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Y.S. JAGAN MOHAN REDDY AMARAVATICHIEF MINISTER
ANDHRA PRADESH

MESSAGE
I congratulate  Akademi for starting its activities with printing of textbooks from

the academic year 2021 – 22.

Education is a real asset which cannot be stolen by anyone and it is the foundation
on which children build their future. As the world has become a global village, children
will have to compete with the world as they grow up. For this there is every need for
good books and good education.

Our government has brought in many changes in the education system and more
are to come. The government has been taking care to provide education to the poor
and needy through various measures, like developing infrastructure, upgrading the skills
of teachers, providing incentives to the children and parents to pursue education. Nutritious
mid-day meal and converting Anganwadis into pre-primary schools with English as medium
of instruction are the steps taken to initiate children into education from a young age.
Besides introducing CBSE syllabus and Telugu as a compulsory subject, the government
has taken up numerous innovative programmes.

The revival of the Akademi also took place during the tenure of our government
as it was neglected after the State was bifurcated. The Akademi, which was started on
August 6, 1968 in the undivided state of Andhra Pradesh, was printing text books,
works of popular writers and books for competitive exams and personality development.

Our government has decided to make available all kinds of books required for
students and employees through Akademi, with headquarters at Tirupati.

I extend my best wishes to the Akademi and hope it will regain its past glory.

(Y.S. JAGAN MOHAN REDDY)



Dr. NANDAMURI  LAKSHMIPARVATHI
               M.A., M.Phil., Ph.D.

Chairperson, (Cabinet Minister Rank)
Telugu and Sanskrit Akademi, A.P.

Message of Chairperson, Telugu and Sanskrit Akademi, A.P.

In accordance with the syllabus developed by the Board of Intermediate, State
Council for Higher Education, SCERT etc., we design high quality Text books by recruiting
efficient Professors, department heads and faculty members from various Universities and
Colleges as writers and editors. We are taking steps to print the required number of these
books in a timely manner and distribute through the Akademi’s Regional Centers present
across the Andhra Pradesh.

In addition to text books, we strive to keep monographs, dictionaries, dialect texts,
question banks, contact texts, popular texts, essays, linguistics texts, school level dictionaries,
glossaries, etc., updated and printed and made available to students from time to time.

For competitive examinations conducted by the Andhra Pradesh Public Service
Commission and for Entrance examinations conducted by various Universities, the contents
of  the Akademi publications are taken as standard.  So, I want all the students and
Employees to make use of  Akademi books of high standards for their golden future.

Congratulations and best wishes to all of you.

(NANDAMURI  LAKSHMIPARVATHI)



Higher Education Department
Government of Andhra Pradesh

J. SYAMALA RAO, I.A.S.,
Principal Secretary to Government

MESSAGE

I Congratulate Telugu and Sanskrit Akademi for taking up the initiative of
printing and distributing textbooks in both Telugu and English media within a short
span of establishing Telugu and Sanskrit Akademi.

Number of students of Andhra Pradesh are competing of National Level for
admissions into Medicine and Engineering courses.  In order to help these students
Telugu and Sanskrit Akademi consultation with NCERT redesigned their Textbooks
to suit the requirement of National Level Examinations in a lucid language.

As the content in Telugu and Sanskrit Akademi books is highly informative
and authentic, printed in multi-color on high quality paper and will be made available
to the students in a time bound manner. I hope all the students in Andhra Pradesh
will utilize the Akademi textbooks for better understanding of the subjects to compete
of state and national levels.

(J. SYAMALA RAO)



THE CONSTITUTION OF INDIA
PREAMBLE

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into a
[SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC] and to secure to all
its citizens:

JUSTICE, social, economic and political;

LIBERTY of thought, expression, belief, faith
and worship;

EQUALITY of status and of opportunity; and
to promote among them all

FRATERNITY assuring the dignity of the
individual and the [unity and integrity of the
Nation];

IN OUR CONSTITUENT ASSEMBLY this
twenty-sixth day of November, 1949 do HEREBY
ADOPT,  ENACT AND GIVE TO OURSELVES
THIS CONSTITUTION.
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Foreword
The Government of India vowed to remove the educational dispar it ies and

adopt a common core curr icu lum across the count ry especially at the Intermediate
level. Ever  since the Government of Andhra Pradesh and the Board of Intermediate
Education (BIE) swung into act ion  with the task  of evolving a revised syllabus in
al l the Science subjects on par wi th  that of COBSE, approved by NCERT, i ts
chief inten tion being enabling the students from Andhra Pradesh to prepare for
the National  Level Common Entrance tests l ike NEET, ISEET etc for  admission
into Inst itu t ions of professional courses in our Country.

For  the first t ime BIE AP has decided to prepare the Science textbooks.
Accor d i n gl y  an  Academ i c Revi ew Com m i t t ee w as con st i t u t ed  w i t h  t h e
Commissioner of Intermediate Educat ion , AP as Chairman and the Secretary,
BIE AP; the Director SCERT and the Director Telugu Akademi as members. The
Nat ional and State Level Educational luminar ies were involved in the textbook
preparation , who did it  with met icu lous care. The textbooks are pr inted on the
lines of NCERT maintain ing National Level Standards.

The Education Depar tment of Government of Andhra Pradesh has tak en a
decision  to publ ish  and to supply al l  the text  books wi th  free of cost  for  the
students of all Government and Aided Junior Colleges of newly formed state of
Andhra Pradesh.

We express ou r  sincere grat itude to the Director, NCERT for  according
permission to adopt  i ts syllabi  and cu rr icu lum of Science textbooks. We have
been permit ted to make use of their  textbooks which wil l  be of great advantage
to our student community. I also express my grat itude to the Chairman, BIE and
the honorable Minister  for  HRD and Vice Chairman, BIE and Secretary (SE) for
their  dedicated sincere gu idance and help.

I sincerely hope that the assorted methods of innovation that are adopted
in the preparation  of these textbooks wi l l  be of great  help and gu idance to the
students.

I  wh ol ehear ted ly  appr eciate t h e sin cer e en deavor s of t he Text book
Development Committee which  has accomplished this noble task .

Construct ive suggestions are solicited for  the improvement of this textbook
from the students, teachers and general  publ ic in the subjects concerned so
that  next edit ion wil l  be revised du ly incorporating these suggestions.

It  is very much commendable that Intermediate text book s are being pr inted
for the fir st t ime by the Akademi from the 2021-22 academic year.

Sr i . V. Ram ak r ishna I.R.S.
Di r ect or

Telugu and Sansk r it  Akademi,
Andhra Pradesh



Preface

The students and teachers of Physics at Intermediate First Year level
in A.P. have been following the subject through the text-books published by
Telugu Akademi, Govt. of A.P. The text-books, au thored and edited by subject
experts of A.P., presented the Physics subject, which cou ld be divided mainly
into two branches, viz, Mechanics and Heat. The contents of these branches
cou ld be covered under  di fferent  chapters (16) wi th  rather  ‘’convent ional’
headings l ike Vectors, Rotatory Motion, Simple Harmonic Motion, Tempera-
tu re and Thermal Expansion etc. Of course, the book  included several solved,
example problems, besides the quest ions under  Very Short  Answer, Shor t
Answer, Long Answer Questions, following the pattern of public examination
of In termediate Physics, First Year.

The present  text -book  on Physics for  In ter mediate Fi rst  Year, adopted
almost as such from the NCERT books, PHYSICS Par t-I (Class XI) and Par t-II
bu t su itably modified, covers almost all the contents of the previous Physics
Text book  and the presently revised syllabus/ curr icu lum contents. The book
also includes Questions compliant with the pattern of public examination of
Intermediate Physics, First Year.

The approach to the chapters deviates from convention and the syllabus
con t en t s ar e cover ed  i n  d i f fer en t  ch ap ter s wi t h  concep t / t hem e based
headings, as can be seen from the l ist of contents. For example, scalars and
vectors and the related aspects are covered under  the chapter t i t led ‘Motion
i n  a Pl an e’. Si m i l ar l y , Si m p le H ar m on ic M ot ion  i s cover ed u n der  t h e
appropr iately broad t i t le ‘Osci l lat ions’, (Chapter  8). Both  Su r face Tension
and Viscosi ty topics have been covered under ‘Mechanical Propert ies of Flu ids’
(Chapter  11).

Thus, the text-book  contains 14 chapters, ou t of which the one chapter,
on  ‘Kinet ic Theor y’ is a su i t able, new addi t ion  wh ich  raises the level  of
knowledge above the previous Physics books of Intermediate First Year.

The book , in general, is expected to cater to the needs of students of all
sect ions of Science Stream who may aspire to compete in  the Nat ional Level
Entrance Tests or pursue higher courses in Physics, wh ich, any way, need
the basic foundations, that  are made available in the book .

Dr. Mudigonda Salagram.

Dr. Bandi Krishnarajulu Naidu.



A Not e for t he Teachers
To mak e the curr icu lum  learner -centred, students shou ld be made to part icipate and interact

in  the learn ing process direct ly. Once a week  or one out  of every six classes wou ld be a good per iodici ty
for su ch sem inars and mutu al interact ion. Some su ggest ions for  mak ing the discu ssion part icipatory
are given below, wi th reference to some specific topics in this book .

Students may be divided in to grou ps of five to six. The m embersh ip of these groups may be rotated
du ring the year, if fel t  necessary.

The topic for discu ssion can be presented on the board or on sl ips of paper. Students shou ld be
asked to wri te their  react ions or answers to quest ions, whichever is ask ed, on the given sheets. They
shou ld then discuss in  their  grou ps and add modificat ions or  comments in those sheets. These shou ld
be discussed either  in the sam e or in a different class. The sheets may also be evaluated.

We suggest here three possible topics from the book . The first  two topics suggested are, in  fact ,
very general  and refer to the development of science over  the past fou r centu r ies or  more. Stu dents and
teachers may think  of m ore such topics for each seminar.

1. Ideas t hat  changed ci v i l i sat i on
Su ppose human beings are becoming ext inct . A m essage has to be left  for  fu tu re generat ions or  alien
visitors. Em inent physicist  R P Feynmann wanted the following message left  for  fu tu re beings, if any.

“M at t er  i s m ade up of  at om s”
A lady student and teacher  of l it erature, wanted the following m essage left :

“Wat er  ex i st ed, so h um an beings could  happen ”.

Another person thou ght  it  shou ld be: “I dea of  wheel  for  m ot ion”

Write down what message each one of you wou ld like to leave for  fu tu re generat ions. Then discu ss
it  in you r group and add or m odi fy, if you  want to change your  mind. Give it  to your teacher  and join
in  any discu ssion that  fol lows.

2. Reduct i on i sm

Kinet ic Theory of Gases relates the Big to the Sm all , the Macro to the Micro. A gas as a system is
related to i ts components, the molecu les. This way of descr ibing a system as a resu l t  of the propert ies
of i ts com ponents is u su al ly cal led Reduct i on i sm . I t  explains the behaviou r of the group by the
simpler and predictable behaviou r of individuals. Macroscopic observat ions and microscopic propert ies
have a mu tual  in terdependence in this approach. Is this m ethod u sefu l?

Th is way of u nderstanding has its lim itat ions ou tside physics and chemistry, m ay be even in  these
su bjects. A pain t ing cannot  be discu ssed as a col lect ion  of the proper t ies of chemicals used in mak ing
the canvas and the paint ing. What em erges is m ore than the sum  of its components.

Quest ion : Can you think  of other areas where such an approach is used?

          Descr ibe br iefly a system which is fu lly descr ibable in terms of its components.  Descr ibe one
which is not . Discu ss with  other mem bers of the group and wr ite your views. Give it  to you r teacher
and join in any discussion that may follow.

3. Molecu lar  approach t o heat

Descr ibe what you think  wi ll happen in the fol lowing case. An enclosu re is separated by a porous wal l
in to two par ts. One is fi l led wi th n it rogen gas (N

2
) and the other  with CO

2
. Gases will diffuse from one

side to the other.

Quest i on  1 : Will both gases di ffu se to the same exten t? I f not , which wil l di ffu se more. Give reasons.

Quest i on  2 : Will  the pressure and temperatu re be u nchanged? If not , what wil l be the changes in
both. Give reasons.

Wr ite down your answers. D iscuss with the grou p and modi fy them or  add comments. Give to
the teacher and join  in  the discu ssion.

Students and teachers wi ll  find that  su ch sem inars and discussions lead to t rem endou s
understanding, not only of physics, bu t  also of science and social sciences. They also br ing in some
matur ity among students.



Addi t ional Not e for
t he PHYSICS Teachers of A.P. St at e

It  is advised that  the PHYSICS teachers, at  Intermediate level of A.P. State, shou ld,
first, keenly go through every paragraph of each chapter/ sub-topic and educate themselves
abou t  t he pedagogy and note that  easily u nderstandable langu age is used in  t he Text -
book  to br ing in  conceptu al coherence.

The usual ly fol lowed method, of teach ing Physics chapters involving defin it ions,
statement of laws and der ivation of formulae/ expressions, may, probably, have to ‘change’.
Because, t he present  book, in any chapter, of course, begins with such  an Int roduct ion,
that, it  at tracts the at tention of students to the observable happenings, in and around the
social life of man and then relates them to the contextual Physics. After the discussion of
the topic, most ly qualitative, the book leads to simple mathematical steps, with intervening
logic, and finally ‘arr ives’ at  t he final equ at ion / expression or formu la (ex: Bernou ll i’s
equation, Chapter 11), rather than ‘deriving’ it  in  formal, mathemat ical steps, sometimes,
with certain assumptions.

Some of t he examples, used in the Text  to elaborate the work ing of certain Physics
pr inciple/  concept  u nderlying the actual applicat ion, are ‘not  very familiar’, not  only to
the most  of the students in a class but  also to the teacher. This indicates the necessity, or
even inevitability, on the part  of the Physics teacher to educate himself pr ior -hand and, if
possible, pract ically experience the application of Physics pr inciple and thus prepare and
plan in advance to present / demonstrate it  t o the students in  a class. This observat ion
made here becomes amply clear if the teacher studies the topic on ‘Hydrau lic Machines’
and the example problem No. 11.6 in t he chapter on ‘Mechan ical Proper t ies of Flu ids’.

In any case, keen study, of each  of t he topic to be taken up in a class, (if necessary
repeatedly) and then thorough understanding of it  (possibly through discussion with co-
Physics teachers or senior, more experienced Physics teachers) is very ‘essential’ for Physics
teachers of th is new, present  Text-book.

Once teacher can appreciate ‘the beauty and logic of Physics’, he can deliver/ teach the
topic in h is own su itable, convenient (perhaps, local) language. Or, in fact, the presentation
of the basic Physics in the Text -book, is so lucid, that  the teacher  can reproduce the
paragraphs of t he topic-’verbatum’-in the class and then  make the students/ learners
participate in the discussion.

Note that  the Text-Book opens with Macro (Max) - vision of “Physical World” and closes
with Micro (scopic) - invisibil ity of “Kinet ic Theory”, both  const itu t ing the real Physics;
indicat ing that  so much must be the diversity in the ‘vision’ of the A.P. Physics teacher and
at  the same t ime maintain equality in quality, effect iveness and emphasis in t ransferr ing
this Physics to the students either at as vast  as Hyderabad city or Visakhapatnam city or
at  as t iny village as Narmet ta or Ont i Mit ta.

In fine, it  is hoped, that  the Physics teachers of A.P., educate (and equ ip) t hemselves
abou t  the new, scient ifically logical way of studying the subject  and expose the students
to the ‘realm of Physics’.

This is not  only to make the students feel ‘the joy and excitement  of learning Physics’
bu t  also impart  them the necessary sk ills and ‘sound-foot ing’ in basics of PHYSICS, so
that they can face any compet it ive examination, however challenging it  may be, with greater
confidence.

Dr. Mudigon da Salagram
Dr. Bandi  K r i sh naraju lu  Naidu
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1.1  WHAT IS PHYSICS ?

Humans have always been curious about the world around
them. The night sky with its bright celestial objects has
fascinated humans since time immemorial. The regular
repetitions of day and night, the annual cycle of seasons,
the eclipses, the tides, the volcanoes, the rainbow have always
been a source of wonder. The world has an astonishing variety
of materials and a bewildering diversity of life and behaviour.
The inquiring and imaginative human mind has responded
to the wonder and awe of nature in different ways. One kind
of response from the earliest times has been to observe the
physical environment carefully, look for any meaningful
patterns and relations in natural phenomena, and build and
use new tools to interact with nature.  This human endeavour
led, in course of time, to modern science and technology.

The word Science originates from the Latin verb Scientia
meaning ‘to know’.  The Sanskrit word Vijnan and the Arabic
word Ilm convey similar meaning, namely ‘knowledge’.
Science, in a broad sense, is as old as human species. The
early civilisations of Egypt, India, China, Greece, Mesopotamia
and many others made vital contributions to its progress.
From the sixteenth century onwards, great strides were made
in science in Europe. By the middle of the twentieth century,
science had become a truly international enterprise, with
many cultures and countries contributing to its rapid growth.

What is Science and what is the so-called Scientific
Method?  Science is a systematic attempt to understand
natural phenomena in as much detail and depth as possible,
and use the knowledge so gained to predict, modify and
control phenomena. Science is exploring, experimenting and
predicting from what we see around us. The curiosity to learn
about the world, unravelling the secrets of nature is the first
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step towards the formulation of science. The
scientific method involves several
interconnected steps : Systematic observations,
controlled experiments, qualitative and
quantitative reasoning, mathematical
modelling, prediction and verification or
falsification of theories. Speculation and
conjecture also have a place in science; but
ultimately, a scientific theory, to be acceptable,
must be verified by relevant observations  or
experiments. There is much philosophical
debate about the nature and method of science
that we need not discuss here.

The interplay of theory and observation (or
experiment) is basic to the progress of science.
Science is ever dynamic. There is no ‘final’
theory in science and no unquestioned
authority among scientists.  As observations
improve in detail and precision or experiments
yield new results, theories must account for
them, if necessary, by introducing modifications.
Sometimes the modifications may not be drastic
and may lie within the framework of existing
theory.  For example, when Johannes Kepler
(1571-1630) examined the extensive data on
planetary motion collected by Tycho Brahe
(1546-1601), the planetary circular orbits in
heliocentric  theory (sun at the centre of the
solar system) imagined by Nicolas Copernicus
(1473–1543) had to be replaced by elliptical
orbits to fit the data better.  Occasionally,
however, the  existing theory is simply unable
to explain new observations.  This causes a
major upheaval in science. In the beginning of
the twentieth century, it was realised that
Newtonian mechanics, till then a very
successful theory, could not explain some of the
most basic features of atomic phenomena.
Similarly, the then accepted wave picture of light
failed to explain the photoelectric effect properly.
This led to the development of a  radically new
theory (Quantum Mechanics) to deal with atomic
and molecular phenomena.

Just as a new experiment may suggest an
alternative theoretical model, a theoretical
advance may suggest what to look for in some
experiments.  The result of experiment of
scattering of alpha particles by gold foil, in 1911
by Ernest Rutherford (1871–1937) established

the nuclear model of the atom, which then
became the basis of the quantum theory of
hydrogen atom given in 1913 by Niels Bohr
(1885–1962). On the other hand, the concept of
antiparticle was first introduced theoretically by
Paul Dirac (1902–1984) in 1930 and confirmed
two years later by the experimental discovery of
positron (antielectron) by Carl Anderson.

Physics is a basic discipline in the category
of Natural Sciences, which also includes other
disciplines like Chemistry and Biology. The word
Physics comes from a Greek word meaning
nature. Its Sanskrit equivalent is Bhautiki that
is used to refer to the study of the physical world.
A precise definition of this discipline is neither
possible nor necessary.  We can broadly describe
physics as a study of the basic laws of  nature
and their manifestation in different natural
phenomena.  The scope of physics is described
briefly in the next section.  Here we remark on
two principal thrusts in physics :  unification
and reduction.

In Physics, we attempt to explain diverse
physical phenomena in terms of a few concepts
and laws.  The effort is to see the physical world
as manifestation of some universal laws in
different domains and conditions.  For example,
the same law of gravitation (given by Newton)
describes the fall of an apple to the ground, the
motion of the moon around the earth and the
motion of planets around the sun. Similarly, the
basic laws of electromagnetism (Maxwell’s
equations) govern all electric and magnetic
phenomena. The attempts to unify fundamental
forces of nature (section 1.4) reflect this same
quest for unification.

