the first to have developed infinite series, and approximations for a range of trigonometric

functions. His discoveries opened the doors to the present mathematical analysis.  His contributions to

infinite series, calculus, trigonometry, geometry and algebra are noteworthy.

Answers

Exercise 8(a)

I. 1. (i)   − 
3

π
(ii) 

4

π
(iii)  

3

4

π

(iv)   
5

6

π
 (v) 1 (vi)  

6

π

 (vii)   
3

4

π

2.  (i)  
4

5
 (ii) 

63

16
(iii) 

24

25

(iv) 
2

7

π
(v)  

5

6

π

3. (i) 
2

x
(ii)  

4 2

xπ+ (iii) 
| |

2

x

(iv) 
2

π
(v)  11

tan
4 2

x−π + 
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II. 2. (i)  
63

65
(ii)  

27

11
(iii) 

33

65

5.  (ii)  
17

6
(iii) 

3

2
x =

III. 4. (i) 
1

2
± (ii)  3, 

2

3

−
 (iii) 

1

3
(iv) 0

5. (i) 
1

3
(ii) 

3

5
 (iii) 1 (iv) 

1

2
(v)  

1

5
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 Introduction

        If we take cos �x a=  and ( )sin � �y a= ∈ R ,  then
2 2 2x y a+ = .  In other words,  for any real value of θ, the

point ( )cos �� ��� �a a  lies on the Circle 2 2 2x y a+ = .

For this reason, the trigonometric functions we have considered
in chapters 6, 7 and 8 are also known as circular functions.

 If we take 
� �

2

e e
x a

− +=  
 

 and  
� �

2

e e
y b

− −=  
 

, ( )� ∈ R

then we get that 
2 2

2 2
1

x y

a b
− = .  This is the equation of a

‘hyperbola’  (Hyperbolas will be discussed in the second year
intermediate course).   This means that,  points on the hyperbola

2 2

2 2
1

x y

a b
− =  are in the form

( )
� � � �

�
2 2

− −    + − ∈         

e e e e
a , b , R .

Weierstrass
(1815 - 1897)

Karl Weierstrass  was a German
mathematician who is often cited
as the “father of modern
analysis”.   He was a great
teacher.  He brought rigour into
mathematics.  Weierstrassian
rigour became synonymous with
extremely careful reasoning.

“Weierstrass was the mathematical conscience par
excellence and he became known as the father of modern
analysis’’

- Howard Eves
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Keeping  this fact in view,  the   Hyperbolic functions are introduced.   The number  e  is
defined as

0

1 1 1 1
1

1 ! 2 ! 3 ! !n

...e
n

∞

=
= + + + + ∞ = ∑ .

For any  x ∈ R ,  it is known that

2 3

0

1
1 ! 2 ! 3 ! !

n
x

n

x x x x...e
n

∞

=
= + + + + ∞ = ∑ .

The number  e  is also given by  
1

1
x

x
e lim

x→ ∞

 = +  
.  You will learn the proofs of these results in

higher classes and you will also learn that  e  is an irrational number  with  2  <  e  <  3.  The approximate
value of  e  is given  by

e �  2.718281 ...

9.1   Definitions of Hyperbolic functions, graphs

We  begin with the formal definitions of hyperbolic functions.

 9.1.1(a) Definition

   1.  The function  f : →R R   defined  by

( )
2

x xe e
f x

−−= ,  for  all   x ∈ R

      is called the  ‘hyperbolic sine’  function.  It is denoted by  sinh .x   Thus

  
2

x xe e−−=sinh x   for  all  x ∈ R

    9.1.1(b) Definition

The function  f : →R R   defined  by

( )
2

x xe e
f x

−+= ,    for  all   x ∈ R

     is called the  ‘hyperbolic cosine’  function.  This is denoted by cosh x,  so that

2

x xe e−+=cosh x    for  all   x ∈ R
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     Now we define the other hyperbolic functions like in circular trigonometric functions.

3.  
sinh

tanh
cosh

x x

x x

x e e
x

x e e

−

−

−= =
+

,   for  all  x ∈ R .

4.  
cosh

coth
sinh

x x

x x

x e e
x

x e e

−

−

+= =
−

,   for  all  x ∈ R  { }0

5.  
1 2

sech
cosh x x

x
x e e−= =

+
,   for  all  x ∈ R

6.  
1 2

cosech
sinh x x

x
x e e−= =

−
,   for  all  x ∈ R  { }0

The six functions defined above are called  “hyperbolic  functions”.

9.1.2  Note

From the above definition, we observe the following

1.
0 0

cosh 0 1
2

−+= =e e
   and  

0 0

sinh 0 0
2

e e−−= = .

2. For  any  x ∈ R ,  ( )cosh cosh
2

x xe e
x x

− +− = = .

Hence  the function  ( ) ( )coshf x x x= ∈ R   is an  even function.

3. For  any x ∈ R ,  sinh ( ) sinh
2 2

− − − −− = = − = − 
 

x x x xe e e e
x x .

Hence the function  ( ) sinh ( )= ∈ Rf x x x  is an  odd function.

4. From  (2)  and  (3)  above we get that  tanh x,  coth x, cosech x are odd functions and sech x is an even
function.

We have proved in earlier chapters the following identities regarding circular trigonometric functions.

2 2cos sin 1,x x+ =   for all x ∈ R

2 2sec tan 1,x x− =   for all x ∈ R  (2 1)
2

n n
 

+ ∈ 
 

Z
π

and  2 2cosec cot 1x x− = ,  for  all  x ∈ R   { }n | n ∈ Zπ .
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Now we prove the following identities for hyperbolic functions.

9.1.3  Identities

  1.  2 2cosh sinh 1x x− = ,  for  all x ∈ R .

  2.  2 21 tanh sechx x− = ,  for  all x ∈ R .

  3.  2 2coth 1 cosechx x− = ,  for  all x ∈ R  { }0 .

Proof: 1.  
2 2

2 2 ( ) ( )
cosh sinh

4 4

− −+ −− = −
x x x xe e e e

x x

( ) ( ){ }2 2 2 21
2 2

4
x x x xe e e e− −= + + − + −

1
4 1

4
= =. .

2.  From  (1)  above, 2 2cosh sinh 1x x− = .  On dividing both sides by  2cosh x ,
     we get

2 21 tanh sechx x− = .

3.  Again from (1),  we have  2 2cosh sinh 1x x− = .

    Since 20, sinh 0x x≠ ≠ .   So,  on dividing the above equation both sides by  2sinh x ,  we

get  2 2coth 1 cosechx x− = .

9.1.4 Graphs of hyperbolic functions

 (i) The graph of  sinhy x=

Let sinhy x= .

Then  
21 1

2 2

x x x

x

e e e
y

e

−  − −= =  
 

.

To draw the graph of y = sinh x,

the following observations are useful.

For  20 1xx , e> >  and hence  0y > .

For  20 1xx , e= =   and hence  0y = .

For  20 1xx , e< <   and hence  0y < .
Fig. 9.1 Graph of  y = sinh     x

0 4−4 −2

−2

−4

Y

X

2 6−6

2

4
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Also as  xx , e→ ∞ → ∞   and  
1

0
xe

→ .   So  sinh .x → ∞

and   as  0xx , e→ − ∞ →  and 
1
xe

→ ∞ .   So  sinh x → −∞ .

Further  y  is increasing with  x  and is continuous on  R.   Thus the graph of    y = sinh x is as shown in
Fig. 9.1.

 (ii) The graph of  coshy x=

   Let  coshy x= .  That is  
( ) ( )2 2

4
1

2 2 4

x x x xx x e e e ee e
y

− −− − + −+= = = + .

Thus  1y ≥   for all x ∈ R .  Also  as  x → ∞ ,

we get as above that  y → ∞ .  Further  y  is decreasing

on ( ]0,−∞ ,  increasing on  [ )0, ∞   and  y  is continuous

on  R .  Since the function  coshy x=   is an even

function,  its graph is symmetric about  y-axis.  Keeping

these points in view we can draw the graph of coshy x=

as shown in Fig. 9.2.

 (iii) The graph of  y = tanh x

Let 
2

2

1
tanh

1

x x x

x x x

e e e
y x

e e e

−

−

− −= = =
+ +

.  Observe the

following

At  0 tanh 0x , x= = ;   For  0, tanh 0x x> >   and

for  0, tanh 0x x< < .

As  x → ∞ ,  ( )2 2

2

1
1

1 since 
1

1

x x

x

ey e

e

−
= → → ∞

+

As   x → − ∞, ( )
2

2
2

1
1 since 0

1

x
x

x

e
y e

e

−= → − →
+

Fig. 9.2 Graph of  y = cosh     x

0 2−2 −1

−1

Y

X

1 3−3

1
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Further,  y  is increasing and continuous on  R.   Now

we can draw the graph of  tanhy x=  as shown in

Fig. 9.3.

(iv)  The graph of  cothy x=

        Let cothy x=

                  =  ( )for 0
x x

x x

e e
x

e e

−

−
+ ≠
−

.

         Then  
2

2

1

1

x

x

e
y

e

+=
−

.   Observe  that

       as 1x , y→ ∞ →  and as x , y→ − ∞ → −1 .

        Also if 0x > ,  then  0y >   and

      y → ∞   as  0x → + (i.e.,  0x > ).

        If  0x < , then 0y <  and

       y → − ∞  as 0x → −  (i.e., 0x < ).

  Further,  y  is decreasing and continuous on  R.

Now we draw the graph of cothy x=  as shown
in Fig. 9.4.

As above, we can also draw the graphs of

sechy x=  and cosechy x=  as shown below.

Fig. 9.5 Graph of  y = sech     x Fig. 9.6  Graph of  y = cosech     x

Fig. 9.3  Graph of  y = tanh     x

Fig. 9.4  Graph of  y = coth     x

Y

0 1−1

−1

X

2

0 1−2 −1

−1

−2

2 X

Y

1

0 1−2 −1

−1

−2

0 1−2 −1

−1

−2

2 X

2

1

Y

X

Y

2

1

2

1
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9.1.5  Domain and Range of hyperbolic functions
      From the observations we have made in 9.1.4 and from the graphs, we observe  that the domains and
ranges of the hyperbolic functions are as given in the following table.

Table 9.1

Sl.no. Function y = f (x) Domain ( x ) Range ( y )

(i) y = sinh  x R R

(ii) y = cosh  x R [1, ∞ )

(iii) y = tanh  x R (−1, 1)

(iv) y = coth  x R  { }0 (−∞ , −1) ∪ (1, ∞ )

(v) y = sech  x R (0, 1]

(vi) y = cosech  x R  { }0 R  { }0

9.2   Definition of Inverse hyperbolic functions and graphs

In this section we define the inverses of hyperbolic functions by taking the domain suitably in
such a way that the functions become bijections.

   9.2.1  Definition

  1.   The function f : →R R   defined by ( ) sinhf x x=   for all x ∈ R ,  is a bijection.  Thus the

inverse of this function exists and it is denoted by 1sinh− .   Thus, if  x, y  are real numbers then

1sinh sinhx y y x− = ⇔ = .

  2. The function [ ) [ )0 1f : , ,∞ → ∞   defined by  ( ) coshf x x= ,  for all [ )0x ,∈ ∞ ,  is  a

bijection.  We define  [ ) [ )1cosh 1 0: , ,− ∞ → ∞  by

1cosh coshx y y x− = ⇔ =   for all x [1, )∈ ∞ .

  3. The function ( )1, 1f : → −R   defined by  ( ) tanhf x x= ,  for all x ∈ R ,  is  a bijection.  We

define  ( )1tanh : 1, 1− − → R   by

1tanh tanhx y y x− = ⇔ =   for all x ( 1, 1)∈ − .
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Similarly,
4.  coth−1 : R  [−1, 1]→  R  {0}  is defined by

 1coth cothx y y x− = ⇔ =  for all x ∈  R  [−1, 1].

5.  ( ] [ )1sech : 0, 1 0,− → ∞   is defined by

 1sech sechx y y x− = ⇔ = for all  ( ]0 1x ,∈ .

6.  cosech−1 : R  {0} →  R  {0}   is defined by

        1cosech cosechx y y x− = ⇔ = for all  x ∈  R  {0}.

9.2.2  Domain and Range of inverse hyperbolic functions
The domains and ranges of the six inverse hyperbolic functions defined above are given in the following

table.

Sl.no. Inverse  hyperbolic Domain ( x ) Range ( y )
function y = f (x)

(i) y  =  sinh−1  x R R

(ii) y  =  cosh−1  x [1, ∞ ) [0, ∞ )

(iii) y  =  tanh−1 x (−1, 1) R

(iv) y  =  coth−1 x R  [−1, 1] R  {0}

(v) y  =  sech−1  x (0, 1] [0, ∞ )

(vi) y  =  cosech−1  x R  {0} R  {0}

9.2.3  Graphs of inverse hyperbolic functions
The graphs of the six inverse hyperbolic functions are given below.

Fig. 9.7  Graph of  y = sinh−−−−−1     x Fig. 9.8  Graph of  y = cosh−−−−−1     x

0 1−2 −1

−1

−2

X

Y

2

1

2

0 1−2 −1

−1

−2

X

Y

2

1

2
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9.3  Addition formulas of  Hyperbolic functions

In the following we give formulae to evaluate ( )sinh x y± ,  ( )cosh ,x y±  ( )tanh ,x y±

sinh 2 , cosh 2x x   and tanh 2x  as in trigonometric functions.

9.3.1  Theorem:   For  x,  y  ∈ R

(i)   ( )sinh sinh cosh cosh sinhx y x y x y+ = +

(ii)   ( )sinh sinh cosh cosh sinh− = −x y x y x y

(iii)   ( )cosh cosh cosh sinh sinhx y x y x y+ = +

(iv)   ( )cosh cosh cosh sinh sinhx y x y x y− = −

     Fig. 9.11 Graph of  y = sech−−−−−1     x Fig. 9.12  Graph of  y = cosech−−−−−1     x

Fig. 9.9  Graph of  y = tanh−−−−−1     x Fig. 9.10  Graph of  y = coth−−−−−1     x

0 1−2

−1

X

Y

2

1

0 1−2 −1

−1

X

Y

2

1

2

1 X0

−1
−1

Y
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Y
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Proof :  (i) sinh cosh cosh sinhx y x y+

=
2 2 2 2

x x y y x x y ye e e e e e e e− − − −       − + + −+       
       

=    { }1

4
x y x y x y x y x y x y x y x ye e e e e e e e+ − − + − − + − − + − −+ − − + − + −

=    
( ) ( ) ( )

( )
2

sinh
4 2

x y x y x y x ye e e e
x y

+ − − + − +− −= = + .

   ( )sinh sinh .cosh cosh . sinh∴ + = +x y x y x y

Since  ( )sinh sinhy y− = −   and   ( ) ( )cosh coshy y− =   (see note 9.1.2),

on replacing  y  by  − y  in  (i)   we get

(ii) ( ) ( ) ( )sinh sinh cosh cosh sinhx y x y y y− = − + − .  Therefore

   ( )sinh x y−  sinh . cosh cosh . sinh= −x y x y

(iii) cosh cosh sinh sinhx y x y+

=  
2 2 2 2

x x y y x x y ye e e e e e e e− − − −       + + − −+       
       

{ }1

4
x y x y x y x y x y x y x y x ye e e e e e e e+ − − + − − + − − + − −= + + + + − − +

( )
( )

( )
( )1

.2. cosh
4 2

x yx y
x y x y e e

e e x y
− ++

+ − − += + = = + . Therefore

   ( )cosh cosh cosh sinh sinhx y x y x y+ = +. .

On replacing  y  by  − y  in  (iii)  above,  we get

(iv) ( ) ( ) ( )cosh cosh cosh sinh sinh− = − + −. .x y x y x y . Therefore

   ( )cosh x y−  cosh . cosh sinh . sinh .= −x y x y

9.3.2 Corollary:   For any   x ∈ R ,

   (i) 
2

2 tanh
sinh 2 2sinh cosh

1 tanh

x
x x x

x
= =

−

  (ii)
2

2 2 2 2
2

1 tanh
cosh 2 cosh sinh 2cosh 1 1 2sinh

1 tanh

+= + = − = + =
−

x
x x x x x

x
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Proof

(i) On replacing  y  by  x  in  9.3.1(i),  we get

  sinh 2 sinh cosh cosh sinh 2 sinh coshx x x x x x x= + =. .

Now  ( )2 2
2 2

2sinh cosh
sinh 2 2sinh cosh cosh sinh 1

cosh sinh

x x
x x x x x

x x
= = − =

−
� .

On dividing the numerator and denominator  in  R.H.S.  by  2cosh ,x   we get

    2

2 tanh
sinh 2

1 tanh

x
x

x
=

−

(ii) On replacing  y  by  x  in 9.3.1 (iii),  we get

          2 2cosh 2 cosh cosh sinh sinh cosh sinhx x x x x x x= + = +.     .... (1)

Since 2 2cosh sinh 1,x x− =   we replace 2sinh x  in  (1),  by  2cosh 1x −   to get

2cosh 2 2 cosh 1x x= −

Similarly, on replacing  2cosh x   by  21 sinh x+ ,   we get

2cosh 2 1 2sinhx x= +

     Finally, ( )
2 2

2 2 2 2
2 2

cosh sinh
cosh 2 cosh sinh . cosh sinh 1

cosh sinh

x x
x x x x x

x x

+= + = − =
−

�

     On dividing the numerator and denominator in R.H.S.  by  2cosh x ,  we get

   
2

2

1 tanh
cosh 2

1 tanh

x
x

x

+=
−

9.3.3  Theorem  :   For any   x,  y ∈ R ,

(i) ( ) tanh tanh
tanh

1 tanh tanh

x y
x y

x y

++ =
+

(ii) ( ) tanh tanh
tanh

1 tanh tanh

x y
x y

x y

−− =
−

(iii) ( ) coth coth 1
coth ,

coth coth

x y
x y if x y

y x

++ = ≠ −
+

(iv) ( ) coth coth 1
coth ,

coth coth

x y
x y if x y

y x

−− = ≠
−
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Proof :   First we prove  (i)  and  (iii).   On replacing  y  by  −y,  (ii)  follows from

  (i)  and  (iv)  follows from (iii).

(i) ( )tanh x y+ = ( )
( )

sinh sinh cosh cosh sinh

cosh cosh cosh sinh sinh

x y x y x y

x y x y x y

+ +=
+ +

(by Theorem 9.3.1)

On dividing both numerator and denominator in R.H.S.  by

cosh coshx y ,  we get

         ( ) tanh tanh
tanh

1 tanh tanh

x y
x y

x y

++ =
+

(iii) ( ) ( )
( )

cosh cosh cosh sinh sinh
coth

sinh sinh cosh cosh sinh

x y x y x y
x y

x y x y x y

+ ++ = =
+ +

.

On dividing both numerator and denominator by sinh x  sinh y, we get

coth (x + y) =  
coth coth 1

coth coth

x y

y x

+
+

On replacing  y  by  x  in (i)  and  (iii)  of theorem 9.3.3,  we get the following :

9.3.4  Corollary :   For any   x ∈ R ,

(i)
2

2 tanh
tanh 2

1 tanh

x
x

x
=

+
              (ii)  

2coth 1
coth 2 , if 0.