A related effort is to derive the properties of a
bigger, more complex, system from the properties
and interactions of its constituent simpler parts.
This approach is called reductionism and is
at the heart of physics.  For example, the subject
of thermodynamics, developed in the nineteenth
century, deals with bulk systems in terms of
macroscopic quantities such as temperature,
internal energy, entropy, etc.  Subsequently, the
subjects of kinetic theory and statistical
mechanics interpreted these quantities in terms
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with macroscopic phenomena and includes
subjects like Mechanics, Electrodynamics,
Optics and Thermodynamics. Mechanics
founded on Newton’s laws of motion and the law
of gravitation is concerned with the motion (or
equilibrium) of particles, rigid and deformable
bodies, and general systems of particles.  The
propulsion of a rocket by a jet of ejecting gases,
propagation of water waves or sound waves in
air, the equilibrium of a bent rod under a load,
etc., are problems of mechanics.  Electrodynamics
deals with electric and magnetic phenomena
associated with charged and magnetic bodies.
Its basic laws were given by Coulomb, Oersted,
Ampere and Faraday, and encapsulated by

internal energy, temperature, entropy, etc., of the
system through external work and transfer of
heat.  The efficiency of heat engines and
refrigerators, the direction of a physical or
chemical process, etc., are problems of interest
in thermodynamics.

The microscopic domain of physics deals  with
the constitution and structure of matter at the
minute scales of atoms and nuclei (and even
lower scales of length) and their interaction with
different probes such as electrons, photons and
other elementary particles. Classical physics is
inadequate to handle this domain and Quantum
Theory is currently accepted as the proper
framework for explaining microscopic

Fig. 1.1 Theory and experiment go hand in hand in physics and help each other’s progress. The alpha scattering
experiments of Rutherford gave the nuclear model of the atom.

* Recently, the domain intermediate between the macroscopic and the microscopic (the so-called mesoscopic
physics), dealing with a few tens or hundreds of atoms, has emerged as an exciting  field of  research.

of the properties of the molecular constituents
of the bulk system.  In particular, the
temperature was seen to be related to the average
kinetic energy of molecules  of the system.

1.2  SCOPE AND EXCITEMENT OF PHYSICS

We can get some idea of the scope of physics by
looking at its various sub-disciplines.  Basically,
there are two domains of interest : macroscopic
and microscopic. The macroscopic domain
includes phenomena at the laboratory, terrestrial
and astronomical scales. The microscopic domain
includes nuclear, atomic and molecular
phenomena*. Classical Physics deals mainly

Maxwell in his famous set of equations. The
motion of a current-carrying conductor in a
magnetic field, the response of a circuit to an ac
voltage (signal), the working of an antenna, the
propagation of radio waves in the ionosphere, etc.,
are problems of electrodynamics. Optics deals
with the phenomena involving light. The working
of telescopes and microscopes, colours exhibited
by thin films, etc., are topics in optics.
Thermodynamics, in contrast to mechanics, does
not deal with the motion of bodies as a whole.
Rather, it deals with systems in macroscopic
equilibrium and is concerned with changes in



PHYSICS4

phenomena.  Overall, the edifice of physics is
beautiful and imposing and you will appreciate
it more as you pursue the subject.

You can now see that the scope of physics is
truly vast.  It covers a tremendous range of
magnitude of physical quantities like length,
mass, time, energy, etc.  At one end, it studies
phenomena at the very small scale of length
(1014 m or even less) involving electrons, protons,
etc.; at the other end, it deals with astronomical
phenomena at the scale of galaxies or even the
entire universe whose extent is of the order of
1026 m.  The two length scales differ by a factor of
1040 or even more.  The range of time scales can
be obtained by dividing the length scales by the
speed of light : 10–22 s to 1018 s.  The range of
masses goes from, say, 10–30 kg  (mass of an
electron) to 1055 kg (mass of known observable
universe). Terrestrial phenomena lie somewhere
in the middle of this range.

Physics is exciting in many ways. To some people
the excitement comes from the elegance and
universality of its basic theories, from the fact that
a few basic concepts and laws can explain
phenomena covering a large range of magnitude
of physical quantities. To some others, the challenge
in carrying out imaginative new experiments to
unlock the secrets of nature, to verify or refute
theories, is thrilling.  Applied physics is equally
demanding. Application and exploitation of
physical laws to make useful devices is the most
interesting and exciting part and requires great
ingenuity and persistence of effort.

What lies behind the phenomenal progress
of physics in the last few centuries? Great
progress usually accompanies changes in our
basic perceptions.  First, it was realised that for
scientific progress, only qualitative thinking,
though no doubt important, is not enough.
Quantitative measurement is central to the
growth of science, especially physics, because
the laws of nature happen to be expressible in
precise mathematical equations. The second
most important insight was that the basic laws

Hypothesis, axioms and models

One should not think that everything can be proved
with physics and mathematics. All physics, and also
mathematics, is based on assumptions, each of
which is variously called a hypothesis or axiom or
postulate, etc.

For example, the universal law of gravitation
proposed by Newton is an assumption or hypothesis,
which he proposed out of his ingenuity. Before him,
there were several observations, experiments and
data, on the motion of planets around the sun,
motion of the moon around the earth, pendulums,
bodies falling towards the earth etc. Each of these
required a separate explanation, which was more
or less qualitative. What the universal law of
gravitation says is that, if we assume that any two
bodies in the universe attract each other with a
force proportional to the product of their masses
and inversely proportional to the square of the
distance between them, then we can explain all
these observations in one stroke. It not only explains
these phenomena, it also allows us to predict the
results of future experiments.

A hypothesis is a supposition without assuming
that it is true. It would not be fair to ask anybody
to prove the universal law of gravitation, because
it cannot be proved. It can be verified and
substantiated by experiments and observations.

An axiom is a self-evident truth while a model
is a theory proposed to explain observed
phenomena. But you need not worry at this stage
about the nuances in using these words. For
example, next year you will learn about Bohr’s model
of hydrogen atom, in which Bohr assumed that an
electron in the hydrogen atom follows certain rules
(postutates). Why did he do that? There was a large
amount of spectroscopic data before him which no
other theory could explain. So Bohr said that if we
assume that an atom behaves in such a manner,
we can explain all these things at once.

Einstein’s special theory of relativity is also
based on two postulates, the constancy of the speed
of electromagnetic radiation and the validity of
physical laws in all inertial frames of reference. It
would not be wise to ask somebody to prove that
the speed of light in vacuum is constant,
independent of the source or observer.

In mathematics too, we need axioms and
hypotheses at every stage. Euclid’s statement that
parallel lines never meet, is a hypothesis. This means
that if we assume this statement, we can explain
several properties of straight lines and two or three
dimensional figures made out of them. But if you
don’t assume it, you are free to use a different axiom
and get a new geometry, as has indeed happened in
the past few centuries and decades.
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Table 1.1 Some physicists from different countries of the world and their major contributions

of physics are universal — the same laws apply
in widely different contexts. Lastly, the strategy
of approximation turned out to be very
successful.  Most observed phenomena in daily
life are rather complicated manifestations of the
basic laws. Scientists recognised the importance
of extracting the essential features of a
phenomenon from its less significant aspects.
It is not practical to take into account all the
complexities of a phenomenon in one go.  A good
strategy is to focus first on the essential features,
discover the basic principles and then introduce
corrections to build a more refined theory of the
phenomenon. For example, a stone and a feather
dropped from the same height do not reach the
ground at the same time. The reason is that the
essential aspect of the phenomenon, namely free
fall under gravity, is complicated by the
presence of air resistance. To get the law of free
fall under gravity, it is better to create a
situation wherein the air resistance is
negligible. We can, for example, let the stone and
the feather fall through a long evacuated tube.
In that case, the two objects will fall almost at
the same rate, giving the basic law that
acceleration due to gravity is independent of the

mass of the object.  With the basic law thus
found, we can go back to the feather, introduce
corrections due to air resistance, modify the
existing theory and try to build a more realistic
theory of objects falling to the earth under
gravity.

1.3    PHYSICS, TECHNOLOGY AND SOCIETY

The connection between physics, technology and
society can be seen in many examples. The
discipline of thermodynamics arose from the
need to understand and improve the working of
heat engines.  The steam engine, as we know,
is inseparable from the Industrial Revolution in
England in the eighteenth century, which had
great impact on the course of human
civilisation. Sometimes technology gives rise to
new physics; at other times physics generates
new technology. An example of the latter is the
wireless communication technology that followed
the discovery of the basic laws of electricity and
magnetism in the nineteenth century. The
applications of  physics are not always easy to
foresee. As late as 1933, the great physicist
Ernest Rutherford had dismissed the possibility

Name Major contribution/discovery Country of
Origin

Archimedes Principle of buoyancy; Principle of the lever Greece

Galileo Galilei Law of inertia Italy

Christiaan Huygens Wave theory of light Holland

Isaac Newton Universal law of gravitation; Laws of motion; U.K.
Reflecting telescope

Michael Faraday Laws of electromagnetic induction U.K.

James Clerk Maxwell Electromagnetic theory; Light-an U.K.
electromagnetic wave

Heinrich Rudolf Hertz Generation of electromagnetic waves Germany

J.C. Bose Short radio waves India

W.K. Roentgen X-rays Germany

J.J. Thomson Electron U.K.

Marie Sklodowska Curie Discovery of radium and polonium; Studies on Poland
natural radioactivity

Albert Einstein Explanation of photoelectric effect; Germany

Theory of relativity



PHYSICS6

* Sections 1.4 and 1.5 contain several ideas that you may not grasp fully in your first reading. However, we
advise you to read them carefully to develop a feel for some basic aspects of  physics. These are some of the
areas which continue to occupy the physicists today.

of tapping energy from atoms. But only a few
years later, in 1938, Hahn and Meitner
discovered the phenomenon of neutron-induced
fission of uranium, which would serve as the
basis of nuclear power reactors and nuclear
weapons. Yet another important example of
physics giving rise to technology is the silicon
‘chip’ that triggered  the computer revolution in
the last three decades of the twentieth century.
A most significant area to which physics has
and will contribute is the development of
alternative energy resources.  The fossil fuels of
the planet are dwindling fast and there is an
urgent need to discover new and affordable

sources of energy.  Considerable progress has
already been made in this direction (for
example, in conversion of solar energy,
geothermal energy, etc., into electricity), but
much more is still to be accomplished.

Table1.1 lists some of the great physicists,
their major contribution and their country of
origin. You will appreciate from this table the
multi-cultural, international character of the
scientific endeavour. Table 1.2 lists some
important technologies and the principles of
physics  they  are  based on.  Obviously,  these
tables are not exhaustive. We urge you to try to
add many names and items to these tables with

Victor Francis Hess Cosmic radiation Austria

R.A. Millikan Measurement of electronic charge U.S.A.

Ernest Rutherford Nuclear model of atom New Zealand

Niels Bohr Quantum model of hydrogen atom Denmark

C.V. Raman Inelastic scattering of light by molecules India

Louis Victor de Borglie Wave nature of matter France

M.N. Saha Thermal ionisation India

S.N. Bose Quantum statistics India

Wolfgang Pauli Exclusion principle Austria

Enrico Fermi Controlled nuclear fission Italy

Werner Heisenberg Quantum mechanics; Uncertainty principle Germany

Paul Dirac Relativistic theory of electron; U.K.
Quantum statistics

Edwin Hubble Expanding universe U.S.A.

Ernest Orlando Lawrence Cyclotron U.S.A.

James Chadwick Neutron U.K.

Hideki Yukawa Theory of nuclear forces Japan

Homi Jehangir Bhabha Cascade process of cosmic radiation India

Lev Davidovich Landau Theory of condensed matter; Liquid helium Russia

S. Chandrasekhar Chandrasekhar limit, structure and evolution India
of stars

John Bardeen Transistors; Theory of super conductivity U.S.A.

C.H. Townes Maser; Laser U.S.A.

Abdus Salam Unification of weak and electromagnetic Pakistan
interactions

Name Major contribution/discovery Country of
Origin
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the help of your teachers, good books and
websites on science.  You will find that this
exercise is very educative and also great fun.
And, assuredly, it will never end.  The progress
of science is unstoppable!

Physics is the study of nature and natural
phenomena. Physicists try to discover the rules
that are operating in nature, on the basis of
observations, experimentation and analysis.
Physics deals with certain basic rules/laws
governing the natural world. What is the nature
of physical laws? We shall now discuss the
nature of fundamental forces and the laws that

govern the diverse phenomena of the physical
world.

1.4  FUNDAMENTAL FORCES IN NATURE*

We all have an intuitive notion of force. In our
experience, force is needed to push, carry or
throw objects, deform or break them.  We also
experience the impact of forces on us, like when
a moving object hits us or we are in a merry-go-
round. Going from this intuitive notion to the
proper scientific concept of force is not a trivial
matter. Early thinkers like Aristotle had wrong
ideas about it.  The correct notion of force was
arrived at by Isaac Newton in his famous laws of

 Table 1.2  Link between technology and physics

Technology Scientific principle(s)

Steam  engine Laws of thermodynamics

Nuclear reactor Controlled nuclear fission

Radio and Television Generation, propagation and detection

of electromagnetic waves

Computers Digital logic

Lasers Light amplification by stimulated emission of
radiation

Production of ultra high magnetic Superconductivity
fields

Rocket propulsion Newton’s laws of motion

Electric generator Faraday’s laws of electromagnetic induction

Hydroelectric power Conversion of gravitational potential energy into
electrical energy

Aeroplane Bernoulli’s principle in fluid dynamics

Particle accelerators Motion of charged particles in electromagnetic
fields

Sonar Reflection of ultrasonic waves

Optical fibres Total internal reflection of light

Non-reflecting coatings Thin film optical interference

Electron microscope Wave nature of electrons

Photocell Photoelectric effect

Fusion test reactor (Tokamak) Magnetic confinement of plasma

Giant Metrewave Radio Detection of cosmic radio waves
Telescope (GMRT)

Bose-Einstein condensate Trapping and cooling of atoms by laser beams and
magnetic fields.
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motion. He also gave an explicit form for the force
for gravitational attraction between two bodies.
We shall study these matters in subsequent
chapters.

In the macroscopic world, besides the
gravitational force, we encounter several kinds
of forces: muscular force, contact forces between
bodies, friction (which is also a contact force
parallel to the surfaces in contact), the forces
exerted by compressed or elongated springs and
taut strings and ropes (tension), the force of
buoyancy and viscous force when solids are in
contact with fluids, the force due to pressure of
a fluid, the force due to surface tension of a liquid,
and so on. There are also forces involving charged
and magnetic bodies. In the microscopic domain
again, we have electric and magnetic forces,
nuclear forces involving protons and neutrons,
interatomic and intermolecular forces, etc.  We
shall get familiar with some of these forces in later
parts of this course.

A great insight of  twentieth century physics
is that these different forces occurring  in
different contexts actually arise from only a small
number of fundamental forces in nature.  For
example, the elastic spring force arises due to
the net attraction/repulsion between the
neighbouring atoms of the spring when the
spring is elongated/compressed. This net
attraction/repulsion can be traced to the

(unbalanced) sum of electric forces between the
charged constituents of the atoms.

In principle, this means that the laws for
‘derived’ forces (such as spring force, friction)
are not independent of the laws of fundamental
forces in nature. The  origin of these derived
forces is, however, very complex.

At the present stage of our understanding,
we know of four fundamental forces in nature,
which are described in brief here :

1.4.1 Gravitational Force

The gravitational force is the force of mutual
attraction between any two objects by virtue of
their masses. It is a universal force. Every object
experiences this force due to every other object
in the universe. All objects on the earth, for
example, experience the force of gravity due to
the earth. In particular, gravity governs the
motion of the moon and artificial satellites around
the earth, motion of the earth and planets
around the sun, and, of course, the motion of
bodies falling to the earth.  It plays a key role in
the large-scale phenomena occuring in the
universe, such as formation and evolution of
stars, galaxies and galactic clusters.

1.4.2  Electromagnetic Force

Electromagnetic force is the force between

Albert Einstein (1879-1955)

Albert Einstein, born in Ulm, Germany in 1879, is universally regarded as
one of the greatest physicists of all time. His astonishing scientific career
began with the publication of three path-breaking papers in 1905.  In the
first paper, he introduced the notion of light quanta (now called photons)
and used it to explain the features of photoelectric effect that the classical
wave theory of radiation could not account for.  In the second paper, he
developed a theory of Brownian motion that was confirmed experimentally
a few years later and provided a convincing evidence of the atomic picture of
matter. The third paper gave birth to the special theory of relativity that

made Einstein a legend in his own life time.  In the next decade, he explored the consequences of his
new theory which included, among other things, the mass-energy equivalence enshrined in his famous
equation E = mc2.  He also created the general version of relativity (The General Theory of Relativity),
which is the modern theory of gravitation. Some of Einstein’s most significant later contributions are:
the notion of stimulated emission introduced in an alternative derivation of Planck’s blackbody radiation
law, static model of the universe which started modern cosmology, quantum statistics of a gas of
massive bosons, and a critical analysis of the foundations of quantum mechanics. The year 2005 was
declared as International Year of  Physics, in recognition of  Einstein’s monumental contribution to
physics, in year 1905, describing revolutionary scientific ideas that have since influenced all of modern
physics.
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charged particles.  In the simpler case when
charges are at rest, the force is given by
Coulomb’s law : attractive for unlike charges and
repulsive for like charges. Charges in motion
produce magnetic effects and a magnetic field
gives rise to a force on a moving charge. Electric
and magnetic effects are, in general,
inseparable – hence the name electromagnetic
force. Like the gravitational force,
electromagnetic force acts over large distances
and does not need any intervening medium. It
is enormously strong compared to gravity. The
electric force between two protons, for example,
is 1036 times the gravitational force between
them, for any fixed distance.

Matter, as we know, consists of elementary
charged constituents like electrons and
protons. Since the electromagnetic force is so
much stronger than the gravitational force, it
dominates all phenomena at atomic and
molecular scales.  (The other two forces, as we
shall see, operate only at nuclear scales.)  Thus
it is mainly the electromagnetic force that
governs the structure of atoms and molecules,
the dynamics of  chemical reactions and the
mechanical, thermal and other properties of
materials.  It underlies the macroscopic forces
like  ‘tension’, ‘friction’,  ‘spring force’, etc.

Gravity is always attractive, while
electromagnetic force can be attractive or
repulsive.  Another way of putting it is that mass
comes only in one variety (there is no negative
mass), but charge comes in two varieties :
positive and negative charge. This is what
makes all the difference.  Matter is mostly
electrically neutral (net charge is zero). Thus,
electric force is largely zero and gravitational
force dominates terrestrial phenomena. Electric
force manifests itself in atmosphere where the
atoms are ionised and that leads to lightning.

If we reflect a little, the enormous strength
of the electromagnetic force compared to
gravity is evident in our daily life.  When we
hold a book in our hand, we are balancing the
gravitational force on the book due to the huge
mass of the earth by the ‘normal force’
provided by our hand.

1.4.3  Strong Nuclear Force

The strong nuclear force binds protons and
neutrons in a nucleus. It is evident that without
some attractive force, a nucleus will be
unstable due to the electric repulsion between
its protons. This attractive force cannot be

Satyendranath Bose (1894-1974)

Satyendranath Bose, born in Calcutta in 1894, is among the great Indian
physicists who made a fundamental contribution to the advance of science
in the twentieth century. An outstanding student throughout, Bose started
his career in 1916 as a lecturer in physics in Calcutta University; five years
later he joined Dacca University.  Here in 1924, in a brilliant flash of insight,
Bose gave a new derivation of Planck’s law, treating radiation as a gas of
photons and employing new statistical methods of counting of photon states.
He wrote a short paper on the subject and sent it to Einstein who
immediately recognised its great significance, translated it in German and
forwarded it for publication.  Einstein then applied the same method to a

gas of molecules.
The key new conceptual ingredient in Bose’s work was that the particles were regarded as

indistinguishable, a radical departure from the assumption that underlies the classical Maxwell-
Boltzmann statistics. It was soon realised that the new Bose-Einstein statistics was applicable to
particles with integral spin, and a new quantum statistics (Fermi-Dirac statistics) was needed for
particles with half-odd integral spin satisfying Pauli’s exclusion principle. Particles with integral spins
are now known as bosons in honour of Bose.

An important consequence of Bose-Einstein statistics is that a gas of molecules below a certain
temperature will undergo a phase transition to a state where a large fraction of atoms populate the
same lowest energy state. Some seventy years were to pass before the pioneering ideas of Bose, developed
further by Einstein, were dramatically confirmed in the observation of a new state of matter in a dilute
gas of ultra cold alkali atoms - the Bose-Eintein  condensate.
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gravitational since force of gravity is negligible
compared to the electric force. A new basic force
must, therefore, be  invoked. The strong
nuclear force  is  the strongest of all
fundamental forces, about 100 times the
electromagnetic force in strength.  It is charge-
independent and acts equally between a proton
and a proton, a neutron and a neutron, and a
proton and a neutron. Its range is, however,
extremely small, of about nuclear dimensions
(10–15m). It is responsible for the stability of
nuclei. The electron, it must be noted, does not
experience this force.

Recent developments have, however,
indicated that protons and neutrons are built
out of still more elementary constituents called
quarks.

1.4.4  Weak Nuclear Force

The weak nuclear force appears only in certain
nuclear processes such as the -decay of a
nucleus. In -decay, the nucleus emits an
electron and an uncharged particle called

neutrino.  The weak nuclear force is not as weak
as the gravitational force, but much weaker
than the strong nuclear and electromagnetic
forces. The range of weak nuclear force is
exceedingly small, of the order of 10-16 m.