2 coth

x
x x

x

+= ≠

9.3.5 Inverse hyperbolic functions in terms of logarithmic functions

The inverse of the function  ( ) ( )xf x e x= ∈ R   is given by  ( ) ( )1 0ef x log x x− = > .   Since

hyperbolic functions are defined interms of  ex ,  we naturally expect formuale for inverse hyperbolic

functions interms of elog x .   Now we derive them in the following

9.3.6  Theorem :   For any   x ∈ R ,

( )1 2sinh log 1ex x x− = + + .

Proof :   Let x ∈ R   and  1sinhy x−= .   Then
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2 1

sinh
2 2

y y y

y

e e e
x y

e

−− −= = =

     ( )2 2 1 0y ye e x⇒ − − = .

This is a quadratic equation in  ye .  So that

2
22 4 4

1
2

y x x
e x x

± +
= = ± + .

Since   0ye >  for all y∈ R   and  2 1x x< + ,  we get 2 1ye x x= + + .

Thus          ( )2 1ey log x x= + + .

Hence        ( )1 2sinh log 1ex x x− = + + .

9.3.7  Theorem :   For any  [ )1x ,∈ ∞ ,   ( )1 2cosh log 1ex x x− = + − .

Proof :   Let   [ )1x ,∈ ∞   and  1coshy x−= .  Then

          
2 1

cosh
2 2

y y y

y

e e e
x y

e

−+ += = =

( ) ( )2
2 1 0y ye x e⇒ − + = .

This is a quadratic equation in ye .   Therefore

2
22 4 4

1
2

y x x
e x x

± −
= = ± − .

But            2

2

1
1 1

1
x x

x x
− − = <

+ −
,   since  1x > .

Further,      1ye ≥  since  0y ≥ .

Therefore,  2 1ye x x= + − .  That is  ( )2 1ey log x x= + − .

Hence,       
1 2cos h log 1ex x x−  = + −   .
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9.3.8  Theorem :   For ( )1 1x ,∈ − ,    ( )1 1 1
tanh log

2 1e

x
x

x
−  +=  − 

.

Proof :   Let  ( )1 1x ,∈ −   and   1tan hy x−= .   Then

  
( )
( )

2

2

1
tanh

1

yy y

y y y

ee e
x y

e e e

−

−

−−= = =
+ +

.    ... (1)

Now  from (1),

( ) ( ) ( ) ( )2 2 2
1 1 1 1y y yx e e x e x + = − ⇒ + = −  

2 1 1
2

1 1
y

e
x x

e y log
x x

 + +⇒ = ⇒ =  − − 
   (note that  1

0
1

x

x

 + > − 

 for  ( )1 1x ,∈ − )

1 1

2 1e
x

y log
x

 +⇒ =  − 

Hence    1 1 1
tanh log

2 1
−  +=  − 

e

x
x

x
  for all ( )1 1x ,∈ − .

Similarly we can prove the following.

9.3.9   Note

1. For   1 1 1
1, coth log

2 1e

x
x x

x
−  +> =  − 

.

2. For   ( ]
2

1 1 1
0, 1 , sech loge

x
x x

x
−

 + −
 ∈ =
  

.

3. (i)    For    ( )
2

1 1 1
, 0 , cosech loge

x
x x

x
−

 − +
 ∈ −∞ =
  

.

(ii)   For   ( )
2

1 1 1
0, , cosech loge

x
x x

x
−

 + +
 ∈ ∞ =
  

.

9.3.10   Solved Problems

1. Problem:  Prove that   for  any  x ∈ R ,

( ) 3sinh 3 3sinh 4sinhx x x= + .

Solution:  ( )sinh 3 sinh 2x x x= +
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   sinh 2 cosh cosh 2 sinh= +.x x x x

   ( ) ( )22sinh cosh cosh 1 2 sinh sinh= + +x x x x x

   ( ) ( ) ( )2 2 2 22 sinh 1 sinh 1 2 sinh sinh cosh sinh 1x x x x x x= + + + − =�

  33 sinh 4 sinh= +x x .

2. Problem:  Prove that,  for  any x ∈ R ,

3

2

3 tanh tanh
tanh 3

1 3 tanh

x x
x

x

+=
+

.

Solution :  ( ) tanh 2 tanh
tanh 3 tanh 2

1 tanh 2 tanh

x x
x x x

x x

+= + =
+ .

 = 
( )

( )

22

2

2

2 tanh
tanh 2 tanh tanh 1 tanh1 tanh

2 tanh 1 tanh 2 tanh tanh1 tanh
1 tanh

+ + ++ =
+ ++

+
.

x
x x x xx

x x x xx
x

                                              
3

2

3 tanh tanh
.

1 3 tanh

+=
+

x x

x

3. Problem:  If 
5

cosh
2

x = ,  find the values of  (i)  cosh (2x)   and   (ii)  sinh (2x)

Solution :

     (i) ( ) 2 25 23
cosh 2 2cosh 1 2 1

4 2
= − = − =.x x .

    (ii) We know that  ( ) ( )2 2cosh 2 sinh 2 1x x− =

Therefore,  ( ) ( )
2

2 2 23
sinh 2 cosh 2 1 1

2
 = − = −  

x x

     
2 2

2

23 2 (25) (21)

42

−= =

        ( ) 5 21
sinh 2

2
x∴ = ± .

4. Problem:  If cosh x = sec θ then prove that 2 2tanh tan
2 2

x θ= .

Solution :  2 cosh 1
tanh

2 cosh 1

x x

x

−=
+
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sec 1

sec 1

θ −=
θ +

        
21 cos

tan
1 cos 2

− θ θ= =
+ θ .

5.  Problem:  If   �
4 4

,
π π− ∈   

  and  log cot �
4ex
π  = +    

,  then prove that

(i) cosh see 2�x =    and   (ii)  sinh tan 2�x = − .

Solution:   log cot � ��� �
4 4

x
ex e

π π   = + ⇒ = +      
  and

              
1

tan �
4cot �

4

xe
π

π
−  = = +    +  

 .

           Now,

     (i) 1
cosh cot � �	� �

2 2 4 4

π π−+     = = + + +        

x xe e
x

  

( ) ( )2 2

2

1 tan� 
 �	��1 1 tan� 
 �	� � 


2 1 tan� 
 �	�� � 
 �	� �

 − + + − +  = + =   + − −    

  

( )2 2

2 2

2 1 tan �1 1 tan �
sec 2�

2 1 tan � 
 �	� �

 + + = = = − −  
.

     (ii)   
1

sinh cot � �	� �
2 2 4 4

x xe e
x

π π−−     = = + − +        

  
( ) ( )2 2

2

1 tan� 
 �	� �1 1 tan� 
 �	�� 


2 1 tan� 
 �	�� � 
 �	� �

 − − + − +  = − =   + − −    

  2 2

1 4 tan� � �	��
tan 2�

2 1 tan � 
 �	� �

   −= = − = −   − −   
.
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6. Problem:  If  sinh 5,x =   show that  ( )5 26ex log= + .

Solution :  sinh 5x =

( ) ( )1 2
esinh 5 log 5 5 1−⇒ = = + +x    (by Theorem 9.3.6)

     ( )5 26elog= + .

7.  Problem :   Show that 1
e

1 1
tanh log 3

2 2
−   =  

.

Solution : From Theorem 9.3.8,

                 
1

e

1 1
tanh log

2 1
− +=

−
x

x
x

            Therefore,  1
e

1
11 1 2tanh log

12 2 1
2

−
+  =   −

   e
1

log 3
2

= .

Exercise 9(a)

1. If  
3

sinh
4

x = ,   find  ( )cosh 2 x   and  ( )sinh 2x .

2. If  sinh 3x = ,  then show that  ( )3 10ex log= + .

3. Prove that   (i)   ( ) tanh tanh
tanh

1 tanh tanh

x y
x y

x y

−− =
−

.

(ii)  ( ) coth coth 1
coth

coth coth

x y
x y

y x

−− =
−

.
.

4. Prove that   (i)   ( ) ( ) ( )cosh sinh cosh sinh
n

x x n x n x− = − ,  for any  n ∈ R .

(ii)  ( ) ( ) ( )cosh sinh cosh sinh
n

x x n x n x+ = + ,  for any  n ∈ R .

5. Prove that 
tanh tanh

2cosech
sech 1 sech 1

x x
x

x x
+ = −

− +
,  for  0x ≠ .

6. Prove that 
cosh sinh

sinh cosh
1 tanh 1 coth

x x
x x

x x
+ = +

− −
,  for  0x ≠ .
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7. For any  x  R ,   prove that   4 4cosh sinh cosh 2x x x  .

8. If  
θlog tan

4 2eu   
   

  
and if  cos θ 0,   then prove that  cosh sec θu  .

Key Concepts

 sinh x =  
2

x xe e
.

 cosh x = 
2

x xe e
.

 tanh x  = 
sinh
cosh

x
x ; coth x = 

cosh 1
sinh tanh

x
x x
 ,

if  0x  ; sech x      = 
1

cosh x

 and         cosec h x  = 
1

sinh x
 if  0x  .

 cosh2 x   sinh2 x = 1.

1  tanh2 x = sech2  x.

coth2 x  1 = cosech2 x.

 sinh (x + y) = sinh x cosh y + cosh x sinh y .

sinh (x  y) = sinh x cosh y  cosh x sinh y.

 cosh (x + y) = cosh x cosh y + sinh x sinh y.

cosh (x  y) = cosh x cosh y  sinh x sinh y.

 tanh (x + y)  =  tanh tanh
1 tanh tanh

x y
x y



  .

tanh (x  y)  =   tanh tanh
1 tanh tanh

x y
x y



 .



Hyperbolic  Functions 371

� sinh 2 x = 2 sinh x cosh x = 2

2 tanh

1 tanh

x

x−
.

� cosh 2x = cos h2x +  sinh2x = 2 cosh2x − 1 = 1 + 2 sinh2 x =  
2

2

1 tanh

1 tanh

x

x

+
−

.

� tanh 2 x = 2

2 tan

1 tanh

h x

x+
.

� sinh 3 x = 3 sinh x + 4 sinh3 x.

cosh 3 x = 4 cosh3 x - 3 cosh x.

tanh 3 x =  
3

2

3 tanh tanh

1 3tanh

x x

x

+
+

.

� ( )-1 2sinh log 1ex x x= + +   for all x∈ R .

( )-1 2cosh log 1ex x x= + −    for all [1, )x∈ ∞ .

-1 1 1
tanh log

2 1e

x
x

x

 +=  − 
  for all ( 1, 1)x∈ − .

-1 1 1
coth log

2 1e

x
x

x

 +=  − 
 for all ( , 1) (1, )x∈ − ∞ − ∪ ∞ .

2
-1 1 1

sech loge

x
x

x

 + −
 =
  

 for all ( 0,1)x∈ .

2
1 1 1

cosceh loge

x
x

x
−

 − +
 =
  

  if x < 0  and

                 

21 1
log

 + +
 =
  

e

x

x   if  x > 0.
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Historical Note

Weierstrass (1815 - 1897), was a very influential teacher and his meticulously prepared lectures

established a standard for many future mathematicians. He has devised tests for convergence of series

and contributed to the theory of periodic functions, functions of real variables, elliptic functions, hyperbolic

functions, convergence of infinite products and the calculus of variations.  He also advanced the theory

of bilinear and quadratic forms.  He initiated a remarkable programme known as the “arithmetization of

analysis”, which stressed that all of mathematical analysis can be logically derived from the postulates of

the real number system.

Answers

Exercise 9(a)

1.
17

8
,  

15

8
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Introduction

Geometry is a branch of mathematics which

investigates the relations and properties of solids, surfaces

and angles.  Trigonometry is based on the study of the

relations between the sides and angles of a triangle.  Many

problems whose solutions can’t be found by the methods

of geometry are readily solved with the aid of trigonometry.

Hipparchus (140 B.C), a Greek mathematician

established the relationship between the sides and angles of

any triangle.  The three most used ratios to solve a right angled

triangle are the sine, the cosine and the tangent.  As the

angle changes in magnitude (size), the above ratios of an

angle change in numerical value.

Ceva
(1647 - 1736)

Giovanni Ceva was an Italian

mathematician widely known

for proving a theorem known

after him as Ceva’s theorem on

a property of a triangle.

“The mathematical sciences exhibit particularly order,
symmetry   and  limitation and these are the greatest
forms of the beautiful”

−−−−−  Aristotle
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We have so far considered trigonometry as a subject useful to study the trigonometic functions

and their properties in a modern view point.  But one of the main aims of learning trigonometry is to

determine the relation between the sides and angles of a given triangle.   If the three sides are known,

then the three angles can be determined and the triangle is fixed.

However, if the three angles are known, the sides cannot be fixed and the triangle is not determined.

The purpose of this chapter is to develop the necessary rules and methods for determining the rest of the

sides and angles of a triangle, given one or two sides and / or angles.

10.1  Relation between the sides and angles of a triangle

In triangle ABC, we denote the sides BC, CA and AB (as well as their magnitudes) by the

symbols a, b, c respectively and the angles at the vertices i.e., CAB ABC BCA, ,   by the symbol A, B,

C respectively.   We also denote its area by the symbol ∆  and its perimeter with 2s, which is equal to

a + b + c.

We know from elementary geometry that in any two triangles, if the corresponding angles are

equal, they are similar.   Similarly in two right angled triangles, if one of the acute angles in a triangle is

equal to an acute angle of the other,  then the two triangles are similar.  From this, once the angles of a

triangle are known, by just knowing one side, it is possible to determine the triangle by computing the

rest of the sides in terms of trigonometric functions.   Further, if any two sides of a right angled triangle

are known, it is possible to determine the third side using the Pythagoras theorem and thereby fix the

triangle.

In general, to construct a triangle, we need either two angles and a side or all the three sides.  If

two sides and the included angle are given (for example a, b,  θ ) the third side can be determined using

the cosine rule 2 2 2 2 cosc a b ab= + − θ.  If all the three sides of a triangle are known, then the cosine

rules can still be used to fix the angles of the triangle.   If  θ  is a right angle, this rule coincides with the

Pythogoras theorem.  If one side and two angles are given, the sine rule  (which is discussed in the

following section) can be used to solve the triangle.   In using the cosine rule, one has to find the square

root and this difficulty can be overcome by using the appropriate tangent law.

10.2  Sine, Cosine and Tangent Rules - Projection Rules

The circle passing through the three vertices A, B, C of ABC∆  is called the

circumcircle.  The centre and radius of this circle are called the circumcentre and circum  radius respectively.

We know that the perpendicular bisectors of the sides of a triangle are concurrent and the point of their

concurrence is the circumcentre.   We denote the circum centre by S and circumradius by  R.
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Fig. 10.2

A

B C
a

R RS

c b

The equation form of the law of sines is actually three equations, each of which is based on the

proportionality of two sides of a triangle to the sines of the angles opposite to them.  A study of these

equations shows that the following cases of triangles can be solved by means of law of sines: (i) given any two

angles and any side, (ii) given two sides and angle opposite to one of them.

The law of cosines provides relations which solve triangles coming under the cases: (iii) given two

sides and the included angle,  (iv)  given 3 sides.  In case (iv) it is possible to find anyone of the 3 angles using

2 2 2

cos A
2

b c a

bc

+ −= .

In a triangle ABC,  as usual, we denote (the magnitudes of) the sides AB, BC, CA by  c, a, b

respectively and the angles BAC CBA ACB, ,  by simply A, B, C   or  A B C, ,  respectively.

10.2.1 Theorem: In ABC∆ ,  2R
sin A sin B sin C

a b c= = = ,

where R is the circumradius.

Case (i) :  A  is acute (see Fig. 10.1).

     S is the centre of the circumcircle and

                 CD is its diameter.

      Then CS = SD = R and CD = 2R.  Join BD.

       Then DBC
2

π=  and ∆DBC is a right angled triangle.

       Then BAC BDC= ,  (�  angles in the same segment)

            ∴  sin A = 
BC

sin BAC = sin BDC =
CD 2R

a= .

      2R.
sin A

a∴ =

Case (ii) : A  is a right angle (see Fig. 10.2).

      Then BC = a = 2R = 2R .1 = 2R sin 900

      2R sin A.a∴ =    Hence 2R.
sin A

a =

Fig. 10.1

A

R c

D

B Ca

S

R

b
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Case (iii) : A  is obtuse (see Fig. 10.3).

     DBC  is right angle. (�  angle in the semi circle)

     In the cyclic quadrilateral BACD,

       0 0BDC 180 BAC 180 A= − = −

 In ( )0
����� ��� 	
 � ��� �� 	−

      
BC

sin BDC = .
CD 2R

a= =

Hence 2R
sin A

a = .

In a similar way, we can prove

                    2R, 2R
sin B sin C

b c= =

                2R
sin A sin B sin C

∴ = = =a b c
.

10.2.2 Note

(i) Theorem (10.2.1) is called the ‘sine rule’ or ‘law of sines’.  Also in a right angled triangle,
Hypotenuse = 2 (circum radius) = circum diameter.

(ii) a = 2R sin A, b = 2R sin B, c = 2R sin C.

(or) sin A , sin B , sin C
2R 2R 2R

a b c= = = .

We shall now derive the cosine rule connecting the sides  a, b, c  of ABC∆  with the cosines of its

angles A, B, C.

10.2.3 Theorem :  In � 	�� ,  2 2 2 2 cos Bb c a ca= + −
    

2 2 2 2 cos Cc a b ab= + −
   2 2 2 2 cos Aa b c bc= + −

Proof :       a2 =  (2R sinA)2

=  4R2 [sin (B + C)]2

=  4R2(sin B cos C + cos B sin C)2

=  4R2{sin2 B(1 − sin2 C) + sin2 C (1 − sin2 B)  + 2sin B sin C cos B cos C}
=  4R2{sin2 B + sin2 C + 2 sin B sin C (cos B cos C − sin B sin C)}

=  4R2{sin2 B + sin2 C + 2sin B sin C cos (B + C)}

=  b2 + c2 − 2bc cos A.

The proofs of the other two results are similar.

Fig. 10.3

A

B
c b

a C

R

S

R

D
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Alternative method

Take the vertex B of ABC∆  as origin and

its side BC along X-axis as shown in Fig. 10.4.

Then B = (0, 0)  and  C = (a, 0).

Angle made by the side AB with X-axis = B

    Here AB = c  and  A = (c cos B, c sin B)

 ( ) ( )2 22 2CA cos B sin B 0b c a c= = − + −

                   =  
2 2 2 2 2cos B 2 cos B + sin Bc a ca c+ −

                   =  ( )2 2 2 2cos B sin B 2 cos Bc a ca+ + −

         2 2 2 2 cos Bb c a ca∴ = + − .

  Similarly we can prove that 2 2 2 2 cos Cc a b ab= + −  and  2 2 2 2 cos Aa b c bc= + − .

10.2.4  Note
(i) Theorem (10.2.3) is known as the ‘law of cosines’ and the rules in it are called ‘cosine rules’.

(ii) From the cosine rules, we can write  
2 2 2

cos A ,
2

+ −= b c a

bc
   

2 2 2

cos B
2

+ −= c a b

ca

and 
2 2 2

cos C
2

a b c

ab

+ −= .

These rules are used to find the three angles of a triangle when its sides are given.

10.2.5 Theorem:   In � 	��� ��� � � ��� ��a b c=
Proof:  From the cosine rules, we have

  
2 2 2 2 2 2

cos B = , cos C =
2 2

c a b a b c

ca ab

+ − + −

 
2 2 2 2 2 2

cos C cos B =
2 2

a b c c a b
b c b c

ab ca

   + − + −∴ + +   
   

= 
2 2 2 2 2 2 22

2 2

a b c c a b a
a.

a a

+ − + + − = =

Similarly, we can prove that  b = c cos A + a cos C  and  c = a cos B + b cos A

 Note: These three rules are called the ‘projection rules’.

10.2.6  Theorem: In 
B C A

� 	��� ��� ���
2 2

b c

b c

− −  =  + 
.

Proof :  From the sine rule, b = 2R sin B,  c = 2R sin C.

Fig. 10.4

Y

B(0, 0)

A(c cos B, c sin B)

bc

a C(a, 0) X
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Hence 
b c

b c

−
+

 
( )
( )

2R sin B sin C sin B sin C

2R sin B sin C sin B sin C

− −= =
+ +

  = 

B +C B C
2cos sin

2 2
B +C B C

2sin cos
2 2

−   
      

−   
      

  = 
B +C B C

cot tan
2 2

−   
      

  = 
A B C B +C

tan tan cot tan
2 2 2 2

−      =        
A

�

 
B C A

tan cot
2 2

b c

b c

− − ∴ =  +  .

In a similar way, we can prove that  
C A

tan
2

c a

c a

− −  =  + 
cot B

2

and 
A B C

tan cot
2 2

− −  =  + 
a b

a b
.

Note: These three results are called ‘Napier analogy’ or ‘tangent rules’.

10.3   Half angle formulae and area of a triangle

We have learnt in elementary geometry that, if the base  b  and the altitude  h  are given, the area of the

triangle, denoted by  ∆  is equal to 1

2
bh .  However, if the three sides a, b and c are given, then

( ) ( ) ( )s s a s b s c∆ = − − − where 
2

+ += a b c
s .  In this section ∆  is obtained in terms of two of its

sides and the sine of the angle between them.  We also obtain some relations involving half angles, the perim-
eter and the sides of the triangle.

10.3.1  Theorem  :   In � 	��

A ( ) ( )
(i) sin

2

s b s c

bc

− −= ( ) ( )A
ii cos

2

s s a

bc

−
=   and

( ) ( ) ( )
( )

A
iii tan

2

s b s c

s s a

− −
=

−
.

Proof: (i)     We have  2 A
1 cos A 2 sin

2
− =  ... (1)

By cosine rule, 
2 2 2

1 cos A 1
2

b c a

bc

+ −− = −
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( )222 2 22

2 2

a b cbc b c a

bc bc

− −− − += =

     
( ) ( )

2

a b c a b c

bc

+ − − +
= .

 Since  ( )2 2 2 2a b c s, a b c s c s c+ + = + − = − = −

       Similarly  ( )2 2 2a b c s b s b− + = − = −

       
( ) ( ) ( )( )2 2 2

1 cos A =
2

s c s b s b s c

bc bc

− − − −
∴ − =

.

 ( ) ( ) ( )2 2A
From 1 , 2 sin

2

− −
∴ =

s b s c

bc

.

( )( )A
sin

2

s b s c

bc

− −
∴ = .

0A A
90 sin 0

2 2
 < >  
� ,

(ii)  We have  2 A
1 cos A 2cos

2
+ =           ... (2)

By cosine rule  
( )2 22 2 2

1 cos A 1
2 2

b c ab c a

bc bc

+ −+ −+ = + =

                
( )( ) ( ) ( )2 2 2

2 2

b c a b c a s . s a s s a

bc bc bc

+ + + − − −
= = =

From (2) ,  
( )2 2A

2cos
2

s s a

bc

−
=  

( ) ( )2 A A
cos cos .

2 2

s s a s s a

bc bc

− −
∴ = ⇒ =

       (iii)  
( ) ( ) ( )

A
sinA 2tan

A2 cos
2

s b s c s s a

b c bc

− − −
= = ,  (from results (i) and (ii))

               = 
( ) ( )

( )
s b s c

s s a

− −
− .

10.3.2  Note:  In a similar way, we can prove that

( )( )B
sin

2

s c s a

ca

− −
= ,

( )( )C
sin

2

s a s b

ab

− −
=

( )B
cos

2

s s b

ca

−
= ,

( )C
cos

2

s s c

ab

−
=
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Fig. 10.5

A

B D a

( )( )
( )

B
tan

2

s c s a

s s b

− −
=

− ,
( )( )

( )
C

tan
2

s a s b

s s c

− −
=

−
.

10.3.3  Deductions:  The following deductions can be made from Theorem (10.3.1):

(i)  
( ) ( ) ( )A A

sin A = 2sin cos 2
2 2

s b s c s s a

bc bc

− − −
=

    ( )( )( )2
s s a s b s c

bc
= − − − .

(ii)   sin B ( )( )( )2
s s a s b s c

ca
= − − − .

(iii) sin C  ( )( )( )2
s s a s b s c

ab
= − − − .

We now find the area of the ABC∆  denoted by the symbol ∆ , in terms of  two of its sides and the
sine of the anlge between them.

10.3.4  Theorem :  ∆  = area of ABC∆

 
1 1 1

sin A sin B = sin C
2 2 2

bc ca ab= =

Proof :  In ABC∆ ,  from  A  draw  AD  perpendicular to  BC (Fig.10.5).

Then ( ) ( )1
base height

2
∆ =

 
1 1

BC AD AD
2 2

a= =. .

In 
AD

ABD, sin B =
AB

∆ .

Hence AD = AB sin B sin Bc=

    ( )1 1
sin B sin B

2 2
a c ca⇒ ∆ = =. .

Similarly, we can prove that 
1

= sin C
2

∆ ab  and 
1

= sin A
2

bc∆ .

   
1 1 1

sin C sin A sin B
2 2 2

ab bc ca⇒ ∆ = = =        ... (1)

   Consequences: ( ) ( )1 1
sin C 2R sin A 2R sin B sin C

2 2
ab∆ = =

                                            22R sin A sin B sin C=        ... (2)

                  ( )( )( )1 1 2
sin C

2 2
ab ab s s a s b s c

ab
∆ = = − − −.

                     ( )( )( )s s a s b s c= − − −        ... (3)

C

b
c
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1 1

sin C , 2R
2 2 2R sin C

.
 

∆ = = = 
 
�

c c
ab ab

           
4R

abc= .       ... (4)

Formulae (1) - (4) are useful for finding the area of a triangle.

10.3.5  Note

(i)   
A

tan
2

 can also be expressed as

          
( )( )

( )
( )( )

( )
( )( )
( )( )

A
tan 1

2

s b s c s b s c s b s c

s s a s s a s b s c

− − − − − −
= × =

− − − −
.

          
( ) ( )

( )( )( )
( )( )s b s c s b s c

s s a s b s c

− − − −
= =

∆− − −

     ( )( )
A

cot
2 s b s c

∆⇒ =
− −

.

     Similarly, we can deduce that

 
( )( )

( )( )
B B

tan , hence cot
2 2

s c s a

s c s a

− − ∆= =
∆ − −

.

      and  
( )( )

( )( )
C C

tan , hence cot
2 2

s a s b

s a s b

− − ∆= =
∆ − −

.

(ii) 
A

tan
2

can also be expressed in an alternate form

      
( )( )

( )
( )( )

( )
( )
( )

A
tan 1

2

s b s c s b s c s s a

s s a s s a s s a

− − − − −
= × = ×

− − −

                   = 
( ) ( )( )

( ) ( )
s s a s b s c

s s a s s a

− − − ∆=
− −

       
( )A

cot
2

s s a−
⇒ =

∆
.

Similarly, we can deduce that

( )
( )B B

tan cot
2 2

s s b

s s b

−∆= ⇒ =
− ∆ ,

( )
( )C C

tan cot
2 2

s s c

s s c

−∆= ⇒ =
− ∆ .
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10.3.6  Theorem :  In  

A B
cos

2
ABC,

C
sin

2

a b

c

− 
 +  ∆ = .

Proof:  From sine rule, we have 2R sin A 2R sin B 2R sin C= = =a , b , c .

Hence 
( )2R sin A sin B sin A sin B

2R sin C sin C

a b

c

++ += =

             

A + B A B
2sin cos

2 2
C C

2sin cos
2 2

−   
      =  

0 C A B
sin 90 cos

2 2
C C

sin cos
2 2

−   −      = ,

0
0 0A + B 180 C C

A + B + C 180 90
2 2 2

,
 −= = = − 
 
�

        

A B
cos

2
C

sin
2

− 
  =

Similarly, we can prove that 

B C
cos

2
A

sin
2

b c

a

− 
 +  = ;  

C A
cos

2
B

sin
2

c a

b

− 
 +  = .

Note:

  

A B B C
sin sin

2 2
,

C A
cos cos

2 2

a b b c

c b

− −   
   − −   = = and 

C A
sin

2
B

cos
2

c a

b

− 
 −  = .

10.3.7  Solved Problems

1. Problem:  In ABC∆ ,  if 3 4a , b= =  and 
3

sin A =
4

,  find angle  B.

Solution: From sine rule, 
sin A sin B

a b= .

∴ 0

3
4.

sin A 4
sin B = 1 B 90

3

b

a

 
  = = ⇒ = .

2. Problem:  If the lengths of the sides of a triangle are 3, 4, 5, find the circumradius
    of  the triangle.

Solution:  Given that the sides of a triangle are 3, 4, 5.

Now  2 2 23 4 5+ = .   Hence the triangle is right angled and its hypotenuse = 5.
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∴   Circumradius  
1

2
=  (hypotenuse)  

5

2
=

  (OR)

By using  Sine Rule  2R
sin C

c =

∴  c = 2R Sin C

    = 2R sin 900

c  = 2R

R = 
5

2 2
=c

.

3. Problem:  If   a = 6,  b = 5,  c = 9,  then find angle A.

Solution:  From cosine rule, 
2 2 2

cos A
2

b c a

bc

+ −=  
25 81 36 70 7

2 5 9 90 9
.

. .

+ −= = =

  
1 7

A Cos
9

−  ∴ =   
.

4. Problem:  In ABC,∆  show that  ( )cos A = 2b c sΣ + .

Solution: ( ) ( ) ( )L.H.S. cos A cos B cos Cb c c a a b= + + + + +

     = ( ) ( ) ( )cos A cos B cos B cosC cosC cos Ab a c b a c+ + + + +

     =  2 R.H.Sc a b s.+ + = = .

5. Problem:  If the sides of a triangle are 13, 14, 15, then find the circum diameter.

Solution:  Let  13 14 15a , b , c= = = .  Then 2 13 14 15 42s a b c ,= + + = + + =
       21 8 7 6s , s a , s b , s c .= − = − = − =

          ( )( )( ) 21 8 7 6 84s s a s b s c . . .∆ = − − − = = .

    84 4R 84 13 14 15
4R

abc⇒ = ∆ = ⇒ × = × × .

∴  Circum diameter (2R)  = 
65

4
.

6. Problem:  In ABC∆ , if  ( ) ( ) 3a b c b c a bc+ + + − = ,  find A.

Solution: ( ) ( ) 3
2 2 2 3

4

s s a
s s a bc

bc

−
− = ⇒ =

     2 0A 3 A 3
cos cos cos 30 .

2 4 2 2
⇒ = ⇒ = =

0 0A
30 A = 60

2
∴ = ⇒ .
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7. Problem:  If  4 5 7a , b , c ,= = =  find  
B

cos
2

.

Solution:  2 4 5 7 16 8 3s a b c s , s b= + + = + + = ⇒ = − =

( ) ( )
( )

8 3B 6
cos .

2 7 4 7

s s b

ca

−
∴ = = =

8. Problem:  In ABC,∆   find  2 2C B
cos cos

2 2
b c+ .

Solution:  
( ) ( )2 2C B

cos cos
2 2

s s c s s b
b c b c

ab ca

− −   
+ = +   

   

                
( ) ( )s s c s s b

a a

− −
= + [ ]s s

s c s b . a s.
a a

= − + − = =

9. Problem: If 
A 5

tan
2 6

=  and 
C 2

tan
2 5

= , determine the relation between a, b, c.

Solution:  A C 5 2 2
tan tan

2 2 6 5 6
= =. . .

i.e.,  
( )( )

( )
( )( )

( )
2

6

s b s c s b s a

s s a s s c

− − − −
=

− − .

1
3 3 2 3

3

s b
s b s s b

s

−⇒ = ⇒ − = ⇒ = .

3 2a b c b a c b⇒ + + = ⇒ + = .    Hence a, b, c  are in A.P.

10. Problem:  If  A
cot

2

b c

a

+= ,  find angle  B.

Solution:  

B CA coscosA 22cot
A A2 sin sin
2 2

b c

a

− 
 +  = ⇒ = ,    (by 10.3.6)

A B C
A = B C    A  +  C =  B   A +  B  +  C  =  2B

2 2

−⇒ = ⇒ − ⇒ ⇒

0 0  2B  =  180 B  = 90∴ ⇒ .

11. Problem:  If  
C    A B

tan cot
2 2

k
−  =  

,  find  k.

Solution:  Comparing with 
C  A B

tan cot
2 2

c a

c a

 − −  =    +   
 (by tangent law),

we get that 
c a

k
c a

−=
+

.
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12. Problem:  In ABC,∆   show that 
( )
( )

2 2

2

sin B C

sin B C

b c

a

−− =
+

.

Solution:  L.H.S. =  
( )2 2 22 2

2 2 2

4R sin B sin C

4R sin A

b c

a

−− =

    
( ) ( )

( ) ( )
2 2

2 2

sin B + C sin B  Csin B sin C
, sin A = sin B + C

sin A sin B + C

−−= =   �

   
( )
( )

sin B  C
R.H.S.

sin B + C

−
= =

13. Problem:  Show that 2 2 2cot A cot B cot Ca b c+ +  
R

abc= .

Solution:  L.H.S. =  2 2 2cot A cot B cot Ca b c+ +

    = 2 2 2 2 2 2cos A cos B cos C
4R sin A 4R sin B 4R sin C

sin A sin B sin C
+ +. . . ,

 (by sine rule)

    ( )22R 2 sin A cos A + 2 sin B cos B 2 sin C cos C= +

    ( )22R sin 2A + sin 2B sin 2C= +
    ( )22R 4 sin A sin B sin C=

    ( ) ( )( )1
2R sin A 2 R sin B 2 R sin C

R
=   R.H.S

R

abc= = .

14. Problem:  Show that ( ) ( )2 22 2 2A A
cos sin

2 2
b c b c a− + + = .

Solution:   ( ) ( )2 2 2 2 2 2A A
L.H.S. 2 cos 2 sin

2 2
b c bc b c bc= + − + + +

       ( )2 2 2 2 2 2A A A A
cos sin 2 cos sin

2 2 2 2
b c bc

   = + + − −      
       2 2 22 cos Ab c bc a= + − = .

15. Problem:  Prove that ( ) 2 2cos C cos Ba b c b c− = − .

Solution:   L.H.S. cos C cos Bab ca= −

                               
2 2 2 2 2 2

=
2 2

a b c c a b   + − + −−   
   

,  (by cosine rule)

        
2 2 2 2 2 21

2
a b c c a b = + − − − +     2 2 R.H.S.b c= − =
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16. Problem:  Show that 
cos A cos B

cos A cos C

c b

b c

− =
−

.

Solution:  From projection rule,  cos B cos Ac a b= +  and cos A cos Cb c a= + .

Now   
( )
( )

cos B cos A cos A
L.H.S.

cos A cos C cos A

a b b

c a c

+ −
=

+ −
cos B cos B

R.H.S.
cos C cos C

a

a
= = =

17. Problem:  In ABC,∆  if  
1 1 3

,
a c b c a b c

+ =
+ + + +

  show that  0C 60= .

Solution: 
1 1 3

a c b c a b c
+ =

+ + + +
 ( )( )

3b c a c

a c b c a b c

+ + +⇒ =
+ + + +

 ( ) ( ) ( ) ( )3 2a c b c a b c a b c⇒ + + = + + + +

 ( ) ( ) ( )2 2 2 23 2 3 2ab ac bc c a b ab c a b c⇒ + + + = + + + + +

 2 2 2ab a b c⇒ = + −   = 2ab cos C  (from cosine rule)

 
01

cos C C 60 .
2

⇒ = ⇒ =

18. Problem:  If   ( ) sec �a b c= − ,  prove that  2 A
tan � ���

2

bc

b c
=

−
.

Solution: ( ) sec � ��� �
a

a b c
b c

= − ⇒ =
−

      ( )
( )

( )

222
2 2

2 2tan � ��� � � �
a b ca

b c b c

− −
= − = − =

− −

       
( )( )

( )2

a b c a b c

b c

+ − − +
=

−

                   
( ) ( )

( )2

2 2s c s b

b c

− −
=

−   ( )
( )( )

2

4 s b s cbc

bcb c

− −
=

−

       ( )
2

2

4 A
sin

2

bc

b c
=

−
.

      
2 A

tan � ���
2

∴ =
−
bc

b c
.
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19. Problem:  In ABC,∆  show that ( ) A B C
tan tan 2 cot

2 2 2
a b c c + + + =  

.

Solution:  ( ) A B
L.H.S. tan tan

2 2
a b c  = + + +  

 
( ) ( )2s

s s a s s b

 ∆ ∆= + − −  

      
1 1

2
s a s b

 
= ∆ + − −  ( ) ( )2

s b s a

s a s b

 − + −= ∆  − −  

      ( )( )2c
s a s b

 ∆=  − −  
C

2 cot R.H.S.
2

c= =

20. Problem:  Show that 2 2sin 2C sin 2B 2 sin Ab c bc+ = .

Solution:   2 2L.H.S. sin 2C sin 2Bb c= +

      ( ) ( )2 2 2 24R sin B 2 sin C cos C 4R sin C 2 sin B cos B= +

      ( )28R sin B sin C sin B cos C cos B sin C= +

      ( )28R sin B sin C sin B C= +
      ( ) ( )2 2R sin B 2R sin C sin A=
      2 sin A R.H.S.bc= =

21. Problem:  Prove that 
2 2 2

cot A cot B cot C
4

a b c+ ++ + =
∆

.