1.4.5  Towards Unification of  Forces

We remarked in section 1.1 that unification is a
basic quest in physics. Great advances in
physics often amount to unification of different
theories and domains. Newton unified terrestrial
and celestial domains under a common law of
gravitation.  The experimental discoveries of
Oersted and Faraday showed that electric and
magnetic phenomena are in general
inseparable.  Maxwell unified electromagnetism
and optics with the discovery that light is an
electromagnetic wave.  Einstein attempted to
unify gravity and electromagnetism but could
not succeed in this venture. But this did not
deter physicists from zealously pursuing the goal
of unification of forces.

Recent decades have seen much progress on

Table 1.4  Progress in unification of different forces/domains in nature

Table 1.3  Fundamental  forces  of  nature

Name Relative Range Operates among
strength

Gravitational force 10–39 Infinite All objects in the universe

Weak nuclear force 10–13 Very short, Sub-nuclear Some elementary particles,
size (10–16m) particularly electron and

neutrino

Electromagnetic force 10–2 Infinite Charged particles

Strong nuclear force 1 Short, nuclear Nucleons, heavier
size (10–15m) elementary particles
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this front.  The electromagnetic and the weak
nuclear force have now been unified and are
seen as aspects of a single ‘electro-weak’ force.
What this unification actually means cannot be
explained here. Attempts have been (and are
being) made to unify the electro-weak and the
strong force and even to unify the gravitational
force with the rest of the fundamental forces.
Many of these ideas are still speculative and
inconclusive. Table 1.4 summarises some of the
milestones in the progress towards unification
of forces in nature.

1.5   NATURE OF PHYSICAL LAWS

Physicists explore the universe. Their
investigations, based on scientific processes,
range from particles that are smaller than
atoms in size to stars that are very far away. In
addition to finding the facts by observation and
experimentation, physicists attempt to discover
the laws that summarise (often as mathematical
equations) these facts.

In any physical phenomenon governed by
different forces, several quantities may change
with time. A remarkable fact is that some special
physical quantities, however, remain constant
in time. They are the conserved quantities of
nature. Understanding these conservation
principles is very important to describe the
observed phenomena quantitatively.

For motion under an external conservative
force, the total mechanical energy i.e. the sum

of kinetic and potential energy of a body is a
constant. The familiar example is the free fall of
an object under gravity. Both the kinetic energy
of the object and its potential energy change
continuously with time, but the sum remains
fixed. If the object is released from rest, the initial
potential energy is completely converted into the
kinetic energy of the object just before it hits
the ground. This law restricted for a conservative
force should not be confused with the general
law of conservation of energy of an isolated
system (which is the basis of the First Law of
Thermodynamics).

The concept of energy is central to physics
and the expressions for energy can be written
for every physical system. When all forms of
energy e.g., heat, mechanical energy, electrical
energy etc., are counted, it turns out that energy
is conserved. The general law of conservation of
energy is true for all forces and for any kind of
transformation between different forms of
energy. In the falling object example, if you
include the effect of air resistance during the
fall and see the situation after the object hits
the ground and stays there, the total
mechanical energy is obviously not conserved.
The general law of energy conservation, however,
is still applicable.  The initial potential energy
of the stone gets transformed into other forms
of energy : heat and sound. (Ultimately, sound
after it is absorbed, becomes heat.) The total

Sir C.V. Raman (1888-1970)

Chandrashekhara Venkata Raman  was born on 07 Nov 1888 in Thiruvanaikkaval.
He finished his schooling by the age of eleven. He graduated from Presidency
College, Madras. After finishing his education he joined financial services of the
Indian Government.

While in Kolkata, he started working on his area of interest at Indian Asso-
ciation for Cultivation of Science founded  by Dr. Mahendra Lal Sirkar, during his
evening hours. His area of interest included vibrations, variety of musical instru-
ments, ultrasonics, diffraction and so on.

In 1917 he was offered Professorship at Calcutta University. In 1924 he was
elected ‘Fellow’ of the Royal Society of London and received Nobel prize in Physics
in 1930 for his discovery, now known as Raman Effect.

The Raman Effect deals with scattering of light by molecules of a medium
when they are excited to vibrational energy levels. This work opened totally new
avenues for research for years to come.

He spent his later years at Bangalore, first at Indian Institute of Science and then at Raman Re-
search Institute. His work has inspired generations of young students.
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energy of the system (stone plus the
surroundings) remains unchanged.

The law of conservation of energy is thought
to be valid across all domains of nature, from
the microscopic to the macroscopic. It is
routinely applied in the analysis of atomic,
nuclear and elementary particle processes.  At
the other end, all kinds of uncontrolled
phenomena occur in the universe all the time.
Yet the total energy of the universe (the most
ideal isolated system possible !) is believed to
remain unchanged.

Until the advent of Einstein’s theory of
relativity, the law of conservation of mass was
regarded as another basic conservation law of
nature, since matter was thought to be
indestructible. It was (and still is) an important
principle used, for example, in the analysis of
chemical reactions. A chemical reaction is
basically a rearrangement of atoms among
different molecules.  If the total binding energy
of the reacting molecules is less than the total
binding energy of the product molecules, the
difference appears as heat and the reaction is
exothermic.  The opposite is true for energy
absorbing (endothermic) reactions.  However,
since the atoms are merely rearranged but not
destroyed, the total mass of the reactants is the
same as the total mass of the products in a
chemical reaction. The changes in the binding
energy are too small to be measured as changes
in mass.

According to Einstein’s theory, mass m is
equivalent to energy E given by the relation
E= mc2, where c is speed of light in vacuum.

In a nuclear process mass gets converted to
energy (or vice-versa). This is the energy which
is released in  nuclear power generation and
nuclear explosions.

Energy is a scalar quantity.  But all conserved
quantities are not necessarily scalars.  The total
linear momentum and the total angular
momentum (both vectors) of an isolated system
are also conserved quantities.  These laws can
be derived from Newton’s laws of motion in
mechanics.  But their validity goes beyond
mechanics.  They are the basic conservation

laws of nature in all domains, even in those
where Newton’s laws may not be valid.

Besides their great simplicity and generality,
the conservation laws of nature are very useful
in practice too.  It often happens that we cannot
solve the full dynamics of a complex problem
involving different particles and forces. The
conservation laws can still provide useful
results.  For example, we may not know the
complicated forces that act during a collision
of two automobiles; yet momentum
conservation law enables us to bypass the
complications and predict or rule out possible
outcomes of the collision. In nuclear and
elementary particle phenomena also, the
conservation laws are important tools of

* See Chapter 7

Conservation laws in physics

Conservation of energy, momentum, angular
momentum, charge, etc are considered to be
fundamental laws in physics. At this moment,
there are many such conservation laws. Apart from
the above four, there are others which mostly deal
with quantities which have been introduced in
nuclear and particle physics. Some of the
conserved quantities are called spin, baryon
number, strangeness, hypercharge, etc, but you
need not worry about them.

A conservation law is a hypothesis, based on
observations and experiments. It is important to
remember that a conservation law cannot be
proved. It can be verified, or disproved, by
experiments. An experiment whose result is  in
conformity with the law verifies or substantiates
the law; it does not prove the law. On the other
hand, a single experiment whose result goes
against the law is enough to disprove it.

It would be wrong to ask somebody to prove
the law of conservation of energy. This law is an
outcome of our experience over several centuries,
and it has been found to be valid in all
experiments, in mechanics, thermodynamics,
electromagnetism, optics, atomic and nuclear
physics, or any other area.

Some students feel that they can prove the
conservation of mechanical energy from a body
falling under gravity, by adding the kinetic and
potential energies at a point and showing that it
turns out to be constant. As pointed out above,
this is only a verification of the law, not its proof.
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analysis.  Indeed, using the conservation laws of energy and momentum for -decay,
Wolfgang Pauli (1900-1958) correctly predicted in 1931 the existence of a new particle
(now called neutrino) emitted in -decay along with the electron.

Conservation laws have a deep connection with symmetries of nature that you will
explore in more advanced courses in physics.  For example, an important observation
is that the laws of nature do not change with time!  If you perform an experiment in
your laboratory today and repeat the same experiment (on the same objects under
identical conditions) after a year, the results are bound to be the same.  It turns out
that this symmetry of nature with respect to translation (i.e. displacement) in time is
equivalent to the law of conservation of energy.  Likewise, space is homogeneous and
there is no (intrinsically) preferred location in the universe.  To put it more clearly,
the laws of nature are the same everywhere in the universe. (Caution : the phenomena
may differ from place to place because of differing conditions at different locations.
For example, the acceleration due to gravity at the moon is one-sixth that at the
earth, but the law of gravitation is the same both on the moon and the earth.)  This
symmetry of the laws of nature with respect to translation in space gives rise to
conservation of linear momentum.  In the same way isotropy of space (no intrinsically
preferred direction in space) underlies the law of conservation of angular momentum*.
The conservation laws of charge and other attributes of elementary particles can
also be related to certain abstract symmetries.  Symmetries of space and time and
other abstract symmetries play a central role in modern theories of fundamental
forces in nature.

SUMMARY

1. Physics deals with the study of the basic laws of nature and their manifestation in
different phenomena. The basic laws of physics are universal and apply in widely different
contexts and conditions.

2. The scope of physics is wide, covering a tremendous range of magnitude of physical
quantities.

3. Physics and technology are related to each other.  Sometimes technology gives rise to
new physics; at other times physics generates new technology.  Both have direct impact
on society.

4. There are four fundamental forces in nature that govern the diverse phenomena of the
macroscopic and the microscopic world. These are the ‘gravitational force’, the
‘electromagnetic force’, the ‘strong nuclear force’, and the ‘weak nuclear force’.  Unification
of different forces/domains in nature is a basic quest in physics.

5. The physical quantities that remain unchanged in a process are called conserved
quantities. Some of the general conservation laws in nature include the laws of
conservation of mass, energy, linear momentum, angular momentum, charge, parity,
etc.  Some conservation laws are true for one fundamental force but not for the other.

6. Conservation laws have a deep connection with symmetries of nature.  Symmetries of
space and time, and other types of symmetries play a central role in modern theories of
fundamental forces in nature.

EXERCISES

Very Short Answer Questions (2 Marks)

1. What is Physics?

2. What is the discovery of C.V. Raman?

3. What are the fundamental forces in nature?
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4. Which of the following has symmetry:

(a)  Acceleration due to gravity.

(b)  Law of gravitation.

5. What is the contribution of S. Chandra Sekhar to Physics?

Note for the student
The exercises given here are meant to enhance your awareness about the issues surrounding
science, technology and society and to encourage you to think and formulate your views
about them.  The questions may not have clear-cut ‘objective’ answers.

Note for the teacher
The exercises given here are not  for the purpose of a formal examination.

1.1 Some of the most profound statements on the nature of science have come from Albert
Einstein, one of the greatest scientists of all time.  What do you think  Einstein
meant when he said :  “The most incomprehensible thing about the world is that it is
comprehensible”?

1.2 “Every great physical theory starts as a heresy and ends as a dogma”. Give some
examples from the history of science of the validity of this incisive remark.

1.3 “Politics is the art of the possible”. Similarly, “Science is the art of the soluble”.
Explain this beautiful aphorism on the nature and practice of science.

1.4 Though India now has a large base in science and technology, which is fast expanding,
it is still a long way from realising its potential of becoming a world leader in science.
Name some important factors, which in your view have hindered the advancement of
science in India.

1.5 No physicist has ever “seen” an electron.  Yet, all physicists believe in the existence of
electrons.  An intelligent but superstitious man advances this analogy to argue that
‘ghosts’ exist even though no one has ‘seen’ one.  How will you refute his argument ?

1.6 The shells of crabs found around a particular coastal location in Japan seem mostly
to resemble the legendary face of a Samurai.  Given below are two explanations of this
observed fact.  Which of these strikes you as a scientific explanation ?

(a) A tragic sea accident several centuries ago drowned a young Samurai. As a tribute
to his bravery, nature through its inscrutable ways immortalised his face by
imprinting it on the crab shells in that area.

(b) After the sea tragedy, fishermen in that  area, in a gesture of honour to their
dead hero, let free any crab shell caught by them which accidentally had a shape
resembling the face of a Samurai.  Consequently, the particular shape  of the
crab shell survived longer and therefore in course of time the shape was genetically
propagated.  This is an example of evolution by artificial selection.

[Note : This interesting illustration taken from Carl Sagan’s ‘The Cosmos’ highlights
the fact that often strange and inexplicable facts which on the first sight appear
‘supernatural’ actually turn out to have simple scientific explanations. Try to think
out other examples of this kind].

1.7 The industrial revolution in England and Western Europe more than two centuries
ago was triggered by some key scientific and technological advances.  What were these
advances ?

1.8 It is often said that the world is witnessing now a second industrial revolution, which
will transform the society as radically as did the first. List some key contemporary areas
of science and technology, which are responsible for this revolution.

1.9 Write in about 1000 words a fiction piece  on the science and technology of the twenty-
second century.
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1.10 Attempt to formulate your ‘moral’ views on the practice of science.  Imagine yourself
stumbling upon a discovery, which has great academic interest but is certain to have
nothing but dangerous consequences for the human society.  How, if at all, will you
resolve your dilemma ?

1.11 Science, like any knowledge, can be put to good or bad use, depending on the user.
Given below are some of the applications of science.  Formulate your views on whether
the particular application is good, bad or something that cannot be so clearly
categorised :
(a) Mass vaccination against small pox to curb and finally eradicate this disease

from the population. (This has already been successfully done in India).
(b) Television for eradication of illiteracy and for mass communication of news and

ideas.
(c) Prenatal sex determination
(d) Computers for increase in work efficiency
(e) Putting artificial satellites into orbits  around the Earth
(f ) Development of nuclear weapons
(g) Development of new and powerful techniques of chemical and biological warfare).
(h) Purification of water for drinking
(i) Plastic surgery
(j ) Cloning

1.12 India has had a long and unbroken tradition of great scholarship — in mathematics,
astronomy, linguistics, logic and ethics.  Yet, in parallel with this, several superstitious
and obscurantistic  attitudes and practices flourished in our society and unfortunately
continue even today — among many educated people too. How will you use your
knowledge of science to develop strategies to counter these attitudes ?

1.13 Though the law gives women equal status in India, many people hold unscientific
views on a woman’s innate nature, capacity and intelligence, and in practice give
them a secondary status and role. Demolish this view using scientific arguments, and
by quoting examples of great women in science and other spheres; and persuade yourself
and others that, given equal opportunity, women are on par with men.

1.14 “It is more important to have beauty in the equations of physics than to have them
agree with experiments”. The great British physicist P. A. M. Dirac held this view.
Criticize this statement.  Look out for some equations and results in this book which
strike you as beautiful.

1.15 Though the statement quoted above may be disputed, most physicists do have a feeling
that the great laws of physics are at once simple and beautiful. Some of the notable
physicists, besides Dirac, who have articulated this feeling, are : Einstein, Bohr,
Heisenberg, Chandrasekhar and Feynman. You are urged to make special efforts to get
access to the general books and writings by these and other great masters of physics.
(See the Bibliography at the end of this book.) Their writings are truly inspiring !

1.16 Textbooks on science may give you a wrong impression that studying science is dry
and all too serious and that scientists are absent-minded introverts who never laugh
or grin.  This image of science and scientists is patently false. Scientists, like any
other group of humans, have their share of humorists, and many have led their lives
with a great sense of fun and adventure, even as they seriously pursued their scientific
work. Two great physicists of this genre are Gamow and Feynman. You will enjoy
reading their books listed in the Bibliography.



CHAPTER TWO

UNITS AND MEASUREMENT

2.1  INTRODUCTION

Measurement of any physical quantity involves comparison
with a certain basic, arbitrarily chosen, internationally
accepted reference standard called unit. The result of a
measurement of a physical quantity is expressed by a
number (or numerical measure) accompanied by a unit.
Although the number of physical quantities appears to be
very large, we need only a limited number of units for
expressing all the physical quantities, since they are inter-
related with one another. The units for the fundamental or
base quantities are called fundamental or base units. The
units of all other physical quantities can be expressed as
combinations of the base units. Such units obtained for the
derived quantities are called derived units. A complete set
of these units, both the base units and derived units, is
known as the system of units.

2.2  THE INTERNATIONAL SYSTEM OF UNITS
In earlier time scientists of different countries used different
systems of units for measurement. Three such systems, the
CGS, the FPS (or British system) and the MKS system were
in use extensively till recently.

The base units for length, mass and time in these systems
were as follows :
 In CGS system they were centimetre, gram and second

respectively.
 In FPS system they were foot, pound and second

respectively.
 In MKS system they were metre, kilogram and second

respectively.
The system of units which is at present internationally

accepted for measurement is the Système Internationale
d’ Unites (French for International System of Units),
abbreviated as SI. The SI, with standard scheme of symbols,
units and abbreviations, was developed and recommended
by General Conference on Weights and Measures in 1971 for

2.1 Introduction

2.2 The international system of
units

2.3 Measurement of length

2.4 Measurement of mass

2.5 Measurement of time

2.6 Accuracy, precision of
instruments and errors in
measurement

2.7 Significant figures

2.8 Dimensions of physical
quantities

2.9 Dimensional formulae and
dimensional equations

2.10 Dimensional analysis and its
applications

Summary
Exercises



international usage in scientific, technical,
industrial and commercial work.  Because SI
units used decimal system, conversions within
the system are quite simple and convenient.  We
shall follow the SI units in this book.

In SI, there are seven base units as given in
Table 2.1. Besides the seven base units, there
are two more units that are defined for (a) plane
angle das the ratio of length of arc ds to the
radius r and (b) solid angle d as the ratio of
the intercepted area dA of the spherical surface,
described about the apex O as the centre, to
the square of its radius r, as shown in Fig. 2.1(a)
and (b) respectively.  The unit for plane angle is
radian with the symbol rad and the unit for the
solid angle is steradian with the symbol sr. Both
these are dimensionless quantities.

Table 2.1   SI Base Quantities  and  Units*
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* The values mentioned here need not be remembered or asked in a test. They are given here only to  indicate the
extent of accuracy to which they are measured. With progress in technology, the measuring techniques get
improved leading to measurements with greater precision. The definitions of base units are revised to keep up
with this progress.

(a)

(b)
Fig. 2.1 Description of (a) plane angle d and

(b) solid angle d .

Base SI Units

quantity Name Symbol Definition

Length metre m The metre is the length of the path travelled by light in vacuum
during a time interval of 1/299,792,458 of a second. (1983)

Mass kilogram kg The kilogram is equal to the mass of the international prototype
of the kilogram (a platinum-iridium alloy cylinder) kept at
international Bureau of Weights and Measures, at Sevres, near
Paris, France. (1889)

Time second s The second is the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium-133 atom.
(1967)

Electric ampere A The ampere is that constant current which, if maintained in
current two straight parallel conductors of infinite length, of negligible

circular cross-section, and placed 1 metre apart in vacuum,
would produce between these conductors a force equal to 2×10–7

newton per metre of length. (1948)

Thermo kelvin K The kelvin, is the fraction 1/273.16 of the thermodynamic
dynamic temperature of the triple point of water. (1967)
Temperature

Amount of mole mol The mole is the amount of substance of a system, which contains
substance as many elementary entities as there are atoms in 0.012

kilogram of carbon - 12. (1971)

Luminous candela cd The candela is the luminous intensity, in a given
intensity direction, of a source that emits monochromatic radiation of

frequency 540×1012 hertz and that has a radiant intensity, in
that direction, of 1/683 watt per steradian. (1979)
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Table 2.2   Some units retained for general use (Though outside SI)

Note that when mole is used, the elementary
entities  must  be specified.  These  entities
may be atoms, molecules, ions, electrons,
other particles or specified groups of such
particles.

We employ units  for  some  physical quantities
that can be derived from the seven base units
(Appendix A 6). Some derived units in terms of
the SI base units are given in (Appendix A 6.1).
Some SI derived units are given special names
(Appendix A  6.2 ) and some derived SI units make
use of these units with special names and the
seven base units  (Appendix A 6.3). These are
given in Appendix A 6.2 and A 6.3 for your ready
reference. Other units retained for general use
are given in Table 2.2.

Common SI prefixes and symbols for multiples
and sub-multiples are given in Appendix A2.
General  guidelines for using symbols for physical
quantities, chemical elements and nuclides are
given in Appendix A7 and those for SI units and
some other units  are given in Appendix A8 for
your guidance and ready reference.

2.3  MEASUREMENT OF LENGTH
You are already familiar with some direct methods
for the measurement of length.  For example, a
metre scale is used for lengths from 10–3 m to 102

m.  A vernier callipers is used for lengths to an
accuracy of 10–4 m.  A screw gauge and a
spherometer can be used to measure lengths as
less as to 10–5 m. To measure lengths beyond these
ranges, we make use of some special indirect
methods.