Solution:   
2 2 2cos A

L.H.S. cot A
sin A 2 sin A

b c a

bc

 + −= Σ = =  
 

∑ ∑ , (by cosine rule)

       
2 2 2 1

, sin A
4 2

+ −  = ∆ = ∆  
∑ �

b c a
bc

       
2 2 2 2 2 2 2 2 21

4
b c a c a b a b c = + − + + − + + − ∆

       
2 2 2

R.H.S
4

a b c+ += =
∆

.

22. Problem:  Show that 2 2 2A B C
cos cos cos

2 2 2 R
a b c s

∆+ + = + .

Solution: L.H.S. ( )2 A 1
. cos 1 cos A

2 2
a a= Σ = Σ +

               ( ) ( ) ( )1 1 1
cos A 2R sin A cos A

2 2 2
a a a b c= Σ + = + + + Σ

              ( ) ( )1 R R
2 sin 2 A sin 2A sin 2B sin 2C

2 2 2
s s= + Σ = + + +
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    ( )R
4 sin A sin B sin C

2
s= +

   ( )21
2R sin A sin B sin C

R
s= +

   ( )22R sin A sin B sin C
R

∆= + ∆ =�s  R.H.S.=

23. Problem:  In  ABC∆ ,  if   a cos A cos Bb= ,  prove that the triangle is either isosceles  or right
angled.

Solution:   a cos A cos Bb= 2R sin A cos A 2R sin B cos B⇒ =

 ( )0sin 2A sin 2B sin 180 2B⇒ = = −

   Hence 2A 2B=  or  02A 180 2B= − .

 A B⇒ =   or  0A (90 B)= −

 a b⇒ =   or 0(A B) 90+ =

 a b⇒ =  or  0C = 90 .

∴   The triangle is isosceles or right angled.

24. Problem:  If  
A B C

cot : cot : cot 3 : 5 : 7
2 2 2

= ,  show that : : 6 : 5 : 4a b c = .

Solution:  
A B C

cot : cot : cot 3 : 5 : 7
2 2 2

=

( ) ( ) ( )
: : 3 : 5 : 7

s s a s s b s s c− − −
⇒ =

∆ ∆ ∆
( ) ( ) ( ): : 3 : 5 : 7s a s b s c⇒ − − − =

3 5 7

s a s b s c
k

− − −⇒ = = =  (say)

Then 3 5 7s a k , s b k , s c k− = − = − =

Adding these equations, ( )3 3 5 7s a b c k k k− + + = + +  = 15 k

3 2 15 15s s k s k⇒ − = ⇒ = .   Hence  12 10 8a k , b k , c k= = =
: : 12 : 10 : 8 6 : 5 : 4a b c k k k∴ = = .

25. Problem:Prove that ( ) ( ) ( )3 3 3cos B C cos C A cos A B 3− + − + − =a b c abc .

Solution:  ( ) ( )3 2L.H.S. cos B C (2R sin A) cos B C= Σ − = Σ −a a

      ( ) ( ) ( )2 2R . 2sin B+ C cos B C R sin 2B sin 2C= Σ − = Σ +  a a

      ( )2R . 2 sin B cos B 2 sin C cos Ca= Σ +

      ( ) ( )2 22R sin B cos B 2R sin C cos Ca a = Σ + 
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      ( )2 2cos B cos Ca b a c= Σ +

( ) ( )2 2 2 2cos B cos C cos C cos Aa b a c b c b a= + + + +

( )2 2cos A cos Bc a c b+
( ) ( )cos B cos A cos C cos Bab a b bc b c= + + + +

( )cos A cos Cca c a+
 ( ) ( ) ( ) 3 R.H.S.= + + = =ab c bc a ca b abc

26. Problem:  If  1 2 3p , p , p  are the altitudes of the ∆ABC then, show that

2 2 2
1 2 3

1 1 1 cot A cot B cot C

p p p

+ ++ + =
∆

.

Solution :  Since 1 2 3p , p , p  are the altitudes of ABC∆ , we have

1 2 3
1 1 1

2 2 2
ap bp cp∆ = = =  ⇒   1 2 3

2 2 2
p , p , p

a b c

∆ ∆ ∆= = =

Now 
2 2 2

2 2 2 2
1 2 3

1 1 1

4

a b c

p p p

+ ++ + =
∆   ( )1

cot A cot B cot C= + +
∆

     
2 2 2

R.H.S. cot A cot B cot C , from problem (21)
4

 + += + + = ∆ 
�

a b c
.

27. Problem:  The angle of elevation of the top point P of the vertical tower PQ of height h  from a
point A is 450 and  from a point B is 600, where B is a point at a distance 30 meters from the point A
measured along the line AB which makes an angle 300 with AQ.  Find the height of the tower.
Solution :  In the Fig. 10.6

       PQ   =  h,        PAQ  = 450

   BAQ   =  300 and PBC  = 600

      Also         AB =  30 mts.

BAP∴  = APB = 150.
This gives     BP  =  AB  = 30 and

           h  = PC + CQ  =  BP sin 600 + AB sin 300

           =  15 3 15 15( 3 1)+ = +  metres.
28. Problem:  Two trees A and B are on the same side of a river.  From a point C in the river the
distances of the trees A and B are 250 m and 300 m respectively. If the angle C is 450, find the distance

between the trees (use 2 1.414= ).

Solution: From the triangle ABC, using the cosine rule

    AB2 = 2502 + 3002 − 2(250)(300) cos 450

= 100(625 + 900 − 750 2 ) = 46450

∴   AB =  215.5 m. (approximately).

Fig. 10.6

Fig. 10.7
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Exercise 10(a)

(Note : All problems in this exercise refer to ABC∆ )

 I. 1. Show that ( )sin B sin C 0aΣ − = .

2. If 0 03 1 cms B 30 C 45= + = =a ., , , then find c.

3. If  a = 2 cms.,  b = 3 cms., c = 4 cms, then find cos A.

4. If  a = 26 cms., b = 30 cms. and 
63

cos C
65

= , then find  c.

5. If the angles are in the ratio 1 : 5 : 6, then find the ratio of its sides.

6. Prove that ( ) 2 2 22 cos A cos B cos Cbc ca ab a b c+ + = + + .

7. Prove that 
2 2 2

2 2 2

tan B

tan C

a b c

c a b

+ − =
+ −

.

8. Prove that ( ) ( ) ( )cos A cos B cos Cb c c a a b a b c+ + + + + = + + .

9. Prove that ( )cos C sin A cos A sin Cb a a− = .

10. If  4, 5 are two sides of a triangle and the included angle is 600, find its area.

11. Show that 2 2C B
cos cos

2 2
b c s+ = .

12. If 
cos A cos B cos C

a b c= = ,  then show that ABC∆  is equilateral.

II.  1. Prove that  cos A cos B cos C 4R sin A sin B sin Ca b c+ + = .

2. Prove that  ( )3 sin B C 0aΣ − = .

3. Prove that  
( ) ( ) ( )

2 2 2 2 2 2

sin B C sin C A sin A Ba b c

b c c a a b

− − −
= =

− − −
.

4. Prove that  ( )2 sin B C
0

sin B sin C
a

−
Σ =

+
.

5. Prove that  
cos A cos B cos Ca b c

b c a c a b a b c
+ = + = + .

6. Prove that  
( )
( )

2 2

2 2

1 cos A B cos C

1 cos A C cos B

a b

a c

+ − +=
+ − +

.

7. If  C = 600,  then show that

(i) 1
a b

b c c a
+ =

+ + (ii) 2 2 2 2
0

b a

c a c b
+ =

− −
8. If  : : 7 : 8 : 9a b c ,=  find cos A cos B cos C: : .
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9. Show that 
2 2 2cos A cos B cos C

2

a b c

a b c abc

+ ++ + = .

10. Prove that

( ) ( ) A B A B
cos C cos B cos A sin cosec

2 2
b a c c

− +   − + − =       
.

11. Express  a 2 2C A
sin sin

2 2
c+   interms of  s, a, b, c.

12. If  3b c a,+ =  then find the value of  
B C

cot cot
2 2

.

13. Prove that B C B C
( ) cos cos

2 2
b c a

+ −+ = .

14. In a ∆ABC show that 
2 2

2

sin (B C)

sin (B C)

b c

a

− −=
+

.

III.  1. Prove that (i) 
2A B C

cot cot cot
2 2 2

s+ + =
∆

.

(ii) 
2A B C

tan tan tan
2 2 2

bc ca ab s+ + −+ + =
∆

.

(iii) 
( )2

2 2 2

A B C
cot cot cot

2 2 2
cot A cot B cot C

a b c

a b c

+ + + +
=

+ + + +
.

2. Show that (i) ( ) A B
tan 0

2
a b

− Σ + =  
.

(ii) ( )A A
cot tan 2 cosec B C

2 2

b c b c

b c b c

− ++ = −
+ −

.

3. (i) If sin �
a

b c
=

+
, then show that 

2 A
cos � ���

2

bc

b c
=

+
.

(ii) If ( )cos ��a b c= + then prove that 
2 A

sin � ���
2

bc

b c
=

+
.

(iii) For any angle θ,  show that  a ( ) ( )cos� ��� � � ��� � �b c= + + − .

4. If the angles of ABC∆  are in A.P. and : 3 : 2b c = , then show that A = 750.

5. If ( )
2 2

2 2

sin C

sin A B

a b

a b

+ =
− −

, prove that ABC∆  is either isosceles or right angled.
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6. If cos A cos B cos C 3/ 2+ + = , then show that the triangle is equilateral.

7. If 2 2 2cos A cos B cos C 1+ + = , then show that ABC∆  is right angled.

8. If 2 2 2 28Ra b c+ + = , then  prove that the triangle is right angled.

9. If 
A B C

cot , cot , cot
2 2 2

 are in A.P., then prove that a, b, c  are in A.P.

10. If 2 2 2A B C
sin , sin , sin

2 2 2
 are in H.P., then show that a, b, c  are in H.P.

11. If C = 900 then prove that 
2 2

2 2 sin(A B) 1.
a b

a b

 + − = − 

12. Show that 
2 2

sin 2C sin 2A .
4 4

a c+ = ∆

13. A lamp post is situated at the middle point M of the side AC of a triangular plot ABC with BC = 7m,
CA = 8 m and AB = 9 m.  Lamp post subtends an angle 150 at the point B.  Find the height of the
lamp post.

14. Two ships leave a port at the same time.  One goes 24 km per hour in the direction N450 E and other
travels 32 km per hour in the direction S750 E. Find the distance between the ships at the end of 3
hours.

15. A tree stands vertically on the slant of the hill.  From a point A on the ground 35 meters down the hill
from the base of the tree, the angle of elevation of the top of the tree is 600.  If the angle of elevation
of the foot of the tree from A is 150, then find the height of the tree.

16. The upper 
3

4
 th portion of a vertical pole subtends an angle 1 3

Tan
5

−  at a point in the horizontal plane
through its foot and at a distance 40 m from the foot.  Given that the vertical pole is at a height less
than 100 m from the ground, find its height.

17. AB is a vertical pole with B at the ground level and A at the top.  A man finds that the angle of elevation
of the point A from a certain point C on the ground is 600.  He moves away from the pole along the
line BC to a point D such that CD = 7 m.  From D, the angle of elevation of the point A is 450.  Find
the height of the pole.

18. Let an object be placed at some height h cm and let P and Q be two points of observation which are
at a distance 10 cm apart on a line inclined at angle 150 to the horizontal.  If the angles of elevation of
the object from P and Q are 300 and 600 respectively then find h.

10.4   Incircle and excircles of a triangle

In this section, the notions of incircle, inradius, excircles and ex-radii are introduced.

The relations between the inradius and exradius of a circle are established.
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10.4.1  Definition

The circle that touches the three sides of a triangle ABC∆  internally is called the ‘incircle’
or ‘inscribed circle’ of the triangle.   The centre and radius of this incircle are called incentre and
inradius denoted by  I  and  r  respectively.

The point of concurrence of the internal bisectors of the angles of a  triangle is the  incentre

I  of  ABC∆ .  I is equidistant from all sides of the triangle.

10.4.2  Theorem : In ABC∆ ,

(i)  � � rs

(ii)  ( ) ( ) ( )A B C
tan tan tan

2 2 2
r s a s b s c= − = − = −

(iii)  
B C C A A B

cot cot cot cot cot cot
2 2 2 2 2 2

a b c
r = = =

+ + +

(iv)  
A B C

4R sin sin sin
2 2 2

r = ,  where r  is the inradius.

Proof

Let  I  be the point of concurrence of the internal bisectors of the angles A, B, C of the � 	�� , so that

I is the incentre.

Draw  I D ⊥   BC,  I E  ⊥   CA, I F ⊥  AB.

Then  I D  = I E  = I F  =  r  =  inradius.

 Draw the incircle passing through D, E, F as shown in Fig. 10.8.

(i) �   =  Area of � 	��

   =  Area of � ���   +  Area of � ��	   + Area of � 	��

=
1 1 1

BC ID CA IE + AB IF
2 2 2

+. . .

=
1 1 1

2 2 2
+ +ar br cr

= ( ) ( )1 1
2

2 2
r a b c r s rs+ + = = .

(ii) The circle passing through D, E, F is the incircle and A is an external point to the circle.  AF, AE are the

tangents drawn to the circle from A.  Hence the length of the tangents AF and AE are equal.  By a

similar argument,  BF = BD, CD = CE.

But  AF + AE + BF + BD + CE + CD = a + b + c.

Fig. 10.8
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              ( )2 AF + 2BD + 2CD 2 i.e., 2AF + 2 BD + CD 2s s.∴ = =
         Hence  AF + BC i.e., AF i.e., AFs a s s a= + = = − .

     In the right angled 
A IF

� 	��� ���
2 AF

r

s a
= =

−
.       ( ) A

tan
2

r s a∴ = − .

Similarly, we can prove that 
B

( ) tan
2

r s b= −   and   ( ) C
tan

2
r s c= − .

(iii) From the right angled triangles IDB  and IDC, we have
B BD

cot
2 r

=  and 
C DC

cot
2 r

= i.e.,  
B

BD cot
2

r=   and 
C

DC cot
2

r=

B C
BD + DC cot cot

2 2
a r

 ∴ = = +  
   B C

cot cot
2 2

a
r⇒ =

+
 .

In a similar way, we can prove that

C A
cot cot

2 2

b
r =

+
  and       A B

cot cot
2 2

c
r =

+
.

(iv)  From  (iii),
B C

cot cot
2 2

a r  = +  
           

B C
cos cos

2 2
B C

sin sin
2 2

 
 

= + 
 
 

r

B C C B
cos sin cos sin

2 2 2 22R sin A
B C

sin sin
2 2

. r

 + 
⇒ =  

 
 

A A B + C B C
2R 2sin cos sin sin sin

2 2 22 2
. r

    ⇒ =         
A A B + C

4R sin ; cos sin
B C2 2 2sin sin
2 2

  ⇒ = =     
�

r

A B C
4R sin sin sin

2 2 2
r⇒ = .

10.4.3 Note:  From Theorem 10.4.2,   we have

( )� 	
tan

2
r s a

s
= = −    i.e.,  ( ) A

� ���
2

s s a= −

( ) ( ) ( ) ( ) A
tan

2
s s a s b s c s s a∴ − − − = −    

( ) ( )
( )

A
tan

2

s b s c

s s a

− −
∴ =

−
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Similarly, we can prove that

( ) ( )
( )

B
tan

2

s c s a

s s b

− −
=

−
 and 

( ) ( )
( )

C
tan

2

s a s b

s s c

− −
=

−
.

10.4.4  Definition

The circle that touches the side BC (opposite to angle A) internally and the other two sides AB and
AC externally is called the ‘excircle’  or ‘escribed circle’ opposite to the angle A.

The centre and radius of this excircle, opposite to the angle

A are called excentre and exradius, denoted by I
1
 and r

1

respectively.

The point of concurrence of the internal bisector of  the

anlge A and the external bisectors of angles B and C of

ABC∆  is the excentre I
1 
. I

1
 is equidistant from all sides of

the triangle (Fig. 10.9).

Similarly, we have two more excircles opposite to anlges

B and C.

The centres and radii of these excircles are denoted by

I
2
, I

3 
 and   r

2 
 , r

3
 respectively.  The triangle obtained by joining

the excentres  I
1  

, I
2 
 , I

3
  is called the ‘extriangle’.

10.4.5  Theorem :  In ABC∆ , I
1 
 , I

2  
, I

3
  are excentres and r

1 
, r

2
 and r

3
 are exradii  of the  excircles

opposite to the angles  A,  B, C  respectively, then

(i)   1 2 3
� � �

r , r , r
s a s b s c

= = =
− − −

(ii)  ( ) ( )1

A B
tan cot cot

2 2 2

c
r s s c s b= = − = −

(iii) 1 2 3, ,
B C C A A B

tan tan tan tan tan tan
2 2 2 2 2 2

a b c
r r r= = =

+ + +

(iv)  1

A B C
4R sin cos cos

2 2 2
r = ,     2

A B C
4R cos sin cos

2 2 2
r =

3

A B C
4R cos cos sin .

2 2 2
r =

Proof :  Let I
1  
be the point of concurrence of the internal bisector of angle A and external bisectors of angles

B and C of the ABC∆ .  Then  I
1
 is an excentre.

Fig. 10.9
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Draw 1 1 1 1I X BC, I Y AC⊥ ⊥  (produced), 1 1I Z AB⊥  (Produced)

Then 1 1 1 1 1 1 1I X = I Y = I Z = =r ex-radius.

Draw the ex-circle passing through X
1
, Y

1
, Z

1
 as shown in Fig. 10.9.

(i) ∆ = area of ABC∆  =  area of 1AI B∆ +   area of 1AI C∆ −  area of  1BI C

= 1 1 1 1 1 1
1 1 1

AB I Z AC I Y BC I X
2 2 2

. + −. .  =   1 1 1
1 1 1

2 2 2
cr br ar+ −

= ( ) ( ) ( )1 1
12

2 2

r r
c b a . s a r s a+ − = − = − .   1r s a

∆∴ =
−

Similarly we can prove that 2r s b

∆=
−

 and 3r s c

∆=
−

.

(ii) Since the tangents from any external point to a circle are equal,  we have AY
1
 = AZ

1
   (See Fig. 10.9).

Similarly  BX
1
 = BZ

1
  and  CX

1
  = CY

1
.

    But      1 1 1 1BX = BZ = AZ AB = AY AB− − ;   1 1 1X C = CY = AY AC− .

Adding    ( )1 1 1BX X C 2AY AB +AC+ = −    i.e.,  ( )1BC 2AYa c b= = − +

        1 1 12AY 2 AY AZ= + + = = =a b c s i.e., s .

    Then    1BX = s c−  and 1CX s b= − .

Now from right angled triangles 1 1 1 1 1 1AI Z , BI Z , CI Y , we have

0
1 1 1 1

A B
I AZ , I BX 90

2 2
= = −   and   

0
1 1

C
I CX 90

2
= − .

In 1 1� � 	� ,  1 1 1
1

1

I ZA A
tan tan

2 AZ 2

r
r s

s
= = ⇒ = .

In 1 1� � �� , 0 1 1

1

I XB
tan 90

2 BX
 − =  

                   ( )1
1

B B
cot cot .

2 2

r
r s c

s c
⇒ = ⇒ = −

−

In 1 1� � �� �   0 1 1

1

I XC
tan 90

2 CX
 − =  

                        ( )1
1

C C
cot cot .

2 2

r
r s b

s b
⇒ = ⇒ = −

−

( ) ( )1

A B C
tan cot cot .

2 2 2
r s s c s b∴ = = − = −
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Similarly we can prove that

 ( ) ( )2

B C A
tan cot cot

2 2 2
r s s a s c= = − = −

and ( ) ( )3

C A B
tan cot cot

2 2 2
r s s b s a= = − = − .

(iii)  From 1 1I BX ,∆  0 1

1 1

BXB
cot 90

2 I X
 − =  

, (from (ii))

     
1

1 1
1

BXB B
tan BX tan .

2 2
r

r
⇒ = ⇒ =

In 0 1
1 1

1 1

CXC
� � �� � ��� �� �

2 I X
 −  

   1
1 1

1

CXC C
tan CX tan

2 2
r

r
⇒ = ⇒ =

1 1 1

B C
BC BX X C tan tan

2 2
a r  = = + = +  

.    1 B C
tan tan

2 2

a
r∴ =

+

Similarly, we can prove that   2 C A
tan tan

2 2

b
r =

+
  and  

3 A B
tan tan

2 2

c
r =

+
.

(iv) From (iii), 1 1

B C
sin sinB C 2 2tan tan

B C2 2 cos cos
2 2

a r r

 
  = + = +     
 

1

B C B C B C
2R sin A sin cos cos sin cos cos

2 2 2 2 2 2
r    ⇒ = +      

1

A A B C B C
2R 2 sin cos sin cos cos

2 2 22 2
r

 +    ⇒ =         
.

1A A B + C
4R sin , cos sin

B C2 2 2cos cos
2 2

r   ⇒ = =     
�

1

A B C
4R sin cos cos .

2 2 2
r⇒ =

 Similarly, we can prove that   2

A B C
4R cos sin cos

2 2 2
r =  and

                   3

A B C
4R cos cos sin .

2 2 2
r =

10.4.6  Solved Problems

1. Problem:  In ABC,∆  prove that 
1 2 3

1 1 1 1
.

r r r r
+ + =

Solution:  L.H.S.
1 2 3

1 1 1 s a s b s c

r r r

− − −= + + = + +
∆ ∆ ∆
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( )3 3 2 1
R.H.S

s a b c s s s

r

− + + −= = = = =
∆ ∆ ∆

.

2. Problem:  Show that 2
1 2 3r r r r = ∆ .

Solution:  L.H.S. 1 2 3r r r r . . . .
s s a s b s c

∆ ∆ ∆ ∆= =
− − −

              
4

2
2

�
� ������

�
= = =

3. Problem:  In an equilateral triangle, find the value of r / R.

Solution: 

A B C
4R sin sin sin

2 2 2
R

r

R
=  3 04 sin 30=

3
1 1

4
2 2

 = =  
.      ( )0A = B= C 60=�

.

4. Problem:  The perimeter of ABC∆  is 12 cm. and its inradius is 1 cm.  Then find the area of the
triangle .

Solution:  Given that  2s = 12 cm. and  r = 1 cm.  Then ( ) ( )� � � � �rs . sq.cm= = =

5. Problem:  Show that ( ) ( )1r r s b s c= − − .

Solution:  L.H.S. =  ( ) ( )1

B B
tan cot

2 2
r r s b s c

   = − −      
     = ( ) ( ) R.H.Ss b s c− − = .

6. Problem:  Express 
cos A cos B cos Ca b c

a b c

+ +
+ +

 in terms of  R  and  r.

Solution:
2R sin A cos A 2R sin B cos B 2R sin C cos C

a b c

+ +
+ +

( ) ( )R sin 2A sin 2B sin 2C R 4 sin A . sin B . sin C

2 2s s

+ +
= =

22R sin A sin B sin C � �
.

R R R
 = = =  

r

s s
 .

7. Problem:   In ABC∆ , ∆  = 6 sq. cm.  and  s = 1.5 cm., find  r.

Solution:  6
4

1 5
r cm

s .

∆= = = .

8. Problem:  Show that 1

A
cot

2
r r = ∆ .

Solution: 1

A A A
cot tan cot

2 2 2

∆  = = ∆  
r r s

s
.
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9. Problem:  If 13 14 15a , b , c= = = ,   find 1r .

Solution:  2s = 42 21a b c s+ + = ⇒ = .   Then  8 7 6s a , s b , s c− = − = − =

 
2 21 8 7 6 7 12 84∆ = × × × ⇒ ∆ = × = sq.units

      1
84

10 5
8

∆∴ = = =
−

r .
s a

 units.

10. Problem:   If 2 1 3r r r r= ,  then find B.

Solution:  2 1 3r r r r
s s b s a s c

∆ ∆ ∆ ∆= ⇒ =
− − −

. .

( )( ) ( )s a s c s s b⇒ − − = − ( )( )
( )

2 B
1 tan 1.

2

s c s a

s s b

− −
⇒ = ⇒ =

−
0 0B B

tan 1 45 B 90
2 2

⇒ = ⇒ = ⇒ = .

11. Problem:  In a ∆ ABC, show that the sides  a, b, c  are in A.P. if and only if  1 2 3r , r , r  are in H.P.

Solution:  1 2 3r , r , r  are in H.P.  
1 2 3

1 1 1
, ,

r r r
⇔  are in A.P.

s a s b s c
, ,

− − −⇔
∆ ∆ ∆

  are in A.P.  s a, s b, s c⇔ − − −  are in A.P.

a, b, c⇔ − − −  are  in  A.P. ⇔  a, b, c are in A.P.

12. Problem:  If  A = 900, show that ( )2 Rr b c+ = + .

Solution:  L.H.S. 2 2Rr= +   ( ) A
2 tan 2R.1

2
s a= − +

( ) 02 tan 45 2R sin As a= − +   ( )0A 90=�

         ( )2 2 1s a . a= − +

R.H.S.b c= + =

13. Problem:  If ( )( )2 1 3 1 2 32r r r r r r− − = ,  show that A = 900.

Solution:( )( )2 1 3 1 2 32r r r r r r− − =

( ) ( ) ( ) ( ) ( ) ( )2 .
s b s a s c s a s b s c

   ∆ ∆ ∆ ∆ ∆ ∆⇒ − − =   − − − − − −      

( )( ) ( )( ) ( )( )
22   − − + − − + ∆⇒ ∆ ∆ =   − − − − − −      

s a s b s a s c
.

s b s a s c s a s b s c

( )( ) ( )2
2b a c a s a⇒ − − = −
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( )( )
2

2
2

b c a
b a c a

+ − ⇒ − − =   

( )2 2 2 22 2 2 2bc ca ab a b c a bc ca ab⇒ − − + = + + + − −
2 2 2 22a b c a⇒ = + + 2 2 2b c a⇒ + =

Hence ABC∆  is right angled and A = 900.

14. Problem:  Prove that 
( )1 2 3

1 2 2 3 3 1

r r r
a

r r r r r r

+
=

+ +
.

Solution:  1 2 2 3 3 1r r r r r r
s a s b s b s c s c s a

∆ ∆ ∆ ∆ ∆ ∆+ + = + +
− − − − − −

. . .

( )( )( )
( )

( )( )( )
2 2 2

2 2
2

3 2s s ss c s a s b s
s

s a s b s c s s a s b s c

  ∆ −− + − + − ∆= ∆ = = = − − − − − − ∆  

and ( ) ( )( )
2

1 2 3
s c s b

r r r
s a s b s c s a s b s c

  ∆ ∆ ∆ ∆ − + −+ = + =   − − − − − −    

      ( )( )( )
2 2

2

s . a s . a
a s

s s a s b s c

∆ ∆= = =
− − − ∆

 Hence 
( )1 2 3

2
1 2 2 3 3 1

r r r a s
a

r r r r r r s

+
= =

+ +
.

15. Problem:  Show that 
2 2 2

2 2 2 2 2
1 2 3

1 1 1 1 a b c

r r r r

+ ++ + + =
∆

.

Solution:  L.H.S. 2 2 2 2
1 2 3

1 1 1 1

r r r r
= + + +

( ) ( ) ( )2 2 22

2 2 2 2

s a s b s cs − − −
= + + +

∆ ∆ ∆ ∆

( ) ( ) ( )2 2 22
2

1
s s a s b s c = + − + − + − ∆
2 2 2 2 2 2 2

2

1
2 2 2s s as a s bs b s cs s = + − + + − + + − + ∆

( )2 2 2 2
2

1
4 2s s a b c a b c = − + + + + + ∆

( )
2 2 2

2
2 2

1
4 2 2

a b c
s s s

+ + = − + ∆ ∆
2 2 2

2
R.H.S

a b c+ += =
∆

.
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16. Problem:  Prove that ( )1

B C
tan 0

2
r r

− Σ + =  
.

Solution:  1

A B C A B C
4R sin sin sin 4R sin cos cos

2 2 2 2 2 2
r r+ = +

        
A B C B C

4R sin sin sin cos cos
2 2 2 2 2

 = +  

        
A B C

4R sin cos
2 2

− =   
.

( )1

B C
sin

B C A B C 2
tan 4R sin cos

B C2 2 2 cos
2

r r

 −  
  − −      ⇒ + =    −      
    

                       
B C B C

4R cos sin
2 2

+ −   =       

                       ( )2R sin B sin C= −    b c= − .

        Hence ( ) ( )1

B C
tan

2

− Σ + = Σ −  
r r b c  = 0.

17. Problem:  Show that  1 2 3 1 1

2R

r r r
.

bc ca ab r
+ + = −

Solution:  L.H.S. 31 2 rr r

bc ca ab
= + +    [ ]1 2 3

1
ar br cr

abc
= + +

1 A
. tan

2
 = Σ  

a s
abc

  
A

2R sin A tan
2

s

abc
= Σ

A
sinA A 22R . 2 sin cos .

A2 2 cos
2

  
  

= Σ   
  
   

s

abc

2R A 1 cosA
4 sin

2 2 4R

s s abc
,

abc

−     = Σ = Σ ∆ =     ∆     
�

( ) ( )1
1 cos A 1 cos B 1 cos C /

2
r s

r
= − + − + − = ∆�

( )1
3 cos A cos B cos C

2r
= − + +  

1 A B C
3 1 4 sin sin sin

2 2 2 2r

  = − +    
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A B C
4R sin sin sin1 2 2 22

2 Rr

  
  

= −  
  
   

    

1 1 1
2 R.H.S

2 R 2R

r
.

r r
 = − = − =  

18. Problem:If 1: R : 2 : 5 : 12r r = ,then prove that the triangle is right angled at A.

Solution:  If  1: R : 2 : 5 : 12r r = ,  then 2 R 5= =r k , k ,  and 1 12r k=  for some k.

     ( )1 12 2 10 2 5 2R− = − = = =r r k k k k

A B C B C
4R sin cos cos sin sin 2R

2 2 2 2 2
 ⇒ − =  

A B + C
2sin cos 1

2 2
 ⇒ =  

2 A 1 B + C A
sin , cos sin

2 2 2 2

  ⇒ = =    
�

0 0 0A 1 A
sin sin 45 45 A 90

2 22
⇒ = = ⇒ = ⇒ = .

Hence the triangle is right angled at A.

19. Problem:  Show that 3 1 2 4R cos Br r r r+ + − = .

Solution:   3

C A B A B
4R sin sin sin cos cos

2 2 2 2 2
r r

 + = +  

C A B
4R sin cos

2 2

− =   
.

  1 2

C A B A B
4R cos sin cos cos sin

2 2 2 2 2
r r  − = −  

C A B
4R cos sin

2 2

− =   
.

3 1 2

C A B C A B
4R sin cos cos sin

2 2 2 2
r r r r

 − −    ∴ + + − = +        

    
C A B

4R sin +
2 2 2

 = −  

    
0 B B

4R sin 90
2 2

 = − −   4R cos B= .
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20. Problem:  If  A , A
1   

, A
2  

, A
3
  are the areas of incircle and excircles of a triangle respectively, then

prove that 
1 2 3

1 1 1 1

A A A A
+ + = .

Solution: If 1 2 3r, r , r , r  are the inradius and exradii of the circles whose areas are

A, A
1
, A

2
, A

3
  respectively, then 2 2 2 2

1 1 2 2 3 3A A A Ar , r , r , rπ π π π= = = = .

1 1 2 2 3 3A A A Ar, r , r , rπ π π π= = = =. . . . .

1 2 31 2 3

1 1 1 1 1 1 1

A A A r r rπ
 

∴ + + = + + 
 

   
1 1 1

Aπ
 = =  r

.

21. Problem:  Show that ( ) ( ) ( )2 2 2
1 2 2 3 3 1

C A B
sec sec sec

2 2 2
r r r r r r+ = + = + .

Solution:  1 2

C A B A B
4R cos sin cos cos sin

2 2 2 2 2
r r  + = +  

2C A B C
4R cos sin 4R cos

2 2 2

+ = =  

( ) 2
1 2

C
sec 4R

2
r r⇒ + = .

Similarly, we can show that ( ) ( )2 2
2 3 3 1

A B
sec sec 4R

2 2
r r r r+ = + = .

( ) ( ) ( )2 2 2
1 2 2 3 3 1

C A B
sec sec sec

2 2 2
r r r r r r∴ + = + = + .

22. Problem:  In � 	���   if  AD, BE, CF  are the perpendiculars drawn from the vertices A, B, C  to
the opposite sides, show that

(i) 
1 1 1 1

AD BE CF r
+ + =    and  (ii)  AD . BE . CF  =  

( )2

38

abc

R
.

Solution:  Since AD ⊥ BC,  (see Fig. 10.10),

1

2
∆ =  BC . AD   

2 2
AD

BC a

∆ ∆⇒ = = .

Similarly we get that BE  
2

b

∆=   and  CF  = 
2

c

∆ .

Now   (i)  
1 1 1 2 1

AD BE CF 2 2 2 2

a b c s s

r
+ + = + + = = =

∆ ∆ ∆ ∆ ∆
.

  (ii)   AD . BE . CF  = 
32 2 2 8

. .
a b c abc

∆ ∆ ∆ ∆=

      
( )23

3

8

4R 8R

abcabc

abc
 = =  

.
Fig. 10.10

B

A

CD
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23. Problem:  In � 	���   if 1 2 38 12 24r , r , r ,= = = find a, b, c.

Solution:    1 8=r  8
∆⇒ =
−s a

   
8

∆⇒ − =s a

   2 12 12
12

r s b
s b

∆ ∆= ⇒ = ⇒ − =
−

.

   3 24 24
24

r s c
s c

∆ ∆= ⇒ = ⇒ − =
−

.

Adding, ( ) 1 1 1
3

8 12 24
s a b c

 − + + = ∆ + +  
 

1
3 2

4 4
s s s

∆ ⇒ − = ∆ ⇒ =  
.

Now  4

4

r
s

∆ ∆= = =
∆ 

  

.

But  ( )22
1 2 3 4 8 12 24 8 12 96r r r r∆ = = × × × = × ⇒ ∆ =  sq. units.

and    
96

24
4

s
r

∆= = = .      Hence 
1

96
24 24 12 12

8
a s

r

∆= − = − = − = .

Similarly 
96

24 24 8 16
12

b = − = − = ;
96

24 24 4 20
24

c = − = − = .

24. Problem:  Show that 2 3 3 11 2

3 1 2

bc r r ca r rab r r

r r r

− −− = = .

Solution: ( ) ( )1 2

A B C
2R sin A 2R sin B 4R sin cos cos

2 2 2
 − = −   

ab r r  

A B C
4R cos sin cos

2 2 2
 
  

                  
2 2 2 C A A B B

4R sin A sin B 4R cos 2 sin cos 2sin cos
2 2 2 2 2

     = −           

                   
2 2 2 C

4R sin A sin B 4R cos sin A sin B
2

= −

 
2 2 C

4R sin A sin B 1 cos
2

 = −  
2 2 C

4R sin A sin B sin
2

= .

Now  
2 2

1 2

3

A A B B C
4R 2sin cos 2 sin cos sin

2 2 2 2 2
A B C

4R cos cos sin
2 2 2

ab r r

r

   
   −    = .

                                    
= 

A B C
4R sin sin sin

2 2 2
r=

 .

 Similarly we can show that       2 3 3 1

1 2

bc r r ca r r
r

r r

− −= = .
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Exercise 10(b)

(Note: All problems in this exercise have reference to ABC∆ )

  I. 1. Express 
1

A
cot

2
rΣ  interms of s.

2. Show that ( )cot A 2 Ra rΣ = + .

3. In ABC∆ , prove that 1 2 3 4Rr r r r+ + − = .

4. In ABC∆ , prove that 1 2 3 4R cos Cr r r r+ + − = .

5. If  r + r
1
 + r

2
 = r

3
,  then show that C = 900.

II. 1. Prove that ( ) ( )2
1 2 2 3 3 14 r r r r r r a b c+ + = + + .

2. Prove that 
3 2 2

1 2 3

1 1 1 1 1 1 4Rabc

r r r r r r r s

    
− − − = =     ∆     

.

3. Prove that ( ) 2
1 2 3r r r r ab bc ca s+ + = + + − .

4. Show that 
( )( )

1 3r
.

s b s c r
Σ =

− −

5. Show that ( ) ( )1 2 3

C C
tan cot c.

2 2
r r r r+ = − =

6. Show that 3 2 2 2
1 2 3

A B C
cot cot cot .

2 2 2
r r r r=

III. 1. Show that cos A cos B cos C 1
R

r+ + = + .

2. Show that  2 2 2A B C
cos cos cos 2

2 2 2 2R

r+ + = + .

3. Show that 2 2 2A B C
sin sin sin

2 2 2
+ + 1

2R

r= − .

4. Show that  (i)  ( ) 1
2 3

2 3

r r
a r r

r r
= +     (ii)  1 2

1 2
1 2

4R r r
r r

r r

− −∆ =
+

.

5. Prove that ( )2 2 2 2 2 2 2 2
1 2 3 16R+ + + = − + +r r r r a b c .

6. If 1 2 3p , p , p  are altitudes drawn from vertices A, B, C to the opposite sides of a  triangle respectively,
then show that
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(i) 
1 2 3

1 1 1 1
p p p r

      (ii) 
1 2 3 3

1 1 1 1
p p p r

  

(iii) 
 

2 3

1 2 3 3
8

8
abc

p p p
abcR


 

7. If 13 14 15a , b , c   , show that 1 2
65 21R 4 12
8 2
, r , r , r     and 3 14r  .

8. If 1 2 32 3 6r , r , r    and 1r  , Prove that 3 4a , b   and 5c  .

Key Concepts

 Law of sines or sine rule : In ABC,  sin A sin B sin C
a b c

   = 2R

 Cosine rule or Law of cosines :   In ABC, 2 2 2 2 cos Bb c a ca   ;

2 2 2 2 cos Cc a b ab   ;   2 2 2 2 cos Aa b c bc  

 Napier analogy or tangent rules :   In ABC, 
B C Atan cot

2 2
b c
b c

 




C A Btan cot
2 2

c a
c a

 



;

A B Ctan cot
2 2

a b
a b

 




 Half - angle formulae: In ABC,

     A Asin , cos
2 2

s b s c s s a
bc bc

  
   and

  

 
Atan
2

s b s c
s s a
 




 and similar expressions for

B C B Csin , sin ; cos , cos ,
2 2 2 2 and B Ctan , tan

2 2
.