2.3.1  Measurement of Large Distances

Large distances such as the distance of a planet
or a star from the earth cannot be measured
directly with a metre scale. An important method
in such cases is the parallax method.

When you hold a pencil in front of you against
some specific point on the background (a wall)
and look at the pencil first through your left eye
A (closing the right eye) and then look at the
pencil through your right eye B (closing the left
eye), you would notice that the position of the
pencil seems to change with respect to the point
on the wall.  This is called parallax.  The
distance between the two points of observation
is called the basis. In this example, the basis is
the distance between the eyes.

To measure the distance D of a far away
planet S by the parallax method, we observe it
from two different positions (observatories) A and
B on the  Earth,  separated  by distance AB = b
at the same time as shown in Fig. 2.2.  We
measure the angle   between the two directions
along which the planet is viewed at these two
points. The ASB in Fig. 2.2 represented by
symbol  is called the parallax angle or
parallactic angle.

As the planet is very far away,  1,
b

D
  and

therefore,   is very small.  Then we
approximately take AB as an arc of length b of a
circle with centre at S and the distance D as
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the radius  AS = BS so that AB = b = D  where
 is in radians.

   D =  
b


(2.1)

Having determined D, we can employ a similar
method to determine the size or angular diameter
of the planet. If d is the diameter of the planet
and   the angular size of the planet (the angle
subtended by d at the earth), we have

 = d/D (2.2)
The angle  can be measured from the same

location on the earth.  It is the angle between
the two directions when two diametrically
opposite  points  of the planet are viewed through
the telescope.  Since D is known, the diameter d
of the planet can be determined using Eq. (2.2).

Example 2.1  Calculate the angle of
(a) 10 (degree) (b) 1 (minute of arc or arcmin)
and (c) 1(second of arc or arc second) in
radians. Use 3600=2 rad, 10=60 and
1 = 60 

Answer  (a) We have 3600 = 2rad
10 = (/180) rad = 1.745×10–2 rad

(b) 10 = 60= 1.745×10–2 rad
1= 2.908×10–4 rad; 2.91×10–4 rad

(c) 1= 60= 2.908×10–4 rad
1= 4.847×10–6 rad; 4.85×10–6 rad 

Example 2.2  A man wishes to estimate
the distance of a nearby tower from him.
He stands at a point A in front of the tower
C and spots a very distant object O in line
with AC. He then walks perpendicular to
AC up to B, a distance of 100 m, and looks
at O and C again. Since O is very distant,
the direction BO is practically the same as

AO; but he finds the line of sight of C shifted
from the original line of sight by an angle 
= 400  ( is known as ‘parallax’) estimate
the distance of the tower C from his original
position A.

Fig. 2.3
Answer  We have, parallax angle   = 400

From Fig. 2.3, AB = AC tan 
AC = AB/tan  = 100 m/tan 400

= 100 m/0.8391 = 119 m 

Example 2.3  The moon is observed from
two diametrically opposite points A and B
on Earth.  The angle  subtended at the
moon by the two directions of observation
is 1o 54. Given the diameter of the Earth to
be about 1.276 107 m, compute the
distance of the moon from the Earth.

Answer  We have   = 1° 54 = 114

=        -6114 60 4.85 10   rad

=  3.32 
10

2
rad,

since  61 4.85 10 .=" rad  
Also  b = AB =1.276 m107

Hence from Eq. (2.1), we have the earth-moon
distance,

D b= /

   =
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-2

1.276 10

3.32 10
83.84 10 m=  

Example 2.4  The Sun’s angular diameter
is measured to be 1920.  The distance D of
the Sun from the Earth is 1.496 × 1011 m.
What is the diameter of the Sun ?

Fig. 2.2   Parallax method.
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Answer   Sun’s angular diameter 
    1920"

      
1920 4.85 10 rad

6

     9.31 10 rad3

Sun’s diameter
                     d D=  

                        3 119.31 10 1.496 10 m        
   

     
9=1.39 10 m 

2.3.2 Estimation of Very Small Distances:
Size of a Molecule

To measure a very small size like that of a
molecule (10–8 m to 10–10 m), we have to adopt
special methods. We cannot use a screw gauge
or similar instruments. Even a microscope has
certain limitations.  An optical microscope uses
visible light to ‘look’ at the system under
investigation.  As light has wave like features,
the resolution to which an optical microscope
can be used is the wavelength of light (A detailed
explanation can be found in the Inter II year
Physics textbook). For visible light the range of
wavelengths  is from about 4000 Å to 7000 Å
(1 angstrom = 1 Å = 10-10 m). Hence an optical
microscope cannot resolve particles with sizes
smaller than this. Instead of visible light, we can
use an electron beam.  Electron beams can be
focussed by properly designed electric and
magnetic fields. The resolution of such an
electron microscope is limited finally by the fact
that electrons can also behave as waves ! (You
will learn more about this in Inter II year). The
wavelength of an electron can be as small as a
fraction of an angstrom.  Such electron
microscopes with a resolution of 0.6 Å have been
built. They can almost resolve atoms and
molecules in a material. In recent times,
tunnelling microscopy has been developed in
which again the limit of resolution is better than
an angstrom. It is possible to estimate the sizes
of molecules.

A simple method for estimating the molecular
size of oleic acid is given below. Oleic acid is a
soapy liquid with large molecular size of the
order of 10–9 m.

The idea is to first form mono-molecular layer
of oleic acid on water surface.

We dissolve 1 cm3 of oleic acid in alcohol to
make a solution of 20 cm3. Then we take 1 cm3

of this solution and dilute it to 20 cm3, using
alcohol. So, the concentration of the solution is

equal to  31
cm

20 20
  
     

 of oleic acid/cm3 of

solution. Next we lightly sprinkle some
lycopodium powder on the surface of water in a
large trough and we put one drop of this solution
in the water. The oleic acid in the drop spreads
into a thin, large and roughly circular film of
molecular thickness on water surface. Then, we
quickly measure the diameter of the thin film to
get its area A. Suppose we have dropped n drops
in the water. Initially, we determine the
approximate volume of each drop (V cm3).

Volume of n drops of solution
                             = nV cm3

Amount of oleic acid in this solution

                             = nV 
1

20 20









 cm

3

This solution containing oleic acid spreads
very fast on the surface of water and forms a
very thin layer of thickness t, the alcohol having
evaporated.  If this spreads to form a film of area
A cm2, then the thickness of the film

t 
Volume of the film

Area of the film

or, cm
20 20 

nV
t

A
 

 (2.3)

If we assume that the film has mono-molecular
thickness, then this becomes the size or diameter
of a molecule of oleic acid. The value of this
thickness comes out to be of the order of 10–9 m.

Example 2.5  If the size of a nucleus (in
the range of 10–15 to 10–14 m) is scaled up
to the tip of a sharp pin, what roughly is
the size of an atom ? Assume tip of the pin
to be in the range 10–5m to 10–4m.

Answer  The size of a nucleus is in the range of
10–15 m and 10–14 m.  The tip of a sharp pin is
taken to be in the range of 10–5 m and 10–4 m.
Thus we are scaling up by a factor of 1010. An
atom roughly of size 10–10 m will be scaled up to a
size of 1 m. Thus a nucleus in an atom is as small
in size as the tip of a sharp pin placed at the centre
of a sphere of radius about a metre long. 
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2.3.3  Range of Lengths

The sizes of the objects we come across in the
universe vary over a very wide range. These may
vary from the size of the order of 10–14 m of the
tiny nucleus of an atom to the size of the order
of 1026 m of the extent of the observable universe.
Table 2.3 gives the range and order of lengths
and sizes of some of these objects.

We also use certain special length units for
short and large lengths. These are
1 fermi = 1 f = 10–15 m
1 angstrom = 1 Å = 10–10 m
1 astronomical unit = 1 AU (average distance

    of the Sun from the
Earth)

= 1.496  1011 m
1 light year = 1 ly = 9.46  1015 m (distance

   that light travels with
velocity of

   3  108 m s–1 in 1 year)
1 parsec = 3.08  1016 m
(Parsec is the distance at which average radius
of earth’s orbit subtends an angle of 1 arc
second)

2.4  MEASUREMENT OF MASS

Mass is a basic property of matter.  It does not
depend on the temperature, pressure or location
of the object in space. The SI unit of mass is
kilogram (kg). The prototypes of the International
standard kilogram supplied by the International
Bureau of Weights and Measures (BIPM) are

available in many other laboratories of different
countries. In India, this is available at the
National Physical Laboratory  (NPL), New Delhi.

While dealing with atoms and molecules, the
kilogram is an inconvenient unit. In this case,
there is an important standard unit of mass,
called the unified atomic mass unit (u), which
has been established for expressing the mass
of atoms as

1 unified atomic mass unit = 1u
    = (1/12) of the mass of an atom of  carbon-12

isotope  6
12 C  including the mass  of

electrons
    = 1.66 × 10–27  kg

Mass of commonly available objects can be
determined by a common balance like the one
used in a grocery shop. Large masses in the
universe like planets, stars, etc., based on
Newton’s law of gravitation can be measured by
using gravitational method (See Chapter 9). For
measurement of small masses of atomic/sub-
atomic particles etc., we make use of mass
spectrograph in which radius of the trajectory
is proportional to the mass of a charged particle
moving in uniform  electric and magnetic fields.

2.4.1  Range of  Masses

The masses of the objects, we come across in
the universe, vary over a very wide range.  These
may vary from tiny  mass of the order of 10-30 kg

Table 2.3  Range and order of lengths
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of an electron to the huge mass of about 1055 kg
of the known universe. Table 2.4 gives the range
and order of the typical masses of various
objects.

Table 2.4  Range and order of masses

2.5   MEASUREMENT OF TIME
To measure any time interval we need a clock.
We now use an atomic standard of time, which
is based on the periodic vibrations produced in
a cesium atom. This is the basis of the cesium
clock, sometimes called atomic clock, used in
the national standards. Such standards are
available in many laboratories. In the cesium
atomic clock, the second is taken as the time
needed for 9,192,631,770 vibrations of the
radiation corresponding to the transition
between the two hyperfine levels of the ground
state of cesium-133 atom. The vibrations of the
cesium atom regulate the rate of this cesium
atomic clock just as the vibrations of a balance
wheel regulate an ordinary wristwatch or the
vibrations of a small quartz crystal regulate a
quartz wristwatch.

The cesium atomic clocks are very accurate.
In principle they provide portable standard.  The
national standard of time interval ‘second’ as
well as the frequency is maintained through four
cesium atomic clocks.  A cesium atomic clock is
used at the National Physical Laboratory (NPL),
New Delhi to  maintain the Indian standard of
time.

In our country, the NPL has the responsibility
of maintenance and improvement of physical

standards, including that of time, frequency, etc.
Note that the Indian Standard Time (IST) is
linked to this set of atomic clocks. The efficient
cesium atomic clocks are so accurate that   the
uncertainty in time realisation as
± 1  10–13, i.e. 1 part in 1013.  This implies that
the uncertainty gained over time by such a
device is less than 1 part in 1013; they lose or
gain no more than 3 µs(micro second) in one
year. In view of the tremendous accuracy in time
measurement, the SI unit of length has been
expressed in terms the path length light travels
in certain interval of time (1/299, 792, 458 of a
second) (Table 2.1).

The time interval of events that we come
across in the universe vary over a very wide
range. Table 2.5 gives the range and order of
some typical time intervals.

You may notice that there is an interesting
coincidence between the numbers appearing
in Tables 2.3 and 2.5. Note that the ratio of the
longest and shortest lengths of objects in our
universe is about 1041. Interestingly enough,
the ratio of the longest and shortest time
intervals associated with the events and objects
in our universe is also about 1041. This number,
1041 comes up again in Table 2.4, which lists
typical masses of objects. The ratio of the
largest and smallest masses of the objects in
our universe is about (1041)2. Is this a curious
coincidence between these large numbers
purely accidental ?

2.6 ACCURACY, PRECISION OF INSTRUMENTS
AND ERRORS IN MEASUREMENT

Measurement is the foundation of all
experimental science and technology. The result
of every measurement by any measuring
instrument contains some uncertainty. This
uncertainty is called error. Every calculated
quantity which is based on measured values,
also has an error. We shall distinguish between
two terms: accuracy and precision. The
accuracy of a measurement is a measure of how
close the measured value is to the true value of
the quantity. Precision tells us to what resolution
or limit the quantity is measured.

The accuracy in measurement may depend on
several factors, including the limit or the resolution
of the measuring instrument. For example, suppose
the true value of a certain length is near 3.678 cm.

being
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In one experiment, using a measuring instrument
of resolution 0.1 cm, the measured value is found to
be 3.5 cm, while in another experiment using a
measuring device of greater resolution, say 0.01 cm,
the length is determined to be 3.38 cm. The first
measurement has more accuracy (because it is
closer to the true value) but less precision (its
resolution is only 0.1 cm), while the
second measurement is less accurate but
more precise. Thus every measurement is
approximate due to errors in measurement. In
general, the errors in measurement can be
broadly classified as (a) systematic errors and
(b) random errors.

Systematic errors

The systematic errors are those errors that
tend to be in one direction, either positive or
negative. Some of the sources of systematic
errors are :

(a) Instrumental errors  arise from the errors
due to imperfect design or calibration of the
measuring instrument, zero error in the
instrument, etc. For example, the
temperature graduations of a thermometer
may be inadequately calibrated (it may read
104 °C at the boiling point of water at STP
whereas it should read 100 °C); in a vernier

callipers the zero mark of vernier scale may
not coincide with the zero mark of the main
scale, or an ordinary metre scale may be
worn off at one end.

(b) Imperfection in experimental technique
or procedure To determine the temperature
of a human body, a thermometer placed
under the armpit will always give a
temperature lower than the actual value of
the body temperature. Other external
conditions (such as changes in temperature,
humidity, wind velocity, etc.) during the
experiment may systematically affect the
measurement.

(c) Personal errors that arise due to an
individual’s approach, lack of proper setting
of the apparatus or individual’s
carelessness in taking observations without
observing proper precautions, etc. For
example, if you, by habit, always hold your
head a bit too far to the right while reading
the position of a needle on the scale, you
will introduce an error due to parallax.

Systematic errors can be minimised by
improving experimental techniques, selecting
better instruments and removing personal bias as
far as possible. For a given set-up, these errors may
be estimated to a certain extent and the necessary
corrections may be applied to the readings.

Table 2.5   Range and order of time intervals
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Random errors

Random errors are those errors, which occur
irregularly and hence are random with respect
to sign and size. These can arise due to random
and unpredictable fluctuations in experimental
conditions (e.g. unpredictable fluctuations in
temperature, voltage supply, mechanical
vibrations of experimental set-ups, etc), personal
(unbiased) errors by the observer taking
readings, etc. For example, when the same
person repeats the same observation, it is very
likely that he may get different readings
everytime.

Least count error

The smallest value that can be measured by the
measuring instrument is called its least count.
All the readings or measured values are good only
up to this value.

The least count error is the error
associated with the resolution of the instrument.
For example, a vernier callipers has the least
count as 0.01cm; a spherometer may have a
least count of 0.001 cm. Least count error
belongs to the category of random errors but
within a limited size; it occurs with both
systematic and random errors. If we use a metre
scale for measurement of length, it may have
graduations at 1 mm division scale spacing or
interval.

Using instruments of higher precision,
improving experimental techniques, etc., we can
reduce the least count error. Repeating the
observations several times and taking the
arithmetic mean of all the observations, the
mean value would be very close to the true value
of the measured quantity.

2.6.1 Absolute Error, Relative Error and
Percentage Error

(a) Suppose the values obtained in several
measurements are a

1
, a

2
, a

3
...., a

n
.  The

arithmetic mean of these values is taken as
the best possible value of the quantity under
the given conditions of measurement as :

a
mean

 = (a
1
+a

2
+a

3
+...+a

n
 ) / n (2.4)

or,

a a / nmean i
i 1

n




 (2.5)

This is because, as explained earlier, it is
reasonable to suppose that individual
measurements are as likely to overestimate
as to underestimate the true value of the
quantity.

The magnitude of the difference
between the individual measurement and
the true value of the quantity is called the
absolute error of the measurement. This
is denoted by aIn absence of any other
method of knowing true value, we considered
arithmatic mean as the true value.  Then the
errors in the individual measurement values
from the true value, are

a
1
  = a

1
 – a

mean
,

a
2
  = a

2
 – a

mean
,

....      ....      ....

....      ....      ....
a

n
 = an – a

mean

The acalculated above may be positive in
certain cases and negative in some other
cases. But absolute error |a| will always
be positive.

(b) The arithmetic mean of all the absolute errors
is taken as the final or mean absolute error
of the value of the physical quantity a. It is
represented by a

mean
.

Thus,

a
mean

 = (|a
1
|+|a

2
 |+|a

3
|+...+ |a

n
|)/n

(2.6)




i 1

n

|a
i
|/n (2.7)

If we do a single measurement, the value we
get may be in the range amean ±  amean

i.e.      a = a
mean

 ±  a
mean

or,
     a

mean
 – a

mean
 a   a

mean
 + a

mean

(2.8)

This implies that any measurement of the
physical quantity a is likely to lie between

(a
mean

+  a
mean

)  and
(a

mean
a

mean
).

(c) Instead of the absolute error, we often use
the relative error or the percentage error
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(a).  The relative error is the ratio of the
mean absolute error amean to the mean
value amean of the quantity measured.

Relative error = a
mean

/a
mean

(2.9)

When the relative error is expressed in
per cent(denoted by %), it is called the
percentage error (a).

Thus, Percentage error

a = (a
mean

/a
mean

) × 100 (2.10)

Let us now consider an example.

Example 2.6  Two clocks are being tested
against a standard clock located in a
national laboratory.  At 12:00:00 noon by
the standard clock, the readings of the two
clocks are :

Clock 1 Clock 2

Monday 12:00:05 10:15:06
Tuesday 12:01:15 10:14:59
Wednesday 11:59:08 10:15:18
Thursday 12:01:50 10:15:07
Friday 11:59:15 10:14:53
Saturday 12:01:30 10:15:24
Sunday 12:01:19 10:15:11

If you are doing an experiment that requires
‘precision time interval’ measurements,
which of the two clocks will you prefer ?

Answer   The range of variation over the seven
days of observations is 162 s for clock 1, and
31 s for clock 2.  The average reading of clock 1
is much closer to the standard time than the
average reading of clock 2.  The important point
is that a clock’s zero error is not as significant
for precision work as its variation, because a
‘zero-error’ can always be easily corrected.
Hence clock 2 is to be preferred to clock 1. 

Example 2.7  We measure the period of
oscillation of a simple pendulum.  In
successive measurements, the readings
turn out to be 2.63 s, 2.56 s, 2.42 s, 2.71s
and 2.80 s. Calculate the absolute errors,
relative error or percentage error.

Answer   The mean period of oscillation of the
pendulum

 
T 

   2.63 2.56 2.42 2.71 2.80 s

5

= 
13.12

5
 s

= 2.624  s
= 2.62  s

As the periods are measured to a resolution
of 0.01 s, all times are to the second decimal; it
is proper to put this mean period also to the
second decimal.

The errors in the measurements are

2.63 s – 2.62 s =   0.01 s
2.56 s – 2.62 s = – 0.06 s
2.42 s – 2.62 s = – 0.20 s
2.71 s – 2.62 s =    0.09 s
2.80 s – 2.62 s =    0.18 s

Note that the errors have the same units as the
quantity to be measured.

The arithmetic mean of all the absolute errors
(for arithmetic mean, we take only the
magnitudes) is


mean

 = [(0.01+ 0.06+0.20+0.09+0.18)s]/5
              = 0.54 s/5
              = 0.11 s

That means, the period of oscillation of the
simple pendulum is (2.62 ± 0.11) s i.e. it lies
between (2.62 + 0.11) s and (2.62 – 0.11) s or
between 2.73 s and 2.51 s.  As the arithmetic
mean of all the absolute errors is 0.11 s, there
is already an error in the tenth of a second.
Hence there is no point in giving the period to a
hundredth.  A more correct way will be to write

             T = 2.6 ± 0.1 s

Note that the last numeral 6 is unreliable, since
it may be anything between 5 and 7. We indicate
this by saying that the measurement has two
significant figures. In this case, the two
significant figures are 2, which is reliable and
6, which has an error associated with it.  You
will learn more about the significant figures in
section 2.7.

For this example, the relative error or the
percentage error is

a   
01

100 4
.

2.6
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2.6.2  Combination of Errors

If we do an experiment involving several
measurements, we must know how the errors
in all the measurements combine.  For example,
density is obtained by deviding mass by the
volume of the substance. If we have errors in
the measurement of mass and of the sizes or

dimensions, we must know what the error will
be in the density of the substance. To make such
estimates, we should learn how errors combine
in various mathematical operations. For this,
we use the following procedure.

(a)  Error of a sum or a difference

Suppose two physical quantities A and B have
measured values A ± A, B ± B respectively
where A and B are their absolute errors. We
wish to find the error Z in the sum

Z = A + B.
We have by addition, Z Z

= (A ± A) + (B ± B).
The maximum possible error in Z

Z A +B
For the difference Z = A – B,  we have
                    Z ±  Z =  (A ± A) – (B ± B)
                                = (A – B) ± A ± B

or, ± Z =  ± A ± B
The maximum value of the error Z  is again
A + B.

Hence the rule : When two quantities are
added or subtracted, the absolute error in the
final result is the sum of the absolute errors
in the individual quantities.

Example 2.8  The temperatures of two
bodies measured by a thermometer are
t1 = 20 0C ± 0.5 0C and t2 = 50 0C ± 0.5 0C.
Calculate the temperature difference and
the error therein.

Answer  t = t2–t1 = (50 0C±0.5 0C)– (200C±0.5 0C)

 t = 30 0C ± 1 0C 

(b)  Error of a product or a quotient

Suppose Z = AB and the measured values of A
and B are A ± A and B ± B. Then

Z ± Z = (A ±A)  (B ±B)

                     = AB ± B A ± A B ±A B.

Dividing LHS by Z and RHS by AB we have,

1±(Z/Z) = 1 ± (A/A) ± (B/B) ± (A/A)(B/B).

Since A and B are small, we shall ignore their
product.

Hence the maximum relative error

Z/ Z = (A/A) + (B/B).

You can easily verify that this is true for division also.

How will you measure the length of a line?

What a naïve question, at this stage, you might
say! But what if it is not a straight line? Draw
a zigzag line in your copy, or on the blackboard.
Well, not too difficult again. You might take a
thread, place it along the line, open up the
thread, and measure its length.

Now imagine that you want to measure the
length of a national highway, a river, the railway
track between two stations, or the boundary
between two states or two nations. If you take
a string of length 1 metre or 100 metre, keep it
along the line, shift its position every time, the
arithmetic of man-hours of labour and expenses
on the project is not commensurate with the
outcome. Moreover, errors are bound to occur
in this enormous task. There is an interesting
fact about this. France and Belgium share a
common international boundary, whose length
mentioned in the official documents of the two
countries differs substantially!

Go one step beyond and imagine the
coastline where land meets sea. Roads and rivers
have fairly mild bends as compared to a
coastline. Even so, all documents, including our
school books, contain information on the length
of the coastline of Gujarat or Andhra Pradesh,
or the common boundary between two states,
etc. Railway tickets come with the distance
between stations printed on them. We have
‘milestones’ all along the roads indicating the
distances to various towns. So, how is it done?

One has to decide how much error one can
tolerate and optimise cost-effectiveness. If you
want smaller errors, it will involve high
technology and high costs. Suffice it to say that
it requires fairly advanced level of physics,
mathematics, engineering and technology. It
belongs to the areas of fractals, which has lately
become popular in theoretical physics. Even
then one doesn’t know how much to rely on
the figure that props up, as is clear from the
story of France and Belgium. Incidentally, this
story of the France-Belgium discrepancy
appears on the first page of an advanced Physics
book on the subject of fractals and chaos!
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Hence the rule : When two quantities are
multiplied or divided, the relative error in the
result is the sum of the relative errors in the
multipliers.

Example 2.9  The resistance R = V/I where
V = (100 ± 5)V and I = (10 ± 0.2)A. Find the
percentage error in R.

Answer  The percentage error in V is 5 and in I
it is 2.  The total error in R would therefore be 5
+ 2 = 7%. 

Example 2.10  Two resistors of resistances
R1 = 100 ±3 ohm and R2 = 200 ± 4 ohm are
connected (a) in series, (b) in parallel. Find
the equivalent resistance of the (a) series
combination, (b) parallel combination. Use
for (a) the relation R =R1 + R2, and for (b)

1 1 1

1 2′
= +

R R R  and 
      

 
1 2

2 2 2
1 2

R RR

R R R

Answer  (a) The equivalent resistance of series
combination

R =R1 + R2 =  (100 ± 3) ohm + (200 ± 4) ohm

        = 300 ± 7 ohm.
(b) The equivalent resistance of parallel
combination

1 2

1 2

200
3

R R
R

R R
  

  = 66.7 ohm

Then, from 
1 2

1 1 1
R R R

 


we get,

1 2
2 2 2

1 2

R RR

R R R

  
 



   2 21 2
2 2

1 2

R R
R R R

R R

     

 

2 2
66.7 66.7

3 4
100 200

       
   

 = 1.8

Then, 66.7 1.8 ohmR   
(Here, R is expresed as 1.8 instead of 2 to

keep in conformity with the rules of significant
figures.) 

(c) Error in case of a measured quantity
raised to a power
Suppose   Z  = A2,
Then,

     Z/Z = (A/A) + (A/A) = 2 (A/A).
Hence, the relative error in A2 is two times the
error in A.

In general, if   Z = Ap Bq/Cr

Then,
      Z/Z = p (A/A) + q (B/B) + r (C/C).

Hence the rule : The relative error in a
physical quantity raised to the power k is the
k times the relative error in the individual
quantity.

Example 2.11   Find the relative error in
Z, if Z = A4B1/3/CD3/2.

Answer  The relative error in Z is  Z/Z =
4(A/A) +(1/3) (B/B) + (C/C) + (3/2) (D/D).



Example 2.12  The period of oscillation of

a simple pendulum is . 2T = L/g
Measured value of L is 20.0 cm known to 1
mm accuracy and time for 100 oscillations
of the pendulum is found to be 90 s using
a wrist watch of 1 s resolution. What is the
accuracy in the determination of g ?

Answer   g = 42L/T2

Here, T = 
t

n
 and 

t
T

n


  . Therefore, 

T t

T t

 
 .

The errors in both L and t are the least count
errors. Therefore,
(g/g) = (L/L) + 2(T/T )

  = 
0.1 1

2 0.027
20.0 90

        

Thus, the percentage error in g is
 100 (g/g) = 100(L/L) + 2  100 (T/T )

= 3 

2.7  SIGNIFICANT FIGURES

As discussed above, every measurement
involves errors. Thus, the result of
measurement should be reported in a way that
indicates the precision of measurement.
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Normally, the reported result of measurement
is a number that includes all digits in the
number that are known reliably plus the first
digit that is uncertain. The reliable digits plus
the first uncertain digit are known as
significant digits or significant figures. If we
say the period of oscillation of a simple
pendulum is 1.62 s, the digits 1 and 6 are
reliable and certain, while the digit 2 is
uncertain. Thus, the measured value has three
significant figures. The length of an object
reported after measurement to be 287.5 cm has
four significant figures, the digits 2, 8, 7 are
certain while the digit 5 is uncertain. Clearly,
reporting the result of measurement that
includes more digits than the significant digits
is superfluous and also misleading since it would
give a wrong idea about the precision of
measurement.

The rules for determining the number of
significant figures can be understood from the
following examples. Significant figures indicate,
as already mentioned, the precision of
measurement which depends on the least count
of the measuring instrument. A choice of
change of different units does not change the
number of significant digits or figures in a
measurement. This important remark makes
most of the following observations clear:
(1) For example, the length 2.308 cm has four
significant figures. But in different units, the
same value can be written as 0.02308 m or 23.08
mm or 23080 m.

All these numbers have the same number of
significant figures (digits 2, 3, 0, 8), namely four.
This shows that the location of decimal point is
of no consequence in determining the number
of significant figures.
The example gives the following rules :
• All the non-zero digits are significant.
• All the zeros between two non-zero digits

are significant, no matter where the
decimal point is, if at all.

• If the number is less than 1, the zero(s)
on the right of decimal point but to the
left of the first non-zero digit are not
significant. [In 0.00 2308, the underlined
zeroes are not significant].

• The terminal or trailing zero(s) in a
number without a decimal point are not
significant.

[Thus 123 m = 12300 cm = 123000 mm has
three significant figures, the trailing zero(s)
being not significant.] However, you can also
see the next observation.

• The trailing zero(s) in a number with a
decimal point are significant.
[The numbers 3.500 or 0.06900 have four
significant figures each.]

(2) There can be some confusion regarding the
trailing zero(s). Suppose a length is reported to
be 4.700 m. It is evident that the zeroes here
are meant to convey the precision of
measurement and are, therefore, significant. [If
these were not, it would be superfluous to write
them explicitly, the reported measurement
would have been simply 4.7 m]. Now suppose
we change units, then

4.700 m = 470.0 cm = 4700 mm = 0.004700 km

Since the last number has trailing zero(s) in a
number with no decimal, we would conclude
erroneously from observation (1) above that the
number has two significant figures, while in
fact, it has four significant figures and a mere
change of units cannot change the number of
significant figures.

(3) To remove such ambiguities in
determining the number of significant
figures, the best way is to report every
measurement in scientific notation (in the
power of 10). In this notation, every number is
expressed as a × 10b, where a is a number
between 1 and 10, and b is any positive or
negative exponent (or power) of 10.  In order to
get an approximate idea of the number, we may
round off the number a to 1 (for a 5) and to 10
(for 5<a  10). Then the number can be
expressed approximately as 10b in which the
exponent (or power) b of 10 is called order of
magnitude of the physical quantity. When only
an estimate is required, the quantity is of the
order of 10b. For example, the diameter of the
earth (1.28×107m) is of the order of 107m with
the order of magnitude 7. The diameter of
hydrogen atom (1.06 ×10–10m) is of the order of
10–10m, with the order of magnitude
–10. Thus, the diameter of the earth is 17 orders
of magnitude larger than the hydrogen atom.

It is often customary to write the decimal after
the first digit. Now the confusion mentioned
above disappears :
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 4.700 m = 4.700 × 102 cm
        = 4.700 × 103 mm = 4.700 × 10–3 km

The power of 10 is irrelevant to the
determination of significant figures. However, all
zeroes appearing in the base number in the
scientific notation are significant. Each number
in this case has four significant figures.

Thus, in the scientific notation, no confusion
arises about the trailing zero(s) in the base
number a. They are always significant.

(4) The scientific notation is ideal for reporting
measurement. But if this is not adopted, we use
the rules adopted in the preceding example :
• For a number greater than 1, without any

decimal, the trailing zero(s) are not
significant.

• For a number with a decimal, the trailing
zero(s) are significant.

(5) The digit 0 conventionally put on the left of a
decimal for a number less than 1 (like 0.1250)
is never significant. However, the zeroes at the
end of such number are significant in a
measurement.

(6) The multiplying or dividing factors which are
neither rounded numbers nor numbers
representing measured values are exact and
have infinite number of significant digits. For

example in 
2
d

r   or  s = 2r, the factor 2 is an

exact number and it can be written as 2.0, 2.00

or 2.0000 as required. Similarly, in 
t

T
n

 , n is

an exact number.

2.7.1 Rules for Arithmetic Operations with
Significant Figures

The result of a calculation involving approximate
measured values of quantities (i.e. values with
limited number of significant figures) must reflect
the uncertainties in the original measured values.
It cannot be more accurate than the original
measured values themselves on which the result
is based. In general, the final result should not
have more significant figures than the original
data from which it was obtained. Thus, if mass of
an object is measured to be, say, 4.237 g (four
significant figures) and its volume is measured to
be 2.51 cm3, then its density, by mere arithmetic

division, is 1.68804780876 g/cm3 upto 11 decimal
places. It would be clearly absurd and irrelevant
to record the calculated value of density to such a
precision when the measurements on which the
value is based, have much less precision. The
following rules for arithmetic operations with
significant figures ensure that the final result of
a calculation is shown with the precision that is
consistent with the precision of the input
measured values :
(1)  In multiplication or division, the final
result should retain as many significant
figures as are there in the original number
with the least significant figures.

Thus, in the example above, density should
be reported to three significant figures.

Density
4.237g

2.51 cm
1.69 g cm3

-3 

Similarly,  if the speed of light is given as
3.00 × 108 m s-1 (three significant figures) and
one year (1y = 365.25 d) has 3.1557 × 107 s (five
significant figures), the light year is 9.47 × 1015

m (three significant figures).

(2) In addition or subtraction, the final result
should retain as many decimal places as are
there in the number with the least decimal
places.

For example, the sum of the numbers
436.32 g, 227.2 g and 0.301 g by mere arithmetic
addition,  is 663.821 g. But the least precise
measurement (227.2 g) is correct to only one
decimal place. The final result should, therefore,
be rounded off to 663.8 g.

Similarly, the difference in length can be
expressed as :

0.307 m – 0.304 m = 0.003 m = 3 × 10–3 m.

Note that we should not use the rule (1) applicable
for multiplication and division and write 664 g
as the result in the example of addition and 3.00
× 10–3 m in the example of subtraction. They do
not convey the precision of measurement
properly. For addition and subtraction, the rule
is in terms of decimal places.

 2.7.2   Rounding off the Uncertain Digits

The result of computation with approximate
numbers, which contain more than one
uncertain digit, should be rounded off.  The rules
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for rounding off numbers to the appropriate
significant figures are obvious in most cases.  A
number 2.746 rounded off to three significant
figures is 2.75, while the number 2.743 would
be 2.74.  The rule by convention is that the
preceding digit is raised by 1 if the
insignificant digit to be dropped (the
underlined digit in this case)  is more than
5, and is left  unchanged if the latter is less
than 5.  But what if the number is 2.745 in
which the insignificant digit is 5.  Here, the
convention is that if the preceding digit is
even, the insignificant digit is simply
dropped and, if it is odd, the preceding digit
is raised by 1. Then, the number 2.745 rounded
off to three significant figures becomes 2.74.  On
the other hand, the number 2.735 rounded off
to three significant figures becomes 2.74 since
the preceding digit is odd.

In any involved or complex multi-step
calculation, you should retain, in intermediate
steps, one digit more than the significant digits
and round off to proper significant figures at the
end of the calculation.  Similarly, a number
known to be within many significant figures,
such as in 2.99792458   108 m/s for the speed
of light in vacuum, is rounded off to an
approximate value 3  108 m/s , which is often
employed in computations.  Finally, remember
that exact numbers that appear in formulae like

2 in T
L

g
 2 ,  have a large (infinite) number

of significant figures. The value of  =
3.1415926.... is known to a large number of
significant figures. You may take the  value as
3.142 or 3.14 for , with limited number of
significant figures as required in specific
cases.

Example 2.13  Each side of a cube is
measured to be 7.203 m.  What are the
total surface area and the volume of the
cube to appropriate significant figures?

Answer   The number of significant figures in
the measured length is 4.  The calculated area
and the volume should therefore be rounded off
to 4 significant figures.

Surface area of the cube = 6(7.203)2 m2

= 311.299254 m2

= 311.3 m2

Volume of the cube = (7.203)3  m3

= 373.714754 m3

= 373.7 m3 

Example 2.14  5.74 g of a substance
occupies 1.2 cm3.  Express its density by
keeping the significant figures in view.

Answer  There are 3 significant figures in the
measured mass whereas there are only 2
significant figures in the measured  volume.
Hence the density should be expressed to only
2 significant figures.

Density  5.74
1.2

g cm 3

                       = 4.8 g cm--3 . 

2.7.3 Rules for Determining the Uncertainty
in the Results of Arithmatic
Calculations

The rules for determining the uncertainty or
error in the number/measured quantity in
arithmetic operations can be understood from
the following examples.
(1) If the length and breadth of a thin
rectangular sheet are measured, using a metre
scale as 16.2 cm and, 10.1 cm respectively, there
are three significant figures in each
measurement.  It means that the length l may
be written as

                       l = 16.2 ± 0.1  cm

      = 16.2 cm ± 0.6 %.

Similarly, the breadth b may be written as

b = 10.1  ± 0.1 cm

   = 10.1 cm ± 1 %

Then, the error of the product of two (or more)
experimental values, using the combination of
errors rule, will be

    l b = 163.62 cm2 + 1.6%

         = 163.62 + 2.6 cm2

This leads us to quote the final result as

l b = 164 + 3 cm2
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Here 3 cm2 is the uncertainty or error in the
estimation of area of rectangular sheet.

(2) If a set of experimental data is specified
to n significant figures, a result obtained by
combining the data will also be valid to n
significant figures.

However, if data are subtracted, the number of
significant figures can be reduced.

For example, 12.9 g – 7.06 g, both specified to three
significant figures, cannot properly be evaluated
as 5.84 g but only as 5.8 g, as uncertainties in
subtraction or addition combine in a different
fashion (smallest number of decimal places rather
than the number of significant figures in any of
the number added or subtracted).

(3) The relative error of a value of number
specified to significant figures depends not
only on n but also on the number itself.

For example,  the accuracy  in measurement of
mass 1.02 g is ± 0.01 g  whereas another
measurement 9.89 g is also accurate to  ± 0.01 g.
The relative error in 1.02 g is

= (± 0.01/1.02)  100 %
= ± 1%

Similarly, the relative error in 9.89 g  is
= (± 0.01/9.89)  100 %

                   = ± 0.1 %
Finally, remember that intermediate results in
a multi-step computation should be
calculated to one more significant figure in
every measurement than the number of
digits in the least precise measurement.
These should be justified by the data and then
the arithmetic operations may be carried out;
otherwise rounding errors can build up. For
example, the reciprocal of 9.58, calculated (after
rounding off) to the same number of significant
figures (three) is 0.104, but the reciprocal of
0.104 calculated to three significant figures is
9.62.  However, if we had written 1/9.58 = 0.1044
and then taken the reciprocal to three significant
figures, we would have retrieved the original
value of 9.58.

This example justifies the idea to retain one
more extra digit (than the number of digits in
the least precise measurement) in intermediate
steps of the complex multi-step calculations in
order to avoid additional errors in the process
of rounding off the numbers.

2.8  DIMENSIONS OF PHYSICAL QUANTITIES

The nature of a physical quantity is described
by its dimensions. All the physical quantities
represented by derived units can be expressed
in terms of some combination of seven
fundamental or base quantities. We shall call
these base quantities as the seven dimensions
of the physical world, which are denoted by
square brackets [ ]. Thus, length has the
dimension [L], mass [M], time [T], electric current
[A], thermodynamic temperature [K], luminous
intensity [cd], and amount of substance [mol].
The dimensions of a physical quantity are the
powers (or exponents) to which the base
quantities are raised to represent that
quantity. Note that using the square brackets
[  ] round a quantity means that we are dealing
with ‘the dimensions of’ the quantity.

In mechanics, all the physical quantities can
be written in terms of the dimensions [L], [M]
and [T]. For example, the volume occupied by
an object is expressed as the product of length,
breadth and height, or three lengths. Hence the
dimensions of volume are [L] × [L] × [L] = [L]3 = [L3].
As the volume is independent of mass and time,
it is said to possess zero dimension in mass [M°],
zero dimension in time [T°] and three
dimensions in length.

Similarly, force, as the product of mass and
acceleration, can be expressed as
Force   = mass × acceleration

= mass × (length)/(time)2

The dimensions of force are [M] [L]/[T]2 =
[M L T–2]. Thus, the force has one dimension in
mass, one dimension in length, and –2
dimensions in time. The dimensions in all other
base quantities are zero.

Note that in this type of representation, the
magnitudes are not considered. It is the quality
of the type of the physical quantity that enters.
Thus, a change in velocity, initial velocity,
average velocity, final velocity, and speed are
all equivalent in this context. Since all these
quantities can be expressed as length/time,
their dimensions are [L]/[T] or [L T–1].
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2.9 DIMENSIONAL FORMULAE AND
DIMENSIONAL EQUATIONS

The expression which shows how and which of
the base quantities represent the dimensions
of a physical quantity is called the dimensional
formula of the given physical quantity. For
example, the dimensional formula of the volume
is [M° L3 T°],  and  that of speed or velocity is
[M° L T-1]. Similarly, [M° L T–2] is the dimensional
formula of acceleration and [M L–3 T°] that of
mass density.

An equation obtained by equating a physical
quantity with its dimensional formula is called
the dimensional equation of the physical
quantity.  Thus, the dimensional equations are
the equations, which represent the dimensions
of a physical quantity in terms of the base
quantities. For example, the dimensional
equations of volume [V ],  speed [v], force [F ] and
mass density [] may be expressed as

[V] = [M0 L3 T0]
[v] = [M0 L T–1]
[F] = [M L T–2]
[] = [M L–3 T0]

The dimensional equation can be obtained
from the equation representing the relations
between the physical quantities. The
dimensional formulae of a large number and
wide variety of physical quantities, derived from
the equations representing the relationships
among other physical quantities and expressed
in terms of base quantities are given in
Appendix 9 for your guidance and ready
reference.

2.10 DIMENSIONAL ANALYSIS AND ITS
APPLICATIONS

The recognition of concepts of dimensions, which
guide the description of physical behaviour is
of basic importance as only those physical
quantities can be added or subtracted which
have the same dimensions.  A thorough
understanding of dimensional analysis helps us
in deducing certain relations among different
physical quantities and checking the derivation,
accuracy and dimensional consistency or
homogeneity of various mathematical
expressions.  When magnitudes of two or more
physical quantities are multiplied, their units
should be treated in the same manner as
ordinary algebraic symbols. We can cancel
identical units in the numerator and

denominator.  The same is true for dimensions
of a physical quantity.  Similarly, physical
quantities represented by symbols on both sides
of a mathematical equation must have the same
dimensions.