   = Area of the triangle 1 1 1ABC sin A sin B sin C
2 2 2
bc ca ab  

     
4R
abcs s a s b s c      .
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� In ∆ ABC,

A B B C C A
cos cos cos

2 2 2
; ;

C A B
sin sin sin

2 2 2

− − −     
     + + +     = = =a b b c c a

c a b
.

� The circle that touches the three sides of a ∆ ABC internally is called the incircle or inscribed
circle of the triangle.  The centre and radius of this incircle are called incentre and inradius, denoted

by   I and r respectively.

� The point of concurrence of the internal bisectors of a triangle is called the incentre I of
∆ ABC.

� The circle that touches the sides BC internally and the other two sides AB and AC externally, is

called the excircle or escribed circle opposite to angle A.

� The centre and radius of the circle opposite to angle A are called excentre and exradius denoted

by I
1
 and r

1
 respectively.  Similarly r

2
, r

3
 and I

2
, I

3
.

� In ∆ ABC, ∆=r
s

,  1 2 3r , r , r
s a s b s c

∆ ∆ ∆= = =
− − −

A B C
4R sin sin sin

2 2 2
=r ; 1

A B C
4R sin cos cos ;

2 2 2
=r

           2

A B C
4R cos sin cos

2 2 2
=r ; 3

A B C
4R cos cos sin

2 2 2
r = .

Historical Note

Triangles have been used in decorative pattern from the earliest times.  Some of the first geometrical

discoveries related to the properties of triangles, like the one about right angled triangle, are traditionally
ascribed to Pythagoras.  But the sulbasutra period has given us, in India, several interesting properties
of triangles, centuries before Pythagoras.  Like Ceva’s theorem, many theorems deal with properties
of triangles.

But the systematic approach to Geometry in general and properties of triangles in particular can
be traced to Greek period and to Euclid’s Elements.  The Greeks insisted that geometric fact must be
established, not by empirical procedures, as was the practice in many earlier cultures, but by deductive
reasoning and geometrical conclusions must be arrived at by logical demonstration rather than by trial
and error experimentation.

In short, the Greeks transformed the empirical geometry of the ancient Egyptians, Babylonians
and Indians, into what we might call, deductive or demonstrative geometry.
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Answers

Exercise 10(a)

I. 2.  2 cms. 3. 7/8 4. 8

5.   3 1−  : 3 1+  : 2 2 10. 5 3  sq. units

II. 8.  14 : 11 : 6 11. (s − b) 12. 2

III. 13.  7(2 3) m− 14. 86.4 km(approx.) 15. 35 2 m

16.   40 m 17. 7 3
( 3 1)

2
+ 18. 5 2

Exercise10(b)

I. 1.  3 s
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1Chapter

����

Introduction

Set theory owes its  origin to the German mathematician George Cantor (1845 - 1918)  who developed

this theory while he was working  on trigonometric series.  The concept of a set is fundamental for the

development of abstract  algebra.  Knowledge of sets is heavily  required in the study of several branches of

mathematics like Analysis, Probability,  Number Theory,  Discrete Mathematics, Graph Theory etc.

1.1 Set

A set is a well defined collection of objects.  By well definedness we mean that it is possible to  decide
whether a given object does belong to the given collection or not.

Obejcts of a set are called elements.

1.2 Examples

The following collections constitute a set :

1. The vowels in the English alphabet : a, e, i, o, u constitute a set.

2. All natural numbers which are divisors of 36.

3. All prime numbers.

4. All the rivers flowing in India.

5. All rational numbers.

Note: Elements of a set are represented generally by lower case letters  a, b, c, p, q, r , ... and  sets by upper
case (capital)  letters A, B, C, L, M, N, .... .
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1.3  Representation of a set

There are two methods of representing a set.  They are

(i) Roster or tabular form, and

(ii) Set builder form

In the Roster form,  elements of the set are listed in a row, seperated by commas and enclosed within
a brace {  }.  For example the set of all divisors of 36 is represented in the roster form as : {1, 2, 3, 4, 6, 9,
12, 18, 36}.  Though it is customary to list the elements in an order, ordering of elements has no importance
or relevance in the listing.  Similarly all elements in the listing are taken to be distinct.

In the Set builder form,  a common property or a characteristic property that is possessed by all the
elements in the well defined collection is used to describe that set.  A general element,  say x is chosen to
represent the set,   followed by a colon (:)  or a vertical line (|) which is then followed by the characteristic
property satisfied by all those elements and enclose the whole description in braces.  For example :

Q :  {x | x is a rational number}.

In the above description,  the braces stand for ‘the set of all’  and the  vertical line for ‘such that’.  We
read it as “Q is the set of all x such that x is a rational number”.

1.4 Classification (Types) of sets

1. Empty set or null set

There is a unique set that does not have any element in it.  This set having no elements is called the null
set or empty set.  It is usually denoted by φ  or {  }.

Example : A = {x : x2 = 16  and x is an odd integer} is an empty set,  because x2 = 16 is not satisfied
by any odd integer.

If A is not the empty set,  then we say that A is a non-empty set.

2. Finite and Infinite sets

From the examples (1, 2),  we understand that the number of elements in the set may be finite or infinite.
A set is said to be finite if it consists of definite number of elements.  Otherwise it is infinite.

3. Equality of sets

If A and B are two sets such that every member of A is a member of B and every member of B is a
member of A,  then we say that A and B are equal and write  A = B.  For example,

Let  A = {1, 2, 3}  and B = {2, 3, 1}.  Then A = B.

4. Subset and Superset

If  A and B are any two sets,  we say that A is a subset of B  or B is a superset of  A  if  x∈ A ⇒   x∈ B
and we write  A B⊆ .  If  B contains all the elements of A and at least one element which is not  in A i.e.,
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A B⊆  and A ≠ B,  then we  say that A is a proper subset of B and we write A ⊂ B or B ⊃ A.  Every
non-empty set has two improper subsets namely the empty set and the set itself.

Example : The set Q of rational numbers is a proper subset of the set of real numbers R.

5. Power set of a set : If  A is  any set, then the set of all subsets of A is called the power set of A and is
denoted by ρ(A) or  ���(A).

Example :  Let  A  = {1, 2, 3}.    Then

     ρ(A)  =  {φ, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}.

6. Universal set : It is customary that the superset A, taken here to define the complement, is called the
Universal set and is denoted by U.  The complement of a set  S in the universal set U consists of all
elements of U which are not the elements of S.  It is denoted by S′ = U  S.  Observe here that
(A )′ ′ = A for any subset A of the universal set U.

7. Disjoint sets : If  two sets A and B are such that they do not have any elements in common,  i.e.,
A∩ B = φ, then A and B are said to be disjoint sets.

Example : Let A  =  {x | x is a vowel in English alphabet}, and

B  =  {y | y is a consonant in English alphabet}.

Then A∩ B = φ and hence A, B are disjoint sets.

1.5 Venn Diagram

Sets,  relationships between sets and operations on sets can be more conveniently represented by
diagrams,  known as ‘Venn diagrams’,  named after the English logician John Venn (1834-1883).  In these
diagrams,  a universal set is represented by a rectangle and all its subsets by small circles, inside the universal
set.

Examples

1. The union of two sets A and B i.e.,  A ∪ B = {x | x ∈ A or x ∈  B} can be represented by the

shaded portion in the following Venn diagram.

2. The intersection of two sets A and B i.e., A ∩ B = {x | x∈ A and x∈ B}  can be represented by the

shaded portion in the following Venn diagram.

A B

U A∪ B
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3. The difference of the sets A and B i.e., A  B = {x | x∈ A  and x∉ B} can be represented by the

shaded portion of the following Venn diagram.

4. Similarly   B  A =  {x | x ∈ B  and x∉ A} is shown by the shaded portion of the following Venn

diagram.

Note: From these Venn diagrams we observe that the sets  A∩ B,  A  B and B  A are  mutually disjoint i.e.,

the intersection of any two of them is the empty  set φ.

1.6 Operations on sets

Let A and B be any two sets.  Then  we define the following operations on these sets.

1. The union of A and B, denoted by A ∪ B  is defined as  A ∪ B = {x | x∈ A or  x∈ B}.

2. The intersection of A and B, denoted by A ∩ B is defined as A ∩ B = {x | x∈ A  and x∈ B}.

3. The difference of the sets A and B, denoted by A  B is defined as  A  B = {x | x∈ A  and Bx ∉ }.
A  B is also referred to as the complement of B with respect to A.

4. The symmetric difference of A and B,  denoted by A ∆ B,  is defined as A ∆ B = (A  B) ∪ (B  A).

1.7  Example

Let A = {2, 4, 6, 8, 10, 12},    B = {2, 6, 8, 12, 15, 18}.

Then  A ∪ B  = {2, 4, 6, 8, 10, 12, 15, 18}

A ∩ B = {2, 6, 8, 12}

U

A B

A∩ B

U

A  B

BA

U A B

B  A
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A  B  = {4, 10}

A ∆ B = {4, 10} ∪  {15, 18} = {4, 10, 15, 18}.

1.8 Complement of a set

Let  A  be any  set and  B ⊂  A.  The complement of  B in  A,  denoted  by B′  is  defined  as  the set

B′  = { x∈ A  : Bx ∉ }

we observe that  B′  =  A  B,  since  B ⊂ A.

Example :   Let   A  =  {x | x is an alphabet in English}, and

  B  =  {y | y is a vowel in the English alphabet}.

Then  B′  in  A is : {z | z is a consonant in the English alphabet}.

1.9  Some Properties of operations on sets

1. Let A, B, C be three sets.  The following  properties, satisfied by  the operations of union,
intersection and complement of sets, can be verified either from their definition  or  by  the Venn
diagrams.

(i) A ∪  A = A A ∩ A = A Idempotent Laws

(ii) A ∪ B = B ∪  A A ∩  B = B ∩  A Commutative Laws

(iii) (A ∪ B) ∪ C = A ∪ (B ∪ C) (A ∩ B)∩ C = A∩ (B∩ C) Associative Laws

(iv) A ∪ (B ∩ C) = (A ∪ B) ∩  (A ∪ C) A∩ (B ∪ C) = (A ∩ B) ∪  (A ∩ C) Distributive laws

(v) If A, B are subsets of U,  then

(A B)′∪ = A B′ ′∩ (A B) A B′ ′ ′∩ = ∪ De’Morgan’s Laws

(vi) A (B ∪ C) = (A  B)∩ (A C) A (B∩C)=(A B) ∪ (A C)

(vii) A ∪ A′  = U A∩ A′  = φ

(viii) (A ) = A, U = , = U′ ′ ′ ′φ φ

2. The following properties can also be verified from definitions.

If   A and B are two sets,  then

(i) A B A B = B A B = A⊂ ⇔ ∪ ⇔ ∩ .

(ii) A B and B A A = B⊆ ⊆ ⇔ .

(iii) A  B  = A  (A ∩ B) =  (A ∪ B)  B.

(iv) A  (A B) = A ∩ B.

(v) (A  B)  ∪  (A ∩ B) = A.

(vi) (A  B) ∪  (B  A) ∪  (A ∩ B) = A ∪ B.
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(vii) (A  B) ∪  (B  A) = (A ∪ B)  (A ∩ B).

(viii) If B and C are subsets of A,  then

B  C = B ∩ C′ ,  B  C′  = B ∩  C.

3. The following properties follow from the symmetric difference of sets.

If A, B, C are three sets,  then

(i) A ∆ φ = A (ii)   A ∆ A = φ

(iii) A ∆ B = A ∆ C ⇒  B = C (iv)  A ∆ B = B ∆ A

(v) A ∆ (B ∆ C)  = (A ∆ B) ∆ C.

We shall now establish the result (v) :

we have from 2(vii) that   A ∆ B  =  (A ∪ B)  ∩ ( A B′ ′∪ ).

  ⇒  (A ∆ B )′  = (A ∩ B) ∪ ( A B′ ′∩ ),  by De’Morgan’s laws.

Hence  (A ∆ B) ∆ C =  {(A ∆ B) ∪ C}∩ { (A  B) C′ ′∆ ∪ }

      [(A B) (A B ) C]′ ′= ∪ ∩ ∪ ∪  ∩ [(A B) (A B ) C ]′ ′ ′∩ ∪ ∩ ∪

                   = (A B C) (A B C)′ ′∪ ∪ ∩ ∪ ∪ ∩ [{A (A B )} C ]′ ′ ′∪ ∩ ∪ ∩

[{B (A B )} C ]′ ′ ′∪ ∩ ∪

      = (A B C) (A B C)′ ′∪ ∪ ∩ ∪ ∪ ∩ (A B C )′ ′∪ ∪ ∩ (A B C )′ ′∪ ∪ .

Since the expression on the right of the above equation is unchanged by the interchange of A and C, we
have

(A ∆ B) ∆ C =   (C ∆ B) ∆  A  =  A ∆ (C ∆ B) = A ∆ (B ∆ C).

1.10  Cardinal number of a set

1.10.1  Definition

If  A is a finite set,  then the number of distinct elements of the set A is called the cardinal
number of that set and is denoted by n(A).

The following properties can be verified in terms of the cardinal number of sets.

Let A, B, C be finite sets.  Then

(i) n(A ∪ B) = n(A) + n(B) − n(A ∩ B) = n(A) + n(B), if  A and B are disjoint sets

(ii) n(A ∪ B ∪ C)  = n(A) + n(B) + n(C) − n(A ∩ B) − n(B ∩ C) − n(C ∩ A)  + n(A ∩ B∩ C).

(iii) n(A   B)  = n(A)    n(A ∩ B).
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Introduction

The word relation connotes a recognizable connection between two elements or entities.  If a relation

R is associated between two sets A and B,  then we talk of a relation from A to B.  If  a ∈  A and  b ∈  B,  then

if a is related to b, we write a R b and the ordered pair (a, b) ∈ R.

2.1   Cartesian Product of sets

 2.1.1 Definition

Let A and B be two non-empty sets.  Then the set of all ordered pairs (x, y)  where

x ∈  A  and y ∈  B  is called the cartesian product of A and B and is denoted by A × B.

We write  A ×  B = {(x, y) | x ∈ A and y ∈  B}.

Example : Let   A = {a, b, c},   B = {p, q}.

Then  A ×  B = {(a, p), (b, p), (c, p),  (a, q), (b, q), (c, q)}

and    B ×  A = {(p, a), (p, b), (p, c), (q, a), (q, b), (q, c)}.
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2.1.2 Observations

(i) A ×  B ≠  B ×A,  since for  any distinct  x and y, (x, y) ≠  (y, x).

(ii) A×B = B ×  A  ⇔ A = B.

(iii) If n(A) =  p and n(B) = q,  then n(A×B) = pq.

2.2  Relation on sets

2.2.1 Definition : Relation

A relation R from a non-empty set A to a non-empty set B is defined as a subset of the

cartesian product of A and B.  i.e.,  R A B⊆ × .

If R is a relation from A  to B and if  (a, b) ∈  R,  then we also write aRb.

2.2.2Definition  : Domain and Range of a relation

If A and B  are two sets and if R is a relation from A to B,  then

(i) {x ∈  A | (x, y) ∈  R for some y ∈  B}is called the domain of R.

(ii) {y ∈  B | (x, y) ∈  R for some x ∈  A}is called the range of R.

2.2.3 Types of relations : Let A be a set and R be a relation on A.

Then (i) For  any set A,  a relation from A to A  is called a binary relation on A.

(ii) For all a ∈ A, if (a, a) ∈  R,  then R is called a reflexive relation on A.

(iii) For any a, b ∈  A,  if (a, b) ∈  R ⇒  (b, a) ∈  R  then R is called a symmetric
relation on A.

(iv) For any a, b, c ∈  A if (a, b) ∈  R, (b, c) ∈ R  ⇒  (a, c) ∈  R,  then R is called a

transitive relation on A.

2.2.4   Definition : Equivalence relation

Any  relation R on a non-empty  set A which is reflexive,  symmetric and transitive is
called an equivalence relation on A.

2.2.5 Note : (i)  A consequence of an equivalence relation on a set is that, it separates into the

elements of that set into a union of pairwise disjoint subsets whose collection is called the partition
of the set.  Each  disjoint subset is called an equivalence class.
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Introduction

‘Sequences and Series’ play a significant role in Mathematics.  We will learn about
convergence and divergence of sequences and series through various mathematical tests or
procedures in higher classes.  However in this chapter, we recollect some basic concepts and
properties of sequences and series which are in A.P and G.P.

3.1 Definition

A sequence  is a  function from the set  of  natural numbers  N  into  R.

Suppose  f  : N → A.  Then, the function  f  is written as { f (1),  f (2),  f (3), ... }.

Therefore  { f (n) : n ∈  N} is the range of the sequence.

{ f (n)} denotes the elements of  the sequence and the elements are usually written as {an}.  an is
called the nth (general) term of the sequence {an}.

● The following are examples of sequences.

(i) 2, 4, 8, 16, 32, .....

general  term = 2n, where  n is a positive integer.

(ii) 3, 6, 9, 12, 15, .....

general term = 3n.

(iii) 2, 3, 5, 7, 11, .....  is the sequence of prime numbers.
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3.2 Series

An expression of the form

a1 + a2 + .... + an + ...

where a1, a2, ...., an , ... are real numbers is called a series or an infinite series.

In higher mathematics, we attach a real number s called the sum of the series, in some
cases.  This s  is related to the sequence {sn} where

sn = a1 + a2 + .... + an.

However, in this chapter we confine only to finite series,  i.e.,  a1 + a2 + .... + an (sum of
a finite number of real numbers).

● The infinite series  a
1
 + a

2
 + .... + a

n 
+ ...  is  also denoted by  ∑

∞

=1n
na .

 and  the  finite series  a
1
 + a

2
 + .... + a

n 
is denoted by 

1

n

k
k

a
=

∑ .

● There are various types of sequences.  Prominent among them are (i) Arithmetic

sequence and (ii) Geometric sequence.

● Arithmetic series or Arithmetic progression and Geometric series or Geometric

Progression arise from these sequences.

3.2.1  Arithmetic Progression (A.P.)

Definition

A sequence (progression),  in which every term except the first term differs by the
same fixed quantity, called the common difference (c.d.), from its preceding term, is
called an  “Arithmetic Progression” (simply A.P).

If  ‘a’   is the first term and ‘d’  is the common difference (fixed quantity),  then the general

form of  A.P.  is  a, a + d,  a + 2d, .......

we write T1  =  a

T2  =  a + d   = a + (2 − 1)d

T3  =  a + 2d = a + (3 − 1)d

�

Tn  =  a + (n − 1)d.

Tn  is  called the   nth term  with ‘a’  as the first term  and ‘d’  as the common difference.

● If   S
n
 denotes the sum of the first n terms of the sequence 1, 2, 3, ..., then

( 1)
S .

2n
n n +=
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● If  S
n
  denotes the sum of  the  first n terms of the A.P., then, we have

 S [2 ( 1) ]
2n
n

a n d= + −

      [ ( 1) ]
2

n
a a n d= + + −

      = [ ]1T T
2 n
n + .

3.2.2 Properties of A.P.

1. If a constant ‘k’  is added  to each term of A.P.,  with common difference ‘d’, then the

resulting sequence also will be in A.P., with common difference (d + k).

2. If every term is multiplied by a constant ‘k’,  then the resulting sequence will also be in

A.P., with the first term ‘ka’ and common difference  ‘kd’.

3.2.3 Arithmetic Mean (A.M.)

Definition

If  a1, a2, a3,  ...,  an  are  n  real numbers, then 1 2 3 na a a .... a

n

+ + + +  is called the

arithmetic mean of  a1,  a2,  a3, ..., an.

We observe that the arithmetic mean of three consecutive terms of an A.P., is the middle

term.  In other words, if  a, b, c are three consecutive terms of an A.P., then b is the A.M. of

a, b, c and b = 
2

c a
.

+

Write b = a + d and c = a + 2d.

Then A.M.  = 
( ) ( 2 )

.
3 3

a b c a a d a d
a d

+ + + + + += = +

Therefore, if a, c are real numbers, then  b  = 
2

c a+
 is the A.M. of  a and c and  a, b, c are

in A.P.

● Let  a, b be any two real numbers  and n be a positive integer.

Suppose, there exist n numbers a1, a2, a3, ..., an  such that a, a1, a2, a3,  ..., an, b are in

A.P.  Then a1, a2, a3,  ...,  an  are called n arithmetic means between a and b.

Given a, b and n, let d = .
1

b a

n

−
+

Write  ak = a + kd,  where k = 1, 2, 3, ..., n.



 Mathematics - IA420

Then  a, a1, a2, a3,  ..., an, b are in A.P. with common difference equal to .
1

b a

n

−
+

Thus, given a, b and n, there always exist n arithmetic means between a and b.

We observe that  a1 + a2 + a3 + ... + an = ( )
2

n
a b+  and

( 1 )

1k
n k a kb

a
n

+ − +=
+

.

The following observations are useful in solving problems.

● 3 consecutive members of A.P. can be written as  a − d,  a,  a + d.

● 4 consecutive members of A.P. can be written as a − 3d, a − d, a + d, a + 3d.

● 5 consecutive members of A.P. can be written as  a − 2d, a − d, a, a + d,  a + 2d.

3.2.4 Geometric Progression (G.P.)

Definition

A sequence in which each term except the first term bears a constant ratio to its preceding

term is called a Geometric Progression (G.P.).  The constant ratio is called the common ratio.

If ‘a’ is the first term and ‘r’ is the common ratio,  then the general form of G.P. is  a, ar, ar2, ar3 .....

T1  = a = a . r1−1

T2  = ar = a . r2−1

T3  = ar2 = a . r3−1

�

Tn  = a . rn−1 is the general term of G.P.

● The sum to n terms of a G.P.  is denoted as S
n
 and  

( 1)
S

1

n

n
a r

r

−=
−

,   if  1r ≠ .

●  If r = 1, then  S
n

= a + a + a + ... (n terms) =  na

● If |r | < 1, the sum to ∞ , ∞S of the  infinite geometric series a, ar, ar2, ..., is given by

∞S
1

a

r
=

−
.
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3.2.5 Geometric Mean (G.M.)

Definition

If  a  and b are any two positive numbers,  then ab   is the Geometric Mean (G.M.) of

a and b, since a, ab , b are in G.P.

● If  a, g
1
, g

2
, g

3
 , ...., g

n
, b are in  G.P., then   g

1
, g

2
, g

3
, ...., g

n 
are called n geometric means

between a and b.

Given a, b and n,  let  r  = 

1
1

.
nb

a

+ 
  

Write g
k
 = a . rk , where  k = 1, 2, 3, ..., n, then  a, g

1
, g

2
, g

3
, ...., g

n
, b are in G.P. with

common ratio equal to  

1

1
.

nb

a

+ 
  

Thus, given a, b and n, there always exist n geometric means between a and b.

Also, it can be observed that   g
1
 g

2
  g

3
 ... g

n 
= / 2( ) .nab

3.2.6 Properties

1. If each term of a G.P. is multiplied (or divided) by a non-zero constant k,  then the resulting sequence

forms a  G.P.  with the same common ratio as the initial G.P.  This implies that if  a, ar, ar2, ... are in

G.P. then ka, kar, kar2, .... also are in G.P.

2. The reciprocals of the terms of a G.P. also are in G.P.

3. If each term of a G.P. is raised to the power ‘k’,  then the resulting sequence is in G.P. with common

ratio rk.

As in the case of A.P., the following observations are useful.

4. 3 consecutive members of a G.P.  : , ,
a

a ar
r

.

5. 4 consecutive members of a G.P. :  
3

3
, , ,

a a
ar ar

rr
.

6. 5 consecutive members of a G.P. : 2
2

, , , ,
a a

a ar ar
rr

.

3.2.7 Relationship between AM and GM

Let A and G denote the AM and GM respectively between two given positive real numbers

‘a’ and ‘b’.  Then we have A
2

a b+=  and G .ab=  Let us consider
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A G
2

a b
ab

+− = −

          
2

2

a b ab+ −=

          
2( )

2

a b−=

           > 0. .... (1)

This implies that  A > G.

Therefore A.M. of two positive numbers is > their G.M.

From (1) we observe that A = G 
2( )

A G 0 0
2

a b
a b

−⇔ − = ⇔ = ⇔ = .

More generally, let  a1, a2, ..., an  be n positive numbers.   Let  A = 1 ... na a

n

+ +
 = arithmetic mean and

G = (a1 a2 .... an)1/n = geometric mean of  a1, a2, ..., an.  Then it can be shown that A > G with equality iff

a1 = a2 = .... = an.

3.2.8 Sum to n terms of some standard series

Notation : In the begining we mentioned that for any n numbers a1, a2, ..., an .

a1 + a2 + ... + an  = 
1

n

k
k

a
=

∑ .  At times we denote the sum a1 + a2 + .... + an by  Σan there by implying

that the sum is considered for the terms a1, a2, ... , an .

Thus when n is understood to be given and

ak = 1,   Σ1 = 
1

1
n

k=
∑   = 1 + 1 + ..... + 1 (n terms) = n.

ak = k,   Σn  = 
1

n

k

k
=

∑   = 1 + 2 + ..... + n = 
( 1)

2

n n +
.

ak = k2, Σn2 =
2

1

n

k

k
=

∑  = 12 + 22 + .....+ n2 = 
( 1)(2 1)

6

n n n+ +
.

ak = k3, Σn3 = 
3

1

n

k

k
=

∑  = 13 + 23 + ..... + n3 = 
2

( 1)

2

n n + 
   .
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Introduction

Logic is the subject (discipline) that deals with the methods of reasoning and it provides the rules

for determining whether an argument made in favour of truth/falsehood of a certain statement is valid

or not.  Logic is the basis of mathematical reasoning.

We communicate our ideas or thoughts in one or more than one sentence. These sentences are

as follows.

(i) Declarative sentence

A sentence that makes a declaration is called a declarative sentence.

1. It is a boundary.

2. Hyderabad is the capital of Andhra Pradesh state.

3. 12 + 22 + 32 + 42 + ... + n2 = n(n + l)/2.

are some examples of declarative sentences.

(ii) Imperative sentence

A sentence that expresses a command or request is called an imperative sentence.

1. Close the door.

2. Stop talking.

3. Please give me your pen.

are some examples of imperative sentences.
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(iii) Interrogative sentence (question type)

A sentence in the form of a question is called an interrogative sentence.

1. Are you honest in your duty?

2. Where are you going?

3. What are you doing?

are some examples of interrogative sentences.

(iv) Exclamatory sentence

A sentence used to say something loudly and suddenly because of surprise is called an
exclamatory sentence.

1. How wonderful it is!

2. How beautiful it is!

3. How dangerous it is!

are some examples of exclamatory sentences.

4.1 Definition (Statement)

A declarative sentence is called a statement if it is either true or false but not both.

1. Example: “The sum of two natural numbers is a natural number” is a statement because it is a
declarative sentence and it is true.

2. Example: “5 + 6 > 13”  is also a statement because it is a declarative sentence and the sentence
is false.

4.1.1 Note

A statement may be pertaining to mathematics such as 1 + 2 = 3 or non-mathematical themes.
For example, “The sun rises in the east”.

4.1.2 Note

A statement is also called as a proposition.

4.1.3 Definition (Truth value)

The truth and falsity of a statement is called its truth value.

4.1.4 Notation

(i) If a statement is true then its truth value is denoted by T, otherwise its truth value is denoted
by F.

(ii) The statements are denoted by  p, q, r, s, .....

For example,  p : the sum of  2 and 3 is 5.
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4.1.5 Example

Consider the following sentences.

I. 1. The sum of 1 and 2 is 3.

2. The square of an odd integer is odd.

3. A ball thrown in the open ground will fall on to it.

II. 4. 16 can be written as the sum of two even prime numbers.

5. 3 = 4.

6. The sum of all angles of a triangle is 3600 .

    III. 7. n is a prime.

8. x + 1 = 6.

9. x + y = 8.

    IV. 10. How long this river is!

11. Tomorrow is Friday.

12. Man will reach Mars by 2020.

13. e is a special number.

Here (1),(2),(3) are statements whose truth value is T and (4),(5),(6) are also statements but their

truth value is F.  Now (10) is not a statement because it is not a declarative sentence.  The declarative

sentence (11) has truth value T when it is considered on Thursday otherwise its truth value is F.

Therefore (11) is not a statement. The sentence (12) is a statement. The truth value of (12) could be

determined only in the year 2020 or earlier if a man reaches Mars before that date. The sentence (13)

is not a statement as the word “special” is undefined.

The sentences (7), (8) and (9) are not statements. However, they become statements once a

numerical value is assigned to n, x and, x and y respectively.  For example if  n = 6 then (7) is false

and if n = 11 then (7) is true. The sentence (8) is true for only x = 5 and for all other values of x  it

is false. The sentence (9) has truth value T if  x = 5,  y = 3 and has truth value F if  x = l, y = 3.

The sentences of the type (7), (8) and (9) are called predicates which we will discuss later. The

symbols which need to be given values from a given set (it is known as Universe) in order to obtain

a statement are called free variables. The predicates in one free variable, two free variables, three free

variables respectively are denoted in the form P(x), P(x, y), P(x, y, z).  For example, P(n) : n is prime,

n ∈  N (set of natural numbers is the universe), Q(x): x +1 = 6, x ∈  Z (set of integers is the universe)
S(x, y) : x + y = 6, x, y ∈  R (set of real numbers is the universe).
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4.1.6 The law of the excluded middle, the law of contradiction

In mathematical reasoning, we are not going to be preoccupied with the actual truth value of a

statement. We shall be interested only in the fact that it has a truth value. Therefore, we ignore the

sentences like (10) to (13). Mathematical theories are constructed starting with some fundamental

assumptions called axioms.

For example, the natural numbers are generated by Peano’s axioms in number theory and later

the whole numbers, integers, rational, irrational and real numbers are defined. Further addition,

subtraction etc.. are defined. Likewise, for definiteness we have the following two assumptions for the

statements (or propositions) .

1. For every statement (or proposition)  p, either  p  is true or its negation (See 4.2.1) is true;

There is no third possibility.  This is known as the law of the excluded middle.

2. For every statement (or proposition)  p, that  p is true and p is not true are mutually exclusive.

It is known as the law of contradiction.

With these assumptions, sentences of ambiguous nature are eliminated from our discussion. The

theory of mathematical reasoning is developed by defining certain terms involving the statements. This

we learn in the next section.

4.2   Negation, Conjunction and Disjunction

In case of number theory, after defining the real numbers we go to operators like  + (addition),

− (subtraction ), ×  ( multiplication) etc.,. Likewise, we have logical operators or connectives for

combining or modifying the statements. In this section we learn negation, conjunction and

disjunction  and learn if ... then, if and only if in the next section. The negation modifies a

statement and others combine the statements. The statements are combined by means of and, or, if..
then, and if and only if. The statements are modified by the word not. Now we proceed to give

the definitions of these.

4.2.1   Definition (Negation)

The denial of a statement  p  is  called  the negation of  p  and it is denoted by ~p  read

as not  p.

Example : Let p : Mumbai is a city.  Then ~p: Mumbai is not a city.

Note that  ~p can also be stated as “It is false that Mumbai is a city” or “It is not the case that Mumbai

is a city”

...
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4.2.2  Definition (Simple statement)

A statement is said to be a simple statement if it cannot be split into two or more
sentences.

For example, “Einstein is a genius” is a simple statement as it cannot be split into two or more
sentences.

While expressing various ideas, we use two (or more) statements one for each idea and combine
them by connecting words like ‘and’, ‘or’ etc.

1. Example: Let  p : I had reached Mumbai and travelled by train to reach my house. This statement
p includes two simple statements.

q :  I had reached Mumbai.
r :  I travelled by train to reach my house.

2. Example: Let  p : all primes are either even or odd.

 This statement p includes two simple statements.
q : All prime numbers are odd
r : All prime numbers are even.

4.2.3  Definition (Compound Statement)

A compound statement is a statement which is made up of two or more simple
statements which are called components of the given statement.

The words (phrases) connecting the components are called connectives.

4.2.4  Definition (Propositional function)

A propositional function is a function whose variables are statements such as
p, q, r,  s, ..... for example, if  p, q are statements “p and  q”  is a propositional function
of  p and q. It is denoted by P( p, q).

4.2.5  Definition (Truth table)

A table showing all possible truth values of the components of a propositional function
P and its truth values is called the truth table.

For example, the truth table of ~p is as follows.

     Truth table of ~p

 p ~p

T F

F T

Here ~p is a propositional function of  p. It may be expressed as P(p): ~p.

...
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4.2.6  Definition (Equivalent statements)

Two statements are said to be equivalent if the two statements have the same truth
values. In case the statements are propositional functions, they are equivalent if  they have
the same truth table. If two propositional functions P and Q are equivalent we denote it
as  P ≡  Q.

For example p and ~(~p) are equivalent statements i.e.,  p ≡  ~( ~p).  It can be verified by

construction of the truth table.

Truth table of ~( ~p)

p ~p ~(~p)

T F T

F T F

Note that the truth values of  p and ~(~p) are the same.

4.2.7  Definition (Conjunction)

If  p, q are statements then  p  and  q  is a statement and it is called as conjunction

of  p and q. It is denoted by p ∧  q .

We read  p ∧  q  as  p and q.  The conjunction of p and q has truth value T only when both

p and q have truth values T. The truth table of  p ∧  q  is shown in the following table.

Truth table of  p ∧  q

p q p ∧  q

T T T

T F F

F T F

F F F

p ∧  q ∧  r is said to be conjunction of the statements  p, q and r and this can be extended to a finite

number of statements.

We can consider  p ∧  q as a propositional function of  p and  q i.e., P(p, q) : p ∧  q.

4.2.8 Example

Let P : 0 is less than every positive number and every negative number.
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Let the components of the statement P be

q : 0 is less than every positive number

r : 0 is less than every negative number.

We know that q is true and r is false. Therefore, the truth value of  P is false.

4.2.9  Example

Let  P: Through two given points only one straight line can be drawn and through three non-
collinear points only one circle can be drawn.

Let the components of P be

q : Through two given points only one straight line can be drawn

r : Through three non-collinear points only one circle can be drawn.

The statements q and r are true, therefore the truth value of  P is T.

4.2.10 Example

Let  p : Mixture of spirit and water can be separated by chemical methods.

Here, p is not a compound statement. The statement p does not have two statements. The word
“and”  used in  p, is not a connective.  It tells only about the contents in the single word mixture. Note
the difference between the literal use of the word and in contrast with its usage as conjunction.

4.2.11  Definition (Disjunction)

If  p  and q are any two statements then p or q is defined as disjunction of p and q and
is denoted by p ∨  q.   p ∨ q has truth value  T  whenever atleast one of  p, q has truth

value T.  The truth table of  p ∨  q is shown in the following table.

Truth table of p ∨  q

p q p ∨  q

T T T

T F T

F T T

F F F

p ∨  q ∨ r is the disjunction of the statements  p,  q  and  r.  Note that, the disjunction is defined in
the inclusive sense i.e., disjunction connective is inclusion or.

There are two types of  ‘or’ which we use in our every day life.
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4.2.12  Example

Let  p : A cup of coffee or tea is available with snacks in a restaurant. From the above statement
we understand that there is a choice between coffee and tea. One can have coffee with snacks or tea
with snacks but can not have both coffee and tea. ‘or’ used in such contexts, is called exclusive ‘or’.

4.2.13  Example

Let  p : A student who has taken Biology or Chemistry at degree level can apply for P.G. course
in Microbiology.

We understand from this statement that a student who has taken either Biology and / or
Chemistry can apply for the said course.  So, a  student who has taken both the subjects can apply
for the said course. Or used in such contexts is called inclusive ‘or’.

4.2.14  Example

Let  p : 50 is a multiple of 7 or 8.  Let its components be

   q : 50 is a multiple of  7

   r : 50 is a multiple of  8 .

Then p ≡  q ∨  r.  We know that both q and r are false. Therefore p is false.

4.2.15  Example

Let  p : Two distinct points in space determine a line or a plane.

Let its component be

q : two points in space determine a line.

r : two points in space determine a plane.

Then p ≡ q ∨  r. We know that q is true but r is false. Since either of q and r is true the truth value

of p is T.

4.2.16  Example

Let p : The college is closed if it is a holiday or a Sunday.

Let its components be

q : The college is closed if it is a holiday.

r :  The college is closed if it is a Sunday.

The truth value of p is T since both q and r are true.
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4.3  Implication - conditional and bi-conditional

We come across, in everyday life, sentences like “if  I had gone to the   railway station in time

then  I  would not have missed the train”, “if  x is a real number then  x2 > 0 and “If a number is

divisible by 49 then  it is divisible by  7.

4.3.1  Definition : Implication

Let  p  and  q  be any two statements.  “If  p  then  q”  is called an implication and
it is denoted by p →  q.

We define p →  q as a statement and it is false only when p is true and q is false.

The truth table of  p →  q is shown in the following table.

Truth table of p →  q

p q p → q

T T T

T F F

F T T

F F T

4.3.2 Note

1. Implication is also called conditional.

2. For the implication p →  q,  p is called premise or hypothesis or an antecedent and q is called
as conclusion or consequent.