2.10.1 Checking the Dimensional
Consistency of Equations

The magnitudes of physical quantities may be
added together or subtracted from one another
only if they have the same dimensions.  In other
words, we can add or subtract similar physical
quantities. Thus, velocity cannot be added to
force, or an electric current cannot be subtracted
from the thermodynamic temperature. This
simple principle called the principle of
homogeneity of dimensions in an equation is
extremely useful in checking the correctness of
an equation.  If the dimensions of all the terms
are not same, the equation is wrong.  Hence, if
we derive an expression for the length (or
distance) of an object, regardless of the symbols
appearing in the original mathematical relation,
when all the individual dimensions are
simplified, the remaining dimension must be
that of length.  Similarly, if we derive an equation
of speed, the dimensions on both the sides of
equation, when simplified, must be of length/
time, or [L T–1].

Dimensions are customarily used as a
preliminary test of the consistency of an
equation, when there is some doubt about the
correctness of the equation. However, the
dimensional consistency does not guarantee
correct equations. It is uncertain to the extent
of dimensionless quantities or functions. The
arguments of special functions, such as the
trigonometric, logarithmic and exponential
functions must be dimensionless. A pure
number, ratio of similar physical quantities,
such as angle as the ratio (length/length),
refractive index as the ratio (speed of light in
vacuum/speed of light in medium) etc., has no
dimensions.

Now we can test the dimensional consistency
or homogeneity of the equation

  21/2  0 0x x v  t a t   
for the distance x travelled by a particle or body
in time t which starts from the position x

0
 with

an initial velocity v
0
 at time t = 0 and has uniform

acceleration a along the direction of motion.
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The dimensions of each term may be written as
                 [x] = [L]
               [x

0
 ] = [L]

             [v
0
 t] = [L T–1]  [T]

                     = [L]
       [(1/2) a t2] = [L T–2] [T2]
                     = [L]
As each term on the right hand side of this
equation has the same dimension, namely that
of length, which is same as the dimension of
left hand side of the equation, hence this
equation is a dimensionally correct equation.

It may be noted that a test of consistency of
dimensions tells us no more and no less than a
test of consistency of units, but has the
advantage that we need not commit ourselves
to a particular choice of units, and we need not
worry about conversions among multiples and
sub-multiples of the units.  It may be borne in
mind that if an equation fails this consistency
test, it is proved wrong, but if it passes, it is
not proved right.  Thus, a dimensionally correct
equation need not be actually an exact
(correct) equation, but a dimensionally wrong
(incorrect) or inconsistent equation must be
wrong.

Example 2.15  Let us consider an equation

      
1

2
m v m g h2 =

where m is the mass of the body, v its
velocity, g  is the acceleration due to
gravity and h is the height.  Check
whether this equation is dimensionally
correct.

Answer  The dimensions of LHS are
             [M]  [L T–1 ]2 = [M] [ L2 T–2]

         = [M L2 T–2]

The dimensions of RHS are
           [M][L T–2]  [L] = [M][L2 T–2]

         = [M L2 T–2]

The dimensions of LHS and RHS are the same and
hence the equation is dimensionally correct. 

Example 2.16   The SI unit of energy is
J =  kg m2 s–2; that of speed v is  m s–1 and
of acceleration a is   m s–2.  Which of the
formulae for kinetic energy (K) given below
can you rule out on the basis of
dimensional arguments (m stands for the

mass of the body) :
(a) K = m2 v3 (b) K = (1/2)mv2

(c) K = ma (d) K = (3/16)mv2

(e) K = (1/2)mv2 + ma

Answer   Every correct formula or equation must
have the same dimensions on both sides of the
equation.  Also, only quantities with the same
physical dimensions can be added or subtracted.
The dimensions of the quantity on the right side
are [M2 L3 T–3] for (a);  [M L2 T–2] for (b) and (d); [M
L T–2] for (c).  The quantity on the right side of (e)
has no proper dimensions since two quantities
of different dimensions have been added.  Since
the kinetic energy K has the dimensions of [M L2

T–2], formulas (a), (c) and (e) are ruled out.  Note
that dimensional arguments cannot tell which
of the two, (b) or (d), is the correct formula.  For
this, one must turn to the actual definition of
kinetic energy (see Chapter 6).  The correct
formula for kinetic energy is given by (b). 

2.10.2 Deducing Relation among the
Physical Quantities

The method of dimensions can sometimes be
used to deduce relation among the physical
quantities. For this we should know the
dependence of the physical quantity on other
quantities (upto three physical quantities or
linearly independent variables) and consider it
as a product type of the dependence. Let us take
an example.

Example 2.17 Consider a simple
pendulum, having a bob attached to a
string, that oscillates under the action of
the force of gravity. Suppose that the period
of oscillation of the simple pendulum
depends on its length  (l), mass of the bob
(m) and acceleration due to gravity (g).
Derive the expression for its time period
using method of dimensions.

Answer  The dependence of time period T on
the  quantities l, g and m as a product may be
written as :

T = k lx gy mz

where k is dimensionless constant and x, y
and z are the exponents.

By considering dimensions on both sides, we have
o o 1 1 1 –2 1[L M T ]=[L ] [L T ] [M ]x y z

= Lx+y T–2y  Mz
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SUMMARY

1. Physics is a quantitative science, based on measurement of physical quantities.  Certain
physical quantities have been chosen as fundamental or base quantities (such as length,
mass, time, electric current, thermodynamic temperature, amount of substance, and
luminous intensity).

2. Each base quantity is defined in terms of a certain basic, arbitrarily chosen but properly
standardised reference standard called unit (such as metre, kilogram, second, ampere,
kelvin, mole and candela).  The units for the fundamental or base quantities are called
fundamental or base units.

3. Other physical quantities, derived from the base quantities, can be expressed as a
combination of the base units and are called derived units.  A complete set of units,
both fundamental and derived, is called a system of units.

4. The International System of Units (SI) based on seven base units is at present
internationally accepted unit system and is widely used throughout the world.

5. The SI units are used in all physical measurements, for both the base quantities and
the derived quantities obtained from them.  Certain derived units are expressed by
means of SI units with special names (such as joule, newton, watt, etc).

6. The SI units have well defined and internationally accepted unit symbols (such as m for
metre, kg for kilogram, s for second, A for ampere, N for newton etc.).

7. Physical measurements are usually expressed for small and large quantities in scientific
notation, in powers of 10.  Scientific notation  simplifies measurement notation  while
indicating the precision  of measurement.

8. In computing any physical quantity, the units for derived quantities involved in the
relationship(s) are treated as though they were algebraic quantities till the desired
units are obtained.

9. Direct and indirect methods can be used for the measurement of physical quantities.  ,
While expressing the result of measured quantities the accuracy and precision of
measuring instruments along with errors in measurements should be taken into account.

10. In measured and computed quantities proper significant figures  should be retained.
Rules for determining the number of significant figures, carrying out arithmetic
operations with them, and ‘rounding off ‘ the uncertain digits must be followed.

11. The dimensions of base quantities and combination of these dimensions describe the
nature of physical quantities. Dimensional analysis can be used to check the dimensional
consistency of equations, deducing relations among the physical quantities, etc. A
dimensionally consistent equation need not be actually an exact (correct) equation,but
a dimensionally wrong or inconsistent equation must be wrong.

On equating the dimensions on both sides,
we have

x + y = 0; –2y = 1; and z = 0

So that 
1 1

, – , 0
2 2

x y z  

Then, T = k l½ g–½

or, T = 
l

k
g

Note that value of constant k can not be obtained
by the method of dimensions. Here it does not
matter if some number multiplies the right side
of this formula, because that does not affect its
dimensions.

Actually, k = 2 so that T = 2
l

g
 

Dimensional analysis is very useful in deducing
relations among the interdependent physical
quantities. However, dimensionless constants
cannot be obtained by this method. The method
of dimensions can only test the dimensional
validity, but not  the exact relationship between
physical quantities in any equation. It does not
distinguish between the physical quantities
having same dimensions.

A number of exercises at the end of this
chapter will help you develop skill in dimensional
analysis.
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13. An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit
of radius r. Using dimensional analysis show that the period of the satellite

                                  

3k rT
R g



where k is a dimensionless constant and g is acceleration due to gravity.
14. State the number of significant figures in the following

a) 6729
b) 0.024
c) 0.08240
d) 6.032

e) 4.57  x 108 [Ans: (a) 4 (b) 2 (c) 4 (d) 4 (e) 3]
15. A stick has a length of 12.132 cm and another has a length of 12.4 cm. If the two sticks are

placed end to end what is the total length ? If the two sticks are placed side by side , what is
the difference in their lengths? [Ans: (a) 24.5 cm (b) 0.3 cm]

16. Each side of a cube is measured to be 7.203 m. What is (i) the total surface area and (ii) the
volume of the cube, to appropriate significant figures ? [Ans: (i) 311.3 m2 (ii) 373.7 m3]

17. The measured mass and volume of a body are 2.42 g and 4.7 cm3 respectively with possible
errors 0.01 g and 0.1 cm3. Find the maximum error in density. [Ans: 2%]

18. The error in measurement of radius of a sphere is 1%. What is the error in  the
measurement of volume?    [Ans: 3%]

19. The percentage error in the mass and speed are 2% and 3% respectively. What is the
maximum error in  kinetic energy calculated using these quantities?                [Ans: 8%]

20. One mole of an ideal gas at standard temperature and pressure occupies 22.4 L (molar volume).
If the size of the hydrogen molecule is about 1 Å, what is the ratio of molar volume to the
atomic volume of a mole of hydrogen? [Ans: 104]

Additional Problems

Note : In stating numerical answers, take care of significant figures.

2.1 Fill in the blanks
(a) The volume of a cube of side 1 cm is equal to .....m3

(b) The surface area of a solid cylinder of radius 2.0 cm and height 10.0 cm is equal to
      ...(mm)2

(c)  A vehicle moving with a speed of 18 km h–1 covers....m in 1 s
(d) The relative density of lead is 11.3.  Its density is ....g cm–3 or ....kg m–3.

2.2 Fill in the blanks by suitable conversion of units
(a) 1 kg m2 s–2  = ....g cm2 s–2

(b) 1 m  = .....  ly
(c) 3.0 m s–2  = .... km h–2

(d) G = 6.67 ´ 10–11 N m2 (kg)–2 = .... (cm)3 s–2  g–1.

2.3 A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m2 s–2.
Suppose we employ a system of units in which the unit of mass equals a kg, the unit of
length equals b m, the unit of time is g s.  Show that a calorie has a magnitude 4.2 a –1 b –2

g 2 in terms of the new units.
2.4 Explain this statement clearly :

“To call a dimensional quantity ‘large’ or ‘small’ is meaningless without specifying a standard
for comparison”. In view of this, reframe the following statements wherever necessary :
(a) atoms are very small objects
(b) a jet plane moves with great speed
(c) the mass of Jupiter is very large
(d) the air inside this room contains a large number of molecules
(e) a proton is much more massive than an electron
(f) the speed of sound is much smaller than the speed of light.
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2.5 A new unit of length is chosen such that the speed of light in vacuum is unity. What is the
distance between the Sun and the Earth in terms of the new unit if light takes 8 min and 20
s to cover this distance ?

2.6 Which of the following is the most precise device for measuring length :
(a) a vernier callipers with 20 divisions on the sliding scale
(b) a screw gauge of pitch 1 mm and 100 divisions on the circular scale
(c) an optical instrument that can measure length to within a wavelength of light ?

2.7 A student measures the thickness of a human hair by looking at it through a microscope of
magnification 100. He makes 20 observations and finds that the average width of the hair in
the field of view of the microscope is 3.5 mm. What is the estimate on the thickness of hair ?

2.8 Answer the following :
(a)You are given a thread and a metre scale.  How will you estimate the diameter of the

thread ?
(b)A screw gauge has a pitch of 1.0 mm and 200 divisions on the circular scale. Do you

think it is possible to increase the accuracy of the screw gauge arbitrarily by increasing
the number of divisions on the circular scale ?

(c) The mean diameter of a thin brass rod is to be measured by  vernier callipers.  Why is a
set of 100 measurements of the diameter expected to yield a more reliable estimate than
a set of 5 measurements only ?

2.9 The photograph of a house occupies an area of 1.75 cm2 on a 35 mm slide.  The slide is
projected on to a screen, and the area of the house on the screen is 1.55 m2.  What is the
linear magnification of the projector-screen arrangement.

2.10 State the number of significant figures in the following :
(a)  0.007 m2

(b)  2.64 × 1024 kg
(c)  0.2370 g cm–3

(d)  6.320 J
(e)  6.032 N m–2

(f)   0.0006032 m2

2.11 The length, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m, and
2.01 cm respectively. Give the area and volume of the sheet to correct significant figures.

2.12 The mass of a box measured by a grocer’s balance is 2.300 kg. Two gold pieces of masses
20.15 g  and 20.17 g are added to the box.  What is (a) the total mass of the box, (b) the
difference in the masses of the pieces to correct significant figures ?

2.13 A physical quantity P is related to four observables a, b, c and d as follows :

   3 2P a b / c d

The percentage errors of measurement in a, b, c and d are 1%, 3%, 4% and 2%, respectively.
What is the percentage error in the quantity P ?  If the value of P calculated using the above
relation turns out to be 3.763, to what value should you round off the result ?

2.14 A book with many printing errors contains four different formulas for the displacement y of
a particle undergoing a certain periodic motion :
(a) y = a sin 2p t/T
(b) y = a sin vt
(c) y = (a/T) sin t/a
(d) y a t T t T ( )2  (sin 2 / +  cos 2 / ) 
(a = maximum displacement of the particle, v = speed of the particle.  T = time-period of
motion). Rule out the wrong formulas on dimensional grounds.

2.15 A famous relation in physics relates ‘moving mass’ m to the ‘rest mass’ mo of a particle in
terms of its speed v and the speed of light, c.  (This relation first arose as a consequence of
special relativity due to Albert Einstein). A boy recalls the relation almost correctly but
forgets where to put the constant c.  He writes :

 
m

m

1 v

0
 2 1/2 .

Guess where to put the missing c.
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2.16 The unit of length convenient on the atomic scale is known as an angstrom and is denoted
by Å: 1 Å = 10–10 m. The size of a hydrogen atom is about 0.5 Å. What is the total  atomic
volume in m3 of a mole of hydrogen atoms ?

2.17 One mole of an ideal gas at standard temperature and pressure occupies 22.4 L (molar
volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen ?
(Take the size of  hydrogen molecule to be about 1 Å). Why is this ratio so large ?

2.18 Explain this common observation clearly : If you look out of the window of a fast moving
train, the nearby trees, houses etc. seem to move rapidly in a direction opposite to the
train’s motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be
stationary. (In fact, since you  are aware that you are moving, these distant objects seem to
move with you).

2.19 The principle of ‘parallax’ in section 2.3.1 is used in the determination of distances of very
distant stars. The baseline AB is the line joining the Earth’s two locations six months
apart in its orbit around the Sun.  That is, the baseline is about the diameter of the Earth’s
orbit  » 3 ´ 1011m. However, even the nearest stars are so distant that with such a long
baseline, they show parallax only of the order of 1” (second) of arc or so. A parsec is a
convenient unit of length on the astronomical scale.  It is the distance of an object that will
show a parallax of 1” (second) of arc from opposite ends of a baseline equal to the distance
from the Earth to the Sun. How much is a parsec in terms of metres ?

2.20 The nearest star to our solar system is 4.29 light years away. How much is this distance  in
terms of parsecs?  How much parallax would this star (named Alpha Centauri) show when
viewed  from two locations of the Earth six months apart in its orbit around the Sun ?

2.21 Precise measurements of physical quantities are a need of science.  For example, to ascertain
the speed of an aircraft, one must have an accurate method to find its positions at closely
separated instants of time. This was the actual motivation behind the discovery of radar in
World War II. Think of different examples in modern science where precise measurements of
length, time, mass etc. are needed. Also, wherever you can, give a quantitative idea of the
precision needed.

2.22 Just as precise measurements are necessary in science, it is equally important to be able to
make rough estimates of quantities using rudimentary ideas and common observations.
Think of ways by which you can estimate the following (where an estimate is difficult to
obtain, try to get an upper bound on the quantity) :
(a) the total mass of rain-bearing clouds over India during the Monsoon
(b) the mass of an elephant

(c) the wind speed during a storm
(d) the number  of strands of hair on  your head
(e) the number of air molecules in your classroom.

2.23 The Sun is a hot plasma (ionized matter) with its inner core at a temperature exceeding
107 K, and its outer surface at a temperature of about 6000 K. At these high temperatures,
no substance remains in a solid or liquid phase. In what range do you expect the mass
density of the Sun to be, in the range of densities of solids and liquids or gases ?  Check if
your guess is correct from the following data : mass of the Sun = 2.0 ´1030 kg, radius of the
Sun = 7.0 ´ 108 m.

2.24 When the planet Jupiter is at a distance of 824.7 million kilometers from the Earth, its
angular diameter is measured to be 35.72” of arc. Calculate the diameter of Jupiter.

2.25 A man walking briskly in rain with speed v must slant his umbrella forward making an
angle q with the vertical. A student derives the following relation between q  and
v :  tan q  = v and checks that the relation has a correct limit: as v ® 0, q ®0, as expected.
(We are assuming there is no strong wind and that the rain falls vertically for a stationary
man). Do you think this relation can be correct ? If not, guess the correct relation.

2.26 It is claimed that two cesium clocks, if allowed to run for 100 years, free from any disturbance,
may differ by only about 0.02 s. What does this imply for the accuracy of the standard
cesium clock in measuring a time-interval of 1 s ?
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2.27 Estimate the average mass density of a sodium atom assuming its size to be about 2.5 Å.
(Use the known values of Avogadro’s number and the atomic mass of sodium). Compare it
with the density of sodium in its crystalline phase : 970 kg m–3. Are the two densities of the
same order of magnitude ? If so, why ?

2.28 The unit of length convenient on the nuclear scale is a fermi : 1 f = 10–15 m. Nuclear sizes
obey roughly the following empirical relation :

r = r
0
 A1/3

where r is the radius of the nucleus, A its mass number, and ro is a constant equal to about,
1.2 f. Show that the rule implies that nuclear mass density is nearly constant for different
nuclei. Estimate the mass density of sodium nucleus. Compare it with the average mass
density of a sodium atom obtained in Exercise. 2.27.

2.29 A LASER is a source of very intense, monochromatic, and unidirectional beam of light.
These properties of a laser light can be exploited to measure long distances.  The distance of
the Moon from the Earth has been already determined very precisely using a laser as a
source of light.  A laser light beamed at the Moon takes 2.56 s to return after reflection at
the Moon’s surface.  How much is the radius of the lunar orbit around the Earth ?

2.30 A SONAR (sound navigation and ranging) uses ultrasonic waves to detect and locate objects
under water. In a submarine equipped with a  SONAR the time delay between generation of
a probe wave and the reception of its echo after reflection from an enemy submarine is
found to be 77.0 s.  What is the distance of the enemy submarine? (Speed of sound in water
= 1450 m s–1).

2.31 The farthest objects in our Universe discovered by modern astronomers are so distant that
light emitted by them takes billions of years to reach the Earth.  These objects (known as
quasars) have many puzzling features, which have not yet been satisfactorily explained.
What is the distance in km of a quasar from which light takes 3.0 billion years to reach us ?

2.32 It is a well known fact that during a total solar eclipse the disk of the moon almost completely
covers the disk of the Sun.  From this fact and from the information you can gather from
examples 2.3 and 2.4, determine the approximate diameter of the moon.

2.33 A great physicist of this century (P.A.M. Dirac) loved playing with numerical values of
Fundamental constants of nature. This led him to an interesting observation.  Dirac found
that from the basic constants of atomic physics (c, e, mass of electron, mass of proton) and
the gravitational constant G, he could arrive at a number with the dimension of time.
Further, it was a very large number, its magnitude being close to the present estimate on
the age of the universe (~15 billion years). From the table of fundamental constants in this
book, try to see if you too can construct this number (or any other interesting number you
can think of ). If its coincidence with the age of the universe were significant, what would
this imply for the constancy of fundamental constants ?
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CHAPTER THREE

MOTION IN A STRAIGHT LINE

3.1 Introduction

3.2 Position, path length and
displacement

3.3 Average velocity and average
speed

3.4 Instantaneous velocity and
speed

3.5 Acceleration

3.6 Kinematic equations for
uniformly accelerated motion

3.7 Relative velocity

Summary
Points to ponder
Exercises
Appendix 3.1

3.1  INTRODUCTION

Motion is common to everything in the universe. We walk,
run and ride a bicycle.  Even when we are sleeping, air moves
into and out of our lungs and blood flows in arteries and
veins.  We see leaves falling from trees and water flowing
down a dam.  Automobiles and planes carry people from one
place to the other. The earth rotates once every twenty-four
hours and revolves round the sun once in a year. The sun
itself is in motion in the Milky Way, which is again moving
within its local group of galaxies.