3. The truth value of the implication is defined. Therefore, the truth value of an implication depends
only on the truth values of  p and q  but not any relation between antecedent and consequent
of the implication. For example, if Andhra Pradesh is in  America then 5  +  6 = 17.  The truth
value of this implication is T.  The reason is, the  statement “Andhra Pradesh is in America” has
truth value F and the statement “5 + 6 = 17”  has the truth value F.

Of course, there are rules for testing the validity of the conclusions which you learn in higher
classes.

4. In our everyday language, it is customary to have some sort of relation between antecedent and
consequent of an implication. For example, “if I get a ticket then I shall see the movie”. In this
implication, the consequent (see the movie) refers to the antecedent (get a ticket). But this is not
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the case in our defined implication. i.e., The statements  p and q of an implication  p →  q need

not have any relationship.

Therefore, there may or may not be a relation between the antecedent and consequent as per

the definition of an implication.  For example, if  Einstein is a genius then 5 + 6 = 3.  This

statement does not make sense to us in our conventional language.  However, according to our

definition of implication (conditional), this statement is considered as an implication.

5. The statements, “if p then q” and “p implies q” are not the same in the reasoning. But, in

Mathematics they are used interchangeably.

1. Example : If ABC is a triangle then sum of its angles is 1800.

2. Example : If the sky is overcast then the Sun is not visible.

4.3.3  Definitions

Let p and q be any two statements

(i)    q →  p is called the converse of  p →  q.

(ii)  ~p →  ~q is called opposite of  p →  q.

(iii)  ~q →  ~p is called contrapositive of  p →  q.

3. Example: Consider the implication “if a number is divisible by 36 then  it  is divisible by 6”. Let

p : A number is divisible by 36.

q : A number is divisible by 6.

Then the given implication is  p →  q. The converse statement of it is q→  p.  i.e., if a number

is divisible by 6 then it is divisible by 36.

4. Example : If x = a is a root of  f(x) = 0 then (x − a) is a factor of  f (x).

The opposite of it is if x = a is not a root of  f (x) = 0 then (x − a) is not a factor of f (x).

5. Example: Consider the implication “if a number is divisible by 25 then it is divisible by 5”. Let

p : A number is divisible by 25.

q : A number is divisible by 5.

Then the given implication is p →  q.  Its contrapositive statement is  ~q →  ~p  i.e., “if a number

is not divisible by 5 then it is not divisible by 25”.
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4.3.4  Definition (Biconditional)

Let p and q be any two statements. The biconditional is defined as a conjunction of

p →  q and q →  p and it is denoted by p ↔  q. i.e.,

p ↔  q ≡  (p →  q) ∧  (q →  p).  Further, p ↔  q is also stated as “p if  and only  if

q” or “p is a necessary and sufficient condition for q” and vice-versa. The truth table of

p ↔  q is given below.

Truth table of p ↔  q

p q p →  q q →  p p ↔  q ≡  (p →  q) ∧  (q →  p)

T T T T T

T F F T F

F T T F F

F F T T T

Note that p ↔  q is true only when p and q have the same truth values.

6. Example: Let  p: A number (three or more digits) in which the number formated by the digits in

the last two places (unit place and tens place) is divisible by 4 and q : the number is divisible by 4.

Then p →  q means if a number in which the part formed by the last two digits is divisible by 4, then

the number is divisible by 4 and (q →  p ) means if the number is divisible by 4 then the number in

the last two places of the given number is divisible by 4. The conjunction of these two statements may

be stated as “a number is divisible by 4 if and only if the number formed by the digits in the last two

places is divisible by 4”. In symbols p ↔  q.

4.4 Quantifiers

The phrases like “there exists” denoted by ∃ , and “for all” denoted by ∀  are called quantifiers.
The symbol ∃   is also called existential quantifier and ∀  is called Universal quantifier. ∀  is also
used in lieu of the phrase “for every”.

 4.4.1 Definition: Open statement

Let U be a set. Suppose a predicate p(x) is true or false for each x ∈  U.  Such p(x) is
called as an open statement on U.  Then the set U is called the Universe of discourse or
the Universe of the open statement p.

For example, p(x) : x is a prime and the universe U is the set of all positive integers i.e., A
declarative sentence is an open statement if  (i) it contains one or more variables  (ii) when the variables
are assigned values from a set (it is the universe) then it has truth value T or F.
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The following are examples of open statements:

1. p(x) : x + 2 is an even number, where the universe is the set all natural numbers.

2. p (x, y) : x < y, where x and y are members of the set of all real numbers.

4.4.2 Notation

(i) “ ∀ x, p(x)”  is used in the sense that  p(x) is true for every  x  belonging to the universe of p.

(ii) “ ∃ x, p(x)” is used in the sense that p(x) is true for atleast one x belonging to the universe of  p.

4.4.3 Note

Negation of quantified statements

1. ~ [ ∀ x, p(x)]   ≡  ∃ x, ~p(x)

2. ~ [ ∃ x, p(x)]    ≡  ∀ x, ~p(x)

3. ~ [ ∀ x, ~p(x)] ≡  ∃ x, p(x)

4. ~ [ ∃ x, ~p(x)]  ≡  ∀ x, p(x)

4.5   Validating Statements

Methods of proof of an implication  p →  q

I. Trivial proof of  p →  q.

In this method of trivial proof of p →  q, it is enough to show that the truth value of q is true

i.e., the implication p →  q is true when q is true (regardless of the truth value of p).

1. Example: Let p(a, b) : a, b are non-zero integers such that a  > b .

q(a, b) : a0  >  b0  and the universe U is the set of all non-zero integers.

Then q is true. Therefore, the implication p(a, b) →  q(a, b) is true (by trivial method of proof).

II. Vacuous proof of p →  q.

In this method p is shown to be false so that the implication p →  q is true.

2. Example: To show that φ ⊆  A, we have to show that

If   ∀  x, x ∈  φ then x ∈  A    .... (1)

Let p(x) : x ∈  φ and q(x) : x ∈ A.

Then we have to show ∀ x,   p(x)  ⇒  q(x).  p(x) is false, since the null set has no elements

in it. Therefore (1) is true by the method of vacuous proof.  Hence, φ ⊆  A.



Mathematical Reasoning 435

III. Direct Method of proof of an implication p → q

In this method, assuming p is true, q is shown to be true so that p →  q is true.

3. Example: Suppose we have to show that the implication “if n  is odd then n2 is odd”  is true for

any integer n using the direct method.  Let p(n): n   is odd and        q(n): n2 is odd. Here the universe

U is the set of all integers. Assume that p is true. Then n is odd. Therefore there exists some integer

k such that n = 2k + 1.

Now,  n2 = (2k + 1)2

   = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 = 2m + 1,

where m = 2k2 + 2k. Thus n2 = 2m+1.

Hence n2 is odd.

Therefore, the given implication is true.

IV. Contrapositive (Indirect) of method of) proof of an implication p → q.

In this method assuming that q is false, the conclusion p is shown to be false.

The logic involved in it is, the implication p →  q and ~q →  ~p are equivalent

i.e., p →  q ≡  ~q →  ~p. It is called contrapositive law.

It can be shown by constructing the truth table of these two implications which are given below.

Let P(p, q) : p → q and Q(p, q): ~q →  ~p.

p q ~p ~q P : p→ q Q:~q → ~p

T T F F T T

T F F T F F

F T T F T T

F F T T T T

The truth values of P(p, q) and Q(p, q) are the same. Therefore they are equivalent.

4. Example: Suppose we have to show that the implication  “if (3n + 2 ) is odd then n is odd” where

n is any integer, by contrapositive method.  Let p(n) : (3n + 2) is odd, q(n): n is odd and the universe

U is the set of all integers. Suppose that q(n) is false. Then n is not odd. It means n is an even number.

(As an integer n is either even or odd).  Since n is even there exists an integer k such that n = 2k.

3n + 2 = 3(2k) + 2 = 2(3k + 1).  Therefore 3n + 2 is an even number.  Hence p(n) is false. By

contrapositive law, the given implication is true.



 Mathematics - IA436

V. Contradiction method of proof of an implication p →  q

In this method we assume that p is true and q is false and arrive at a contradiction.

This argument leads to p ∧  (~q) is false.  Hence ~(p ∧  (~q) )is true i.e., (~p ) ∨  q is true.

But we have (~p) ∨  q ≡  p →  q.  Hence the implication  p →   q is true.

In case of a simple statement p, to show that p is true by the method of contradiction we will

assume that p is false and arrive a contradiction to a fact or to the contents of the statement p.  This

leads to conclude that our assumption is wrong. Hence the given statement is true.

VI. Method of proof by counter example

To disprove the statement: ∀ x, p(x), it is enough to provide a counter example  i.e., to show

that ∀ x, p(x) is false it is sufficient to exhibit a specific value v in the universe such that p(v) is false.

The value v is called counter example to the assertion ∀ x, p(x).

The argument is as follows:

∀ x,  p(x) ≡  p(a) ∧  p(b) ∧  p(c) ∧  p(d) ..... (a, b, c etc. are in the Universe) ∀ x, p(x)

is true if and only if  p(a), p(b), p(c), .... are all true. If any one of  p(a), p(b), p(c), ... is false then

∀ x, p(x) is false.

So, to disprove ∀ x, p(x) we can use the method of proof by a counter example.  For example

to disprove the statement “all primes are odd numbers” we can find a counter example “2 (which is

prime but not odd)”. Here the universe U is set of all positive integers.

4.5.1 Note

To prove p ↔  q is true, we have to prove p →  q and q →   p are true. We may choose any

method of proof given above to prove  p →  q or q →  p.

4.5.2 Note

If we show that p(x) is true for any arbitrary element of the universe U then p(x) is true for all

x ∈  U. Similarly, if we show that p(x, y) is true for any arbitrary elements of x and y ∈  U then

p(x, y) is true for all x, y ∈  U.



437

Reference Books

❈ Mathematics, Text Book for Class XI; National Council of Educational Research

and Training(NCERT); New Delhi; 2006.

❈ Mathematics, Text Book for Class XII, Part - I; National Council of Educational

Research and Training(NCERT); New Delhi; 2006.

❈ Mathematics, Text Book for Class XII, Part - II; National Council of Educational

Research and Training (NCERT); New Delhi; 2007.

❈ Intermediate First Year; Mathematics, Paper  I - A, Telugu Akademi; Hyderabad;

2008.

❈ Matrices - Schaum’s Outline Series; Frank Ayres; Mc. Graw Hill Education (India)

Ltd., 2007.

❈ College Algebra - Schaum’s Outline series;Murray R. Spiegel and Robert E Moyer;

McGraw - Hill Education (India) Ltd.; 2007.

❈ Vector Analysis -Schaum’s outline series; Murrary R. Spiegel; McGraw - Hill Education

(India) Ltd.; 2007.

❈ Elementary Vector Analysis; C.E. Weatherburn; G. Bell & Sons Ltd., London; 1966.

❈ Trigonometry - Schaum’s outline series; Robert E. Moyer; McGraw -Hill Education

(India) Ltd.; 2007.

❈ Plane Trigonometry (Metric edition); S.L. Loney; SBD Publishers & Distributors,

New Delhi; 2001.

❈ Elementary Trigonometry; H.S. Hall & S.R. Knight; Macmillan & Co., London; 1962.



 Mathematics - IA438

Name of Topic and Sub Topics No. of Periods

ALGEBRA

1. Functions 16

1.1 Types of functions - Definitions

1.2 Inverse functions and Theorems

1.3 Domain, Range, Inverse of real valued functions

2. Mathematical Induction 08

2.1 Principle of Mathematical Induction & Theorems

2.2 Applications of Mathematical Induction

2.3 Problems on divisibility

3. Matrices 28

3.1 Types of matrices

3.2 Scalar multiple of a matrix and multiplication of matrices

3.3 Transpose of a matrix

3.4 Determinants

3.5 Adjoint and Inverse of a matrix

3.6 Consistency and inconsistency of Equations - Rank of a matrix

3.7 Solution of simultaneous linear equations

VECTOR ALGEBRA

4. Addition of Vectors 18

4.1 Vectors as a triad of real numbers

4.2 Classification of vectors

4.3 Addition of vectors

BOARD OF INTERMEDIATE EDUCATION
Syllabus in Mathematics Paper - IA
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4.4 Scalar multiplication

4.5 Angle between two non zero vectors

4.6 Linear combination of vectors

4.7 Component of a vector in three dimensions

4.8 Vector equations of line and plane including their Cartesian equivalent forms

5. Product of Vectors 28

5.1 Scalar product - Geometrical Interpretations - Orthogonal projections

5.2 Properities of dot product

5.3 Expression of dot product in i,  j, k system - Angle between two vectors

5.4 Geometrical Vector methods

5.5 Vector equations of plane in normal form.

5.6 Angle between two planes

5.7 Vector product of two vectors and properties

5.8 Vector product in i,  j, k system.

5.9 Vector Areas

5.10 Scalar Triple product

5.11 Vector equations of plane in different forms, skew lines, shortest distance

and their Cartesian equivalents.  Plane through the line of  intersection  of

two planes, condition for coplanarity of  two lines, perpendicular distance

of  a  point  from  a  plane,  Angle between  line and  a  plane.  Cartesian

equivalents of all these results.

5.12 Vector Triple product - Results.

TRIGONOMETRY

6. Trigonometric Ratios up to Transformations 20

6.1 Graphs and Periodicity of Trigonometric functions

6.2 Trigonometric ratios and Compound angles

Syllabus
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6.3 Trigonometric ratios of multiple and sub multiple angles

6.4 Transformations - Sum and Product rules

7. Trigonometric Equations  05

7.1 General solution of Trigonometric Equations

7.2 Simple Trigonometric Equations - Solutions

8. Inverse Triogonometric Functions 07

8.1 To reduce a Trigonometric function into a bijection

8.2 Graphs of Inverse Trigonometric Functions

8.3 Properities of Inverse Trigonometric Functions

9. Hyperbolic Functions 04

9.1 Definition of Hyperbolic Function - Graphs

9.2 Definition of inverse Hyperbolic Functions - Graphs

9.3 Addition formulas of Hyperbolic Functions

10. Properities of Triangles 16

10.1 Relation between sides and angles of a Triangle

10.2 Sine, Cosine, Tangent and Projection rules

10.3 Half angle formulae and areas of a triangle

10.4 In-circle and Ex-circle of a Triangle

Total 150

Additional Reading Material for Mathematics - IA

The following topics are there in the Common Core Syllabus which is covered in previous curriculum

(IX and X classes) and which is not included in A.P. Intermediate syllabus. For the benefit of students

writing competitive examination based on Common Core Syllabus, we are giving the material briefly

on the following topics.  No question is to be set in the IPE, Mathematics - IA from this syllabus.

1. Sets

Introduction

Sets and their representations
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The empty set

Finite and infinite sets

Equal sets

Sub sets

Power sets

Universal sets

Venn Diagram

Operations on sets

Complement of a set

Practical problems on union and intersection of two sets

 2. Relations

Introduction

Cartesian Product of sets

Relations

3. Sequences and Series

Introduction

Sequences

Series

Arithmetic Progressions (A.P.)

Geometric Progressions (G.P.)

Relationship between A.M.  and  G.M.

Sum and upto n terms of special series

4. Mathematical Reasoning

Introduction

Statement

New statements from old

Special words / phrases

Implications

Validating Statements

Syllabus
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Note : The Question Paper consists of three sections A, B and C

Section - A  10 ×  2 = 20 Marks

I. Very Short Answer Questions
 (i)  Answer All questions
(ii)  Each Question carries two marks

1. If  A 0, , , ,
6 4 3 2

π π π π =  
 

 and  f  : A →  B is a surjection defined by  f (x) = cos x then find B.

2. Find the domain of the real-valued function  f (x) = 1
.

log(2 )x−

3. A certain bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics

books.  Their selling prices are Rs. 80, Rs. 60 and Rs. 40 each respectively.  Find the total amount the

bookshop will receive by selling all the books, using matrix algebra.

4. If  
2 4

A ,
5 3

− 
=  − 

 then  find  A + A′  and  A A′ .

5. Show that the points whose position vectors are 2 3 5 , 2 3 , 7a b c a b c a c− + + + + −  are collinear when

, ,a b c  are non-coplanar vectors.

6. Let 2 4 5 ,a i j k b i j k= + − = + +  and 2c j k= + .  Find unit vector in the opposite direction of

a b c+ + .

7. If  2 3a i j k= + − and  3 2 2b i j k= − +  then show that a b+  and a b− are perpendicular to each

other.

8. Prove that 
0 0

0
0 0

cos9 sin 9
cot 36

cos9 sin 9

+ =
−

.

BOARD OF INTERMEDIATE EDUCATION A.P. : HYDERABAD
MODEL QUESTION PAPER w.e.f. 2012-13

MATHEMATICS - IA

(English Version)

Time : 3 Hours Max. Marks : 75
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9. Find the period of the function defined by  f (x) = tan (x + 4x + 9x + .... + n2x).

10. If sinh x = 3 then show that log (3 10)ex = + .

Section - B  5 ×  4 = 20 Marks

II. Short Answer Questions
 (i)  Answer any Five questions.
(ii)  Each Question carries Four marks.

11. Show that 

1

1 ( )( )( )

1

bc b c

ca c a a b b c c a

ab a b

+
+ = − − −
+

.

12. Let A B C D E F be regular hexagon with centre ‘O’.  Show that

AB AC AD AE AF 3AD 6AO.+ + + + = =

13. If  2 3 , 2a i j k b i j k= − − = + −  and 3 2c i j k= + −  find ( )a b c× × .

14. If  A  is not an integral multiple of 
2

π ,  prove that

 (i)  tan A + cot A  =  2 cosec 2A

(ii)  cot A − tan A  =  2 cot 2A

15. Solve : 22cos 3 sin 1 0.θ − θ + =

16. Prove that  1 11 1
cos 2 tan sin 4 tan .

7 3
− −   =      

17. In a ∆ABC prove that 
B C A

tan cot .
2 2

b c

b c

− −  =   +

Section - C  5 ×  7 = 35 Marks

III. Long Answer Questions
 (i)  Answer any Five questions.
(ii)  Each Question carries Seven marks.

18. Let  f : A →  B,  g : B →  C be bijections.  Then prove that (gof )−1 =  f −1og−1.

19. By using mathematical induction show that Nn∀ ∈ ,  
1 1 1

....
1.4 4.7 7.10

+ + +  upto n terms = .
3 1

n

n +

Model Question Paper
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20. If  
1 2 3

A 0 1 4

2 2 1

− 
 = − 
 − 

 then find ( A′)−1.

21. Solve the following equations by Gauss-Jordan method  3x + 4y + 5z = 18, 2x − y + 8z = 13 and

5x − 2y + 7z = 20.

22. If  A = (1, −2, −1), B = (4, 0, −3), C = (1, 2, −1) and D = (2, −4, −5), find the distance between

AB  and CD .

23. If A, B, C are angles of a triangle, then prove that 2 2 2A B C A B C
sin sin sin 1 2cos cos sin .

2 2 2 2 2 2
+ − = −

24. In a ∆ABC, if a = 13, b = 14, c = 15, find R, r, r1, r2 and r3.
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