Motion is change in position of an object with time. How
does the position change with time ? In this chapter, we shall
learn how to describe motion. For this, we develop the
concepts of velocity and acceleration. We shall confine
ourselves to the study of motion of objects along a straight
line, also known as rectilinear motion. For the case of
rectilinear motion with uniform acceleration, a set of simple
equations can be obtained. Finally, to understand the relative
nature of motion, we introduce the concept of relative velocity.

In our discussions, we shall treat the objects in motion as
point objects. This approximation is valid so far as the size
of the object is much smaller than the distance it moves in a
reasonable duration of time.  In a good number of situations
in real-life, the size of objects can be neglected and they can
be considered as point-like objects without much error.

In Kinematics, we study ways to describe motion without
going into the causes of motion. What causes motion
described in this chapter and the next chapter forms the
subject matter of Chapter 5.

3.2  POSITION, PATH LENGTH AND DISPLACEMENT

Earlier you learnt that motion is change in position of an
object with time. In order to specify position, we need to use
a reference point and a set of axes. It is convenient to choose
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with the path of the car’s motion and origin of
the axis as the point from where the car started
moving, i.e. the car was at x = 0 at t = 0 (Fig. 3.1).
Let P, Q and R represent the positions of the car
at different instants of time.  Consider two cases
of motion.  In the first case, the car moves from
O to P.  Then the distance moved by the car is
OP = +360 m. This distance is called the path
length  traversed by the car.   In the second
case, the car moves from O to P and then moves
back from P to Q.   During this course of motion,
the path length traversed is OP + PQ = + 360 m
+ (+120 m) = + 480 m.  Path length is a scalar
quantity — a quantity that has a magnitude
only and no direction (see Chapter 4).

Displacement

It is useful to define another quantity
displacement  as  the  change  in position. Let
x1 and x

2
 be the positions of an object at time t

1
and t

2
. Then its displacement, denoted by x, in

time t = (t
2 

- t
1
), is given by the difference

between the final and initial positions :
                       x = x

2 
– x

1
(We use the Greek letter delta () to denote a
change in a quantity.)

If   x
2
 > x

1
, x is positive; and if x

2 
< x

1
,
 
x is

negative.
Displacement has both magnitude and

direction. Such quantities are represented by
vectors. You will read about vectors in the next
chapter. Presently, we are dealing with motion
along a straight line (also called rectilinear
motion) only. In one-dimensional motion, there
are only two directions (backward and forward,
upward and downward) in which an object can
move, and these two directions can easily be
specified by + and – signs. For example,
displacement of the car in moving from O to P is :

x = x
2
 – x

1
 = (+360 m) – 0 m = +360 m

The displacement has a magnitude of 360 m and
is directed in the positive x direction as indicated
by the + sign. Similarly, the displacement of the
car from P to Q is 240 m – 360 m = – 120 m. The

Fig. 3.1  x-axis, origin and positions of a car at different times.

a rectangular coordinate system consisting of
three mutually perpenducular axes, labelled  X-,
Y-, and Z- axes. The point of intersection of these
three axes is called origin (O) and serves as the
reference point. The coordinates (x, y. z) of an
object describe the position of the object with
respect to this coordinate system. To measure
time, we position a clock in this system. This
coordinate system along with a clock constitutes
a frame of reference.

If one or more coordinates of an object change
with time, we say that the object is in motion.
Otherwise, the object is said to be at rest with
respect to this frame of reference.

The choice of a set of axes in a frame of
reference depends upon the situation. For
example, for describing motion in one dimension,
we need only one axis. To describe motion in
two/three dimensions, we need a set of two/
three axes.

Description of an event depends on the frame
of reference chosen for the description. For
example, when you say that a car is moving on
a road, you are describing the car with respect
to a frame of reference attached to you or to the
ground. But with respect to a frame of reference
attached with a person sitting in the car, the
car is at rest.

To describe motion along a straight line, we
can choose an axis, say X-axis, so that it
coincides with the path of the object. We then
measure the position of the object with reference
to a conveniently chosen origin, say O, as shown
in Fig. 3.1. Positions to the right of O are taken
as positive and to the left of O, as negative.
Following this convention, the position
coordinates of point P and Q in Fig. 3.1 are +360
m and +240 m. Similarly, the position coordinate
of point R is –120 m.

Path length

Consider the motion of a car along a straight
line.  We choose the x-axis such that it coincides



PHYSICS42

negative sign indicates the direction of
displacement. Thus, it is not necessary to use
vector notation for discussing motion of objects
in one-dimension.

The magnitude of displacement may or may
not be equal to the path length traversed by
an object.  For example, for motion of the car
from O to P, the path length is  +360 m and the
displacement is +360 m. In this case, the
magnitude of displacement (360 m) is equal to
the path length (360 m). But consider the motion
of the car from O to P and back to Q. In this
case, the path length = (+360 m) + (+120 m) = +
480 m. However, the displacement = (+240 m) –
(0 m) =  + 240 m.  Thus, the magnitude of
displacement (240 m) is not equal to the path
length (480 m).

The magnitude of the displacement for a
course of motion may be zero but the
corresponding path length may not be zero.  For
example, if the car starts from O, goes to P and

then returns to O, the final position coincides
with the initial position and the displacement
is zero. However, the path length of this journey
is OP + PO = 360 m +  360 m = 720 m.

Motion of an object can be represented by a
position-time graph as you have already learnt
about it. Such a graph is a powerful tool to
represent and analyse different aspects of
motion of an object.  For motion along a straight
line, say X-axis, only x-coordinate varies with
time and we have an x-t graph. Let us first
consider the simple case in which an object is
stationary, e.g. a car standing still at x = 40 m.
The position-time graph is a straight line parallel
to the time axis, as shown in Fig. 3.2(a).

If an object moving along the straight line
covers equal distances in equal intervals of
time, it is said to be in uniform motion along a
straight line. Fig. 3.2(b) shows the position-time
graph of such a motion.

Fig. 3.2  Position-time graph of (a) stationary object, and (b) an object in uniform motion.

Fig. 3.3  Position-time graph of a car.
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is equal to the average speed.  This is not always
the case, as you will see in the following example.

Example 3.1 A car is moving along a
straight line, say OP in Fig. 3.1.  It moves
from O to P in 18 s and returns from P to Q
in 6.0 s.  What are the average velocity
and average speed of the car in going (a)
from O to P ? and (b) from O to P and back
to Q ?

Answer    (a)

 Average velocity
Displacement

Time interval 


   1+ 360 m 
20 m s

18 s
v     

     Average speed  
Path length

Time interval


                1360 m 
= 20 m s

18 s
  

Thus, in this case the average speed is equal to
the magnitude of the average velocity.
(b) In this case,

 
240 m

18 6.0  s
Displacement 

Average velocity =
Time interval 






                            -1=+10 m s

OP + PQPath length
Average speed = =

Time interval t 

 
  -1360+120  m

= = 20 m s
24 s

Thus, in this case the average speed is not equal
to the magnitude of the average velocity. This
happens because the motion here involves
change in direction so that the path length is
greater than the magnitude of displacement.
This shows that speed is, in general, greater
than the magnitude of the velocity. 

If the car in Example 3.1 moves from O to P
and comes back to O in the same time interval,
average speed is 20 m/s but the average velocity
is zero !

3.4  INSTANTANEOUS VELOCITY AND SPEED

The average velocity tells us how fast an object
has been moving over a given time interval but
does not tell us how fast it moves at different
instants of time during that interval.  For this,
we define instantaneous velocity or simply
velocity v at an instant t.

The velocity at an instant is defined as the
limit of the average velocity as the time interval
t becomes infinitesimally small. In other words,

v lim
x

t
=

t  0




(3.3a)

  
d

d

x

t

(3.3b)

where the symbol lim
t 0 

 stands for the operation
of taking limit as  t0 of the quantity on its
right. In the language of calculus, the quantity
on the right hand side of Eq. (3.3a) is the
differential coefficient of x with respect to t and

is denoted by  
d

d

x

t
 (see Appendix 3.1).  It is the

rate of change of position with respect to time,
at that instant.

We can use Eq. (3.3a) for obtaining the value
of velocity at an instant either graphically or
numerically. Suppose that we want to obtain
graphically the value of velocity at time  t = 4 s
(point P) for the motion of the car represented
in Fig. 3.3. The figure has been redrawn in
Fig. 3.6 choosing different scales to facilitate the

Fig. 3.6 Determining velocity from position-time
graph.  Velocity at t = 4 s is the slope of the
tangent to the graph at that instant.
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calculation. Let us take t = 2 s centred at
t = 4 s. Then, by the definition of the average
velocity, the slope of line P1P2  ( Fig. 3.6) gives
the value of average velocity over the interval
3 s to 5 s.  Now, we decrease the value of t from
2 s to 1 s.  Then line P1P2 becomes Q1Q2   and its
slope gives the value of the average velocity over
the interval 3.5 s to 4.5 s. In the limit t  0,
the line P1P2 becomes tangent to the position-
time curve at the point P and the velocity at t =
4 s is given by the slope of the tangent at that
point. It is difficult to show this process
graphically. But if we use numerical method
to obtain the value of the velocity, the
meaning of the limiting process becomes
clear. For the graph shown in
Fig. 3.6, x = 0.08 t3.  Table 3.1 gives the value of
x/t calculated for t equal to 2.0 s, 1.0 s, 0.5
s, 0.1 s and 0.01 s centred at t = 4.0 s. The
second and third columns give the value of t1=

t
t

2













 and t t

t

2
2  












 and the fourth and

the fifth columns give the corresponding values

of x, i.e. x (t1) = 0.08 t1
3 and x (t2) = 0.08 t2

3. The
sixth column lists the difference x = x (t2) – x
(t1) and the last column gives the ratio of x and
t, i.e. the average velocity corresponding to the
value of t listed in the first column.

We see from Table 3.1 that as we decrease
the value of t from 2.0 s to 0.010 s, the value of
the average velocity approaches the limiting
value 3.84 m s–1 which is the value of velocity at

t = 4.0 s, i.e. the value of  
d

d

x

t
 at t = 4.0 s. In this

manner, we can calculate velocity at each

instant for motion of the car shown in Fig. 3.3.
For this case, the variation of velocity with time
is found to be as shown in Fig. 3.7.

Fig. 3.7 Velocity–time graph corresponding to motion
shown in Fig. 3.3.

The graphical method for the determination
of the instantaneous velocity is always not a
convenient method.  For this, we must carefully
plot the position–time graph and calculate the
value of average velocity as t becomes smaller
and smaller.  It is easier to calculate the value
of velocity at different instants if we have data
of positions at different instants or exact
expression for the position as a function of time.
Then, we calculate x/t from the data for
decreasing the value of t and find the limiting
value as we have done in Table 3.1 or use
differential calculus for the given expression and

calculate 
d

d

x

t
 at different instants as done in

the following example.

Table 3.1  Limiting value of 
Δ
Δ
x

t
 at t = 4 s
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Example 3.2    The position of an object
moving along x-axis is given by   x = a + bt2

where  a = 8.5 m, b = 2.5 m s–2 and t is
measured in seconds. What is its velocity at
t = 0 s and t = 2.0 s. What is the average
velocity between t = 2.0 s and t = 4.0 s ?

Answer  In notation of differential calculus, the
velocity is

 v
x

t t
a bt 2b t =  

2   
d

d

d

d
5.0 t m s

-1
 

At   t = 0 s,      v = 0 m s–1   and at   t = 2.0 s,
v = 10 m s-1 .

    4.0 2.0

4.0 2.0

x x
Average velocity

 
 

 

        
16 – – 4

6.0
2.0

a b a b
b

 
   

        -16.0 2.5 =15 m s            
From Fig. 3.7, we note that during the period

t =10 s to 18 s the velocity is constant. Between
period t =18 s to t = 20 s, it is uniformly
decreasing  and  during  the  period t = 0 s to     t
= 10 s, it is increasing. Note that for uniform
motion, velocity is the same as the average
velocity at all instants.

Instantaneous speed or simply speed is the
magnitude of velocity. For example, a velocity of
+ 24.0 m s–1 and a velocity of – 24.0 m s–1 — both
have an associated speed of 24.0 m s-1.  It should
be noted that though average speed over a finite
interval of time is greater or equal to the
magnitude of the average velocity,
instantaneous speed at an instant is equal to
the magnitude of the instantaneous velocity at
that instant. Why so ?

3.5  ACCELERATION

The velocity of an object, in general, changes
during its course of motion. How to describe this
change? Should it be described as the rate of
change in velocity with distance or with time ?
This was a problem even in Galileo’s time. It was
first thought that this change could be described
by the rate of change of velocity with distance.
But, through his studies of motion of freely falling
objects and motion of objects on an inclined
plane, Galileo concluded that the rate of change
of velocity with time is a constant of motion for
all objects in free fall. On the other hand, the
change in velocity with distance would not be
constant. This led to the concept of acceleration

as the rate of change of velocity with time.

 The average acceleration a  over a time
interval is defined as the change of velocity
divided by the time interval :

2 1

2 1

–
–

v v va
t t t

 
  

 (3.4)

where v2 and v1 are the instantaneous velocities
or simply velocities at time  t2

 
and t1

 
. It is the

average change of velocity per unit time. The SI
unit of acceleration is m s–2 .

On a plot of velocity versus time, the average
acceleration is the slope of the straight line
connecting the points corresponding to (v2, t2)
and (v1, t1). The average acceleration
for     velocity-time graph shown in Fig. 3.7 for
different time intervals 0 s - 10 s, 10 s – 18 s,
and 18 s – 20 s are :

0 s - 10 s
  

  
–1

–224 – 0 m s
2.4 m s

10 – 0 s
a   

10 s - 18 s   
  

  
–1

–224 – 24 m s
0 m s

18 –10 s
a   

18 s - 20 s    
  

  
–1

–20 – 24 m s
–12 m s

20 –18 s
a   

Fig. 3.8 Acceleration as a function of time for motion
represented in Fig. 3.3.

Instantaneous acceleration is defined in the same
way as the instantaneous velocity :

d
dt 0

v v
a lim

t t  

 
  

 
(3.5)

The acceleration at an instant is the slope of
the tangent to the v–t curve at that instant.  For
the v–t curve shown in  Fig.  3.7, we can obtain
acceleration at every instant of time. The
resulting a – t curve is shown in Fig. 3.8. We see
that the acceleration is nonuniform over the

 a
 (
m

 s
–2

)



MOTION IN A STRAIGHT LINE 47

period  0 s to 10 s. It is zero between 10 s and
18 s and is constant with value –12 m s–2

between 18 s and 20 s. When the acceleration
is uniform, obviously, it equals the average
acceleration over that period.

Since velocity is a quantity having both
magnitude and direction, a change in velocity
may involve either or both of these factors.
Acceleration, therefore, may result from a
change in speed (magnitude), a change in
direction or changes in both.  Like velocity,
acceleration can also be positive, negative or
zero.  Position-time graphs for motion with
positive, negative and zero acceleration are
shown in Figs. 3.9 (a), (b) and (c), respectively.
Note that the graph curves upward for positive
acceleration; downward for negative
acceleration and it is a straight line for zero
acceleration. As an exercise, identify in Fig. 3.3,
the regions of the curve that correspond to these
three cases.

Although acceleration can vary with time,
our study in this chapter will be restricted to
motion with constant acceleration. In this case,
the average acceleration equals the constant
value of acceleration during the interval. If the
velocity of an object is v

o
 at t = 0 and v at time t,

we have

          or
0

0
0

v v
a   ,  v v a t

t

 
   

 
(3.6)

Fig. 3.9 Position-time graph for motion with
(a) positive acceleration; (b) negative
acceleration, and (c) zero acceleration.

Let us see how velocity-time graph looks like
for some simple cases. Fig. 3.10 shows     velocity-
time graph for motion with constant acceleration
for the following cases :

(a) An object is moving in a positive direction
with a positive acceleration, for example
the motion of the car in  Fig. 3.3 between
t = 0 s and t = 10 s.

(b) An object is moving in positive direction

with a negative acceleration, for example,
motion of the car in Fig 3.3 between
t = 18 s and 20 s.

(c) An object is moving in negative direction
with a negative acceleration, for example
the motion of a car moving from O in Fig.
3.1 in negative x-direction with
increasing speed.

(d) An object is moving in positive direction
till time t1

, and then turns back with the
same negative acceleration, for example
the motion of a car from point O to point
Q in Fig. 3.1 till time t1 with decreasing
speed and turning back and moving with
the same negative acceleration.

An interesting feature of a velocity-time graph
for any moving object is that the area under the
curve represents the displacement over a
given time interval. A general proof of this
statement requires use of calculus. We can,

Fig. 3.10 Velocity–time graph for motions with
constant acceleration. (a) Motion in positive
direction with positive acceleration,
(b) Motion in positive direction with
negative acceleration, (c) Motion in negative
direction with negative acceleration,
(d) Motion of an object with negative
acceleration that changes direction at time
t
1
.  Between times 0 to t

1
, its moves in

positive x - direction and between t
1
 and

t
2
 it moves in the opposite direction.
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however, see that it is true for the simple case of
an object moving with constant velocity u. Its
velocity-time graph is as shown in Fig. 3.11.

Fig. 3.11 Area under v–t curve equals displacement
of the object over a given time interval.

The v-t curve is
 
a straight line parallel to the

time axis and the area under it between t = 0
and t = T

  
is the area of the rectangle of height u

and base T. Therefore, area = u × T = uT which
is the displacement in this time interval.  How
come in this case an area is equal to a distance?
Think!  Note the dimensions of quantities on
the two coordinate axes, and you will arrive at
the answer.

Note that the x-t, v-t, and a-t graphs shown
in several figures in this chapter have sharp
kinks at some points implying that the
functions are not differentiable at these
points. In any realistic situation, the
functions will be differentiable at all points
and the graphs will be smooth.

What this means physically is that
acceleration and velocity cannot change
values abruptly at an instant. Changes are
always continuous.

3.6 KINEMATIC EQUATIONS FOR
UNIFORMLY ACCELERATED MOTION

For uniformly accelerated motion, we can derive
some simple equations that relate displacement
(x), time taken (t), initial velocity (v

0
), final

velocity (v) and acceleration (a). Equation (3.6)
already obtained gives a relation between final
and initial velocities v and  v

0  of an object moving
with uniform acceleration a :

             v = v
0
 + at (3.6)

This relation is graphically represented in Fig. 3.12.
The area under this curve is :
Area between instants 0 and t = Area of triangle
ABC + Area of rectangle OACD

 
  – 0 0

1
v v t + v t

2
 

Fig. 3.12 Area  under v-t curve for an object with
uniform acceleration.

As explained in the previous section, the area
under v-t curve represents the displacement.
Therefore, the displacement x of the object is :

  1
–

2 0 0x v v t + v t (3.7)

But v v a t0 

Therefore, 2
0

1
2

x a t + v t 

or,
2

0

1
2

x v t at  (3.8)

Equation (3.7) can also be written as

0

2

v + v
x t v t  (3.9a)

where,

0

2

v v
v

 
   (constant acceleration only)

(3.9b)

Equations (3.9a) and  (3.9b) mean that the object
has undergone displacement x with an average
velocity equal to the arithmetic average of the
initial and final velocities.
From Eq. (3.6), t = (v – v

0
)/a. Substituting this in

Eq. (3.9a), we get

       
2 2

0 0 0

2 2
v v v v v v

x v t
a a

                  

     2 2
0 2v v ax  (3.10)
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This equation can also be obtained by
substituting the value of t from Eq. (3.6) into
Eq. (3.8). Thus, we have obtained three
important equations :

0v v at  

         2
0

1
2

x v t at  

2 2
0 2v v ax  (3.11a)

connecting five quantities v0,  v, a, t and x.  These
are kinematic equations of rectilinear motion
for constant acceleration.

The set of Eq. (3.11a) were obtained by
assuming that at t = 0, the position of the
particle, x is 0.  We can obtain a more general
equation if we take  the  position coordinate at t
= 0 as non-zero, say x0.  Then Eqs. (3.11a) are
modified (replacing x by x – x0 ) to :

0v v at  

2
0 0

1
2

x x v t at   (3.11b)

2 2
0 02 ( )v v a x x   (3.11c)

Example 3.3 Obtain equations of motion
for constant acceleration using method of
calculus.

Answer  By definition

d
d
v

a
t

 

 dv = a dt
Integrating both sides

0 0
d d

v t

v
v a t   

0
d

t
a t           (a is constant)

0–v v at

       0v v at 

Further,        
d
d
x

v
t

 

      dx = v dt
Integrating both sides

0
d

x

x
x 0

d
t
v t  

  00
d

t
v at t   

2
0 0

1
–

2
x x v t a t 

      x   = 
2

0 0

1
2

x v t a t 

We can write

d d d d
d d d d
v v x v

a v
t x t x

   

or, v dv = a dx
Integrating both sides,

0 0
d d

v x

v x
v v a x   

 
2 2

0
0

–
–

2

v v
a x x

 2 2
0 02 –v v a x x 

The advantage of this method is that it can be
used for motion with non-uniform acceleration
also.

Now, we shall use these equations to some
important cases. 

Example 3.4 A ball is thrown vertically
upwards with a velocity of 20 m s–1 from
the top of a multistorey building. The
height of the point from where the ball is
thrown is 25.0 m from the ground. (a) How
high will the ball rise ?  and (b) how long
will it be before the ball hits the ground?
Take g =10 ms–2.(actual value is 9.8 ms–2)

Answer  (a) Let us take the y-axis in the
vertically upward direction with zero at the
ground, as shown in Fig. 3.13.

Now  v
o 
= + 20 m s–1,

   a  =  – g = –10 m s–2,
   v  =  0 m s–1

If the ball rises to height y from the point of
launch, then using the equation

  0   2 2
0v v 2 a y – y  

we get

0 = (20)2 + 2(–10)(y – y0)

Solving,  we get, (y – y0) = 20 m.

(b) We can solve this part of the problem in two
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ways.  Note carefully the methods used.

Fig. 3.13

FIRST METHOD :  In the first method, we split
the path in two parts : the upward motion  (A to
B) and the downward motion (B to C) and
calculate the corresponding time taken t1 and
t2.  Since the velocity  at B is zero, we have :

                  v  =  vo +  at
0 = 20  – 10t1

Or,            t1 = 2 s

This is the time in going from A to B.  From B, or
the point of  the maximum height, the ball falls
freely under the acceleration due to gravity.  The
ball is moving in negative y direction.  We use
equation

          2
0 0

1
2

y y v t at   

We have, y0 = 45 m, y = 0, v
0
 = 0, a = – g  = –10 m s–2

   0  =  45 + (½) (–10) t2
2

Solving, we get t2 = 3 s

Therefore, the total time taken by the ball before
it hits the ground = t1 +   

t2  =  2  s + 3 s = 5 s.

SECOND METHOD : The total time taken can
also be calculated by noting the coordinates of
initial and final positions of the ball with respect
to the origin chosen and using equation

2
0 0

1
2

y y v t at   

Now y0  =  25 m        y = 0 m

v
o
 = 20 m s-1, a  = –10m s–2,  t  =  ?

0 = 25  +20 t  + (½)  (-10) t2

Or, 5t2 – 20t  – 25  =  0

Solving this quadratic equation for t, we get

t = 5s

Note that the second method is better since we
do not have to worry about the path of the motion
as the motion is under constant acceleration.



Example 3.5  Free-fall : Discuss the
motion of an object under free  fall.  Neglect
air resistance.

Answer  An object released near the surface of
the Earth is accelerated downward under the
influence of the force of gravity. The magnitude
of acceleration due to gravity is represented by
g.  If air resistance is neglected, the object is
said to be in free fall. If the height through
which the object falls is small compared to the
earth’s radius, g can be taken to be constant,
equal to   9.8 m s–2. Free fall is thus a case of
motion with uniform acceleration.

We assume that the motion is in y-direction,
more correctly in –y-direction because we
choose upward direction as positive. Since the
acceleration due to gravity is always downward,
it is in the negative direction and we have

a = – g  = – 9.8 m s–2

The object is released from rest at y = 0. Therefore,
v

0
 = 0 and the equations of motion become:

v =  0 – g t = –9.8 t      m s–1

y =  0 – ½  g t2 = –4.9 t 2    m
v2 = 0 – 2 g y = –19.6 y   m2 s–2

These equations give the velocity and the
distance travelled as a function of time and also
the variation of velocity with distance. The
variation of acceleration, velocity, and distance,
with time have been plotted in Fig.  3.14(a), (b)
and (c).

(a)
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(b)

      (c)

Fig. 3.14 Motion of an object under free fall.
(a)  Variation of acceleration with time.
(b) Variation of velocity with time.
(c) Variation of distance with time 

Example 3.6 Galileo’s law of odd
numbers : “The distances traversed, during
equal intervals    of time, by a body falling
from rest, stand to one another in the same
ratio as the odd numbers beginning with
unity [namely, 1: 3: 5: 7…...].”  Prove it.

Answer  Let us divide the time interval of
motion of an object under free fall into many

equal intervals
    and find out the distances

traversed during successive intervals of
time. Since initial velocity is zero, we have

Using this equation, we can calculate the
position of the object after different time
intervals, 0, 



, 2 ,  3… which are given in
second column of Table 3.2. If we take
(–1/

 
2) g 2 as y

0 
— the position coordinate after

first time interval 



, then third column gives
the positions in the unit of y

o
. The fourth

column gives the distances traversed in
successive 



s. We find that the distances are
in the simple ratio 1: 3: 5: 7: 9: 11… as  shown
in the last column. This  law was established
by Galileo Galilei (1564-1642) who was the first
to make quantitative studies of free fall. 

Example 3.7  Stopping distance of
vehicles : When brakes are applied to a
moving vehicle, the distance it travels before
stopping is called stopping distance.  It is
an important factor for road safety and
depends on the initial velocity (v0) and the
braking capacity, or deceleration, –a that
is caused by the braking. Derive an
expression for stopping distance of a vehicle
in terms of vo and a.

Answer  Let the distance travelled by the vehicle
before it stops be d

s
. Then, using equation of

motion  v2 = vo
2 + 2 ax, and noting that  v = 0, we

have the stopping distance

2
0–

2s

v
d

a
 

Thus, the stopping distance is proportional to



Table 3.2

21
2

y gt  
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the square of the initial velocity. Doubling the
initial velocity increases the stopping distance
by a factor of 4 (for the same deceleration).

For  the car of a particular make, the braking
distance was found to be 10 m, 20 m, 34 m and
50 m corresponding to velocities of 11, 15, 20
and 25 m/s which are nearly consistent with
the above formula.

Stopping distance is an important factor
considered in setting speed limits, for example,
in school zones. 

Example 3.8  Reaction time :  When a
situation demands our immediate
action, it takes some time before we
really respond. Reaction time is the
time a person takes to observe, think
and act.  For example, if a person is
driving and suddenly a boy appears on
the road, then the time elapsed before
he slams the brakes of the car is the
reaction time. Reaction time depends
on complexity of the situation and on
an individual.

You can measure your reaction
time by a simple experiment. Take a
ruler and ask your friend to drop it
vertically through the gap between
your thumb and forefinger (Fig. 3.15).
After you catch it, find the distance d
travelled by the ruler. In a particular
case, d was found to be 21.0 cm.

Estimate reaction time.

2
r

1
d gt

2
  

Or,
2

sr

d
t  

g
 

Given d = 21.0 cm and g = 9.8 m s–2the reaction
time is

2×0.21
 s 0.2 s.

9.8rt   

3.7  RELATIVE VELOCITY

You must be familiar with the experience of
travelling in a train and being overtaken by
another train moving in the same direction as
you are. While that train must be travelling faster
than you to be able to pass you, it does seem
slower to you than it would be to someone
standing on the ground and watching both the
trains. In case both the trains have the same
velocity with respect to the ground, then to you
the other train would seem to be at rest.  To
understand such observations, we now
introduce the concept of relative velocity.

Consider two objects A and B moving
uniformly with average velocities v

A
 and v

B
 in

one dimension, say along x-axis. (Unless
otherwise specified, the velocities mentioned in
this chapter are measured with reference to the
ground). If x

A
 (0) and x

B
 (0) are positions of objects

A and B, respectively at time t = 0, their positions
x

A
 (t) and x

B
 (t) at time t are given by:

x
A
 (t )  =  x

A
 (0)  +  v

A
  t     (3.12a)

x
B
 (t)   =  x

B
 (0)  +  v

B
 t               (3.12b)

Then, the displacement from object A to object
B is given by

x
BA

(t)  =  x
B
 (t)  –  x

A
 (t)

= [ x
B
 (0) – x

A
 (0) ] + (v

B
 – v

A
) t.      (3.13)

Equation (3.13) is easily interpreted. It tells us
that as seen from object A, object B has a
velocity v

B 
– v

A
 because the displacement from

A to B changes steadily by the amount v
B 
– v

A
 in

each unit of time. We say that the velocity of
object B relative to object A is v

B
 – v

A
 :

v
BA

  =  v
B 

 – v
A

(3.14a)

Similarly, velocity of object A relative to object B
is:

v
AB

  =  v
A
 – v

B
(3.14b)

Fig. 3.15   Measuring the reaction time.

Answer  The ruler drops under free fall.
Therefore, v

o
 = 0, and a = – g = –9.8 m s–2. The

distance travelled d and the reaction time t
r
 are

related by
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This shows: v
BA 

= – v
AB

(3.14c)

Now we consider some special cases :
(a) If v

B
 = v

A
, v

B 
–

 
v

A
  = 0.  Then, from Eq. (3.13), x

B

(t) – x
A
 (t) = x

B
 (0) – x

A
 (0).  Therefore, the two

objects stay at a constant distance (x
B
 (0) – x

A

(0)) apart, and their position–time graphs are
straight lines parallel to each other as shown
in Fig. 3.16. The relative velocity v

AB
 or v

BA
 is

zero in this case.

(b) If vA > vB, vB – vA is negative.  One graph is
steeper than the other and they meet at a
common point.  For example, suppose vA  = 20 m s-1

and x
A
 (0) = 10 m; and v

B
 = 10 m s-1, x

B
 (0) = 40

m; then the time at which they meet is t = 3 s
(Fig. 3.17). At this instant they are both at a
position xA (t) = xB (t) = 70 m. Thus, object A
overtakes object B at this time. In this case,v

BA

= 10 m s–1 – 20 m s–1 = – 10 m s–1= – v
AB

.
(c) Suppose vA and vB are of opposite signs. For
example, if in the above example object A is
moving with 20 m s–1 starting at  xA(0) = 10 m
and object B is moving with – 10 m s–1 starting
at xB (0) = 40 m,  the two objects meet at t = 1 s
(Fig. 3.18).  The velocity of B relative to A,
vBA = [–10 – (20)] m s–1 = –30 m s–1 = – vAB. In this
case, the magnitude of vBA or vAB ( = 30 m s–1) is
greater than the magnitude of velocity of A or
that of B.  If the objects under consideration are
two trains, then for a person sitting on either of
the two, the other train seems to go very fast.

Note that Eq. (3.14) are valid even if vA and vB

represent instantaneous velocities.

Example 3.9  Two parallel rail tracks run
north-south.  Train A moves north with a
speed of 54 km h–1, and train B moves south
with a speed of 90 km h–1. What is the
(a) velocity of B with respect to A ?,
(b) velocity of ground with respect to B ?,

and
(c) velocity of a monkey running on the

roof of the train A against its motion
(with a velocity of 18 km h–1 with
respect to the train A) as observed by
a man standing on the ground ?

Answer  Choose the positive direction of x-axis
to be from south to north.  Then,

Fig. 3.16 Position-time graphs of two objects with
equal velocities.

Fig. 3.17 Position-time graphs of two objects with
unequal velocities, showing the time of
meeting.

Fig. 3.18 Position-time graphs of two objects with
velocities in opposite directions, showing
the time of meeting.

t(s)
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vA =  + 54 km h–1  =  15 m s–1

vB  =  – 90 km h–1  =  – 25 m s–1

Relative velocity of B with respect to A = vB – vA=
– 40 m s–1 , i.e. the train B appears to A to move
with a speed of 40 m s–1 from north to south.

Relative velocity of ground with respect to

B = 0 – vB = 25 m s–1.

In (c), let the velocity of the monkey with respect
to ground be vM.  Relative velocity of the monkey
with respect to A,
vMA = vM – vA = –18 km h–1 =–5 ms–1.  Therefore,
vM = (15 – 5) m s–1 = 10 m s–1.



SUMMARY

1. An object is said to be in motion if its position changes with time.  The position of the
object can be specified with reference to a conveniently chosen origin.  For motion in
a straight line, position to the right of the origin is taken as positive and to the left as
negative.

2. Path length is defined as the total length of the path traversed by an object.
3. Displacement is the change in position :  x  =  x2 – x1.   Path length is greater or equal to

the magnitude of the displacement between the same points.
4. An object is said to be in uniform motion in a straight line if its displacement is  equal

in equal intervals of time.  Otherwise, the motion is said to be non-uniform.
5. Average velocity is the displacement divided by the time interval in which the

displacement occurs :

v
x

t





On an x-t graph, the average velocity over a time interval is the slope of the line
connecting the initial and final positions during that interval.

6. Average Speed is the ratio of total path length traversed and the corresponding time
interval.

The average speed of an object is greater or equal to the magnitude of the average
velocity over a given time interval.

7. Instantaneous velocity or simply velocity is defined as the limit of the average velocity as
the time interval t becomes infinitesimally small :

d
dt 0 t 0

x x
v lim v lim

t t    

 
   

 

The velocity at a particular instant is equal to the slope of the tangent drawn on
position-time graph at that instant.

8. Average acceleration is the change in velocity divided by the time interval during which
the change occurs :

v
a

t

 
 

 
9. Instantaneous acceleration is defined as the limit of the average acceleration as the time

interval t goes to zero :

d
dt 0 t 0

v v
a lim a lim

t t    

 
   

 
The acceleration of an object at a particular time is the slope of the velocity-time
graph at that instant of time.  For uniform motion, acceleration is zero and the x-t
graph is a straight line inclined to the time axis and the v-t graph is a straight line
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parallel to the time axis. For motion with uniform acceleration, x-t graph is a parabola
while the v-t graph is a straight line inclined to the time axis.

10. The area under the velocity-time curve between times t1 and t2 is equal to the displacement
of the object during that interval of time.

11. For objects in uniformly accelerated rectilinear motion, the five quantities, displacement
x, time taken t, initial velocity v0, final velocity v and acceleration a are related by a set
of simple equations called kinematic equations of motion :

        v = v0 +  at

       x v t
1

2
at0

2 

        v v 2ax2
0
2 

if the position of the object at time t = 0 is 0.  If the particle starts at x = x0 , x in above
equations is replaced by (x – x0).
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POINTS TO PONDER

1. The path length traversed by an object between two points is, in general, not the same
as the magnitude of displacement.  The displacement depends only on the end points;
the path length (as the name implies) depends on the actual path.  In one dimension,
the two quantities are equal only if the object does not change its direction during the
course of motion.  In all other cases, the path length is greater than the magnitude of
displacement.

2. In view of point 1 above, the average speed of an object is greater than or equal to the
magnitude of the average velocity over a given time interval. The two are equal only if
the path length is equal to the magnitude of displacement.

3. The origin and the positive direction of an axis are a matter of choice. You should first
specify this choice before you assign signs to quantities like displacement, velocity
and acceleration.

4. If a particle is speeding up, acceleration is in the direction of velocity; if its speed is
decreasing, acceleration is in the direction opposite to that of the velocity.  This
statement is independent of the choice of the origin of the axis.

5. The sign of acceleration does not tell us whether the particle’s speed is increasing or
decreasing.  The sign of acceleration (as mentioned in point 3) depends on the choice
of the positive direction of the axis.  For example, if the vertically upward direction is
chosen to be the positive direction of the axis, the acceleration due to gravity is
negative.  If a particle is falling under gravity, this acceleration, though negative,
results in increase in speed.  For a particle thrown upward, the same negative
acceleration (of gravity) results in decrease in speed.

6. The zero velocity of a particle at any instant does not necessarily imply zero acceleration
at that instant.  A particle may be momentarily at rest and yet have non-zero
acceleration.  For example, a particle thrown up has zero velocity at its uppermost
point but the acceleration at that instant continues to be the acceleration due to
gravity.

7. In the kinematic equations of motion [Eq. (3.11)], the various quantities are algebraic,
i.e. they may be positive or negative.  The equations are applicable in all situations
(for one dimensional motion with constant acceleration) provided the values of different
quantities are substituted in the equations with proper signs.

8. The definitions of instantaneous velocity and acceleration (Eqs. (3.3) and (3.5)) are
exact and are always correct while the kinematic equations (Eq. (3.11)) are true only
for motion in which the magnitude and the direction of acceleration are constant
during the course of motion.

EXERCISES

Very Short Answer Questions (2 Marks)

1. The states of motion and rest are relative.Explain.
2. How is average velocity different from instantaneous velocity ?
3. Give an example where the velocity of an object is zero but its acceleration

is not zero.
4. A vehicle travels half the distance L with speed v1 and the other half with

speed v2. What is the average speed ?
5. A lift coming down is just about to reach the ground floor. Taking the ground

floor as origin and positive direction upwards for all quantities, which one
of the following is correct
a) x < 0, v < 0, a > 0
b) x > 0, v < 0, a  < 0
c) x > 0, v < 0, a > 0
d) x > 0, V > 0, a > 0
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7. A food packet is dropped from an aeroplane, moving with a speed of 360
kmph in a horizontal direction, from a height of 500m. Find (i) its time of
descent (ii) the horizontal distance between the point at which the food
packet reaches the ground and the point above which it was dropped.

[Ans: (i) 10s (ii) 1000m]
Additional Problems

3.1 In which of the following examples of motion, can the body be considered
approximately a point object:
(a) a railway carriage moving without jerks between two stations.
(b) a monkey sitting on top of a man cycling smoothly on a circular track.
(c) a spinning cricket ball that turns sharply on hitting the ground.
(d) a tumbling beaker that has slipped off the edge of a table.

3.2 The position-time (x-t) graphs for two
children A and B returning from their
school O to their homes P and Q
respectively are shown in Fig. 3.19.
Choose the correct entries in the brackets
below ;
(a) (A/B) lives closer to the school than

(B/A)
(b) (A/B) starts from the school earlier

than (B/A)
(c) (A/B) walks faster than (B/A)
(d) A and B reach home at the (same/

different) time
(e) (A/B) overtakes (B/A) on the road

(once/twice).

3.3 A woman starts from her home at 9.00 am, walks with a speed of 5 km h–1 on a
straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and
returns home by an auto with a speed of 25 km h–1. Choose suitable scales and
plot the x-t graph of her motion.

3.4 A man walking in a narrow lane takes 5 steps forward and 3 steps backward,
followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1
m long and requires 1 s. Plot the x-t graph of his motion. Determine graphically
and otherwise how long the drunkard takes to fall in a pit 13 m away from the
start.

3.5 A jet airplane travelling at the speed of 500 km h–1 ejects its products of combustion
at the speed of 1500 km h–1 relative to the jet plane. What is the speed of the
latter with respect to an observer on the ground ?

3.6 A car moving along a straight highway with speed of 126 km h–1 is brought to a
stop within a distance of 200 m. What is the retardation of the car (assumed
uniform), and how long does it take for the car to stop ?

3.7 Two trains A and B of length 400 m each are moving on two parallel tracks with a
uniform speed of 72 km h–1 in the same direction, with A ahead of B. The driver of
B decides to overtake A and accelerates by  1 m s–2. If after 50 s, the guard of B just
moves past the driver of A, what was the original distance between them ?

3.8 On a two-lane road, car A is travelling with a speed of 36 km h–1. Two cars B and
C approach car A in opposite directions with a speed of 54 km h–1 each. At a
certain instant, when the distance AB is equal to AC, both being 1 km, B decides
to overtake A before C does. What minimum acceleration of car B is required to
avoid an accident ?

Fig. 3.19
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3.9 Two towns A and B are connected by a regular bus service with a bus leaving in
either direction every T minutes. A man cycling with a speed of 20 km h–1 in the
direction A to B notices that a bus goes past him every 18 min in the direction of
his motion, and every 6 min in the opposite direction. What is the period T of the
bus service and with what speed (assumed constant) do the buses ply on the
road?

3.10 A player throws a ball upwards with an initial speed of 29.4 m s–1.
(a) What is the direction of acceleration during the upward motion of the ball ?
(b) What are the velocity and acceleration of the ball at the highest point of its

motion ?
(c) Choose the x = 0 m and t = 0 s to be the location and time of the ball at its

highest point, vertically downward direction to be the positive direction of
x-axis, and give the signs of position, velocity and acceleration of the ball
during its upward, and downward motion.

(d) To what height does the ball rise and after how long does the ball return to the
player’s hands ? (Take g = 9.8 m s–2 and neglect air resistance).

3.11 Read each statement below carefully and state with reasons and examples, if it is
true or false ;

            A particle in one-dimensional motion
(a) with zero speed at an instant may have non-zero acceleration at that instant
(b) with zero speed may have non-zero velocity,
(c) with constant speed must have zero acceleration,
(d) with positive value of acceleration must be speeding up.

3.12 A ball is dropped from a height of 90 m on a floor. At each collision with the floor,
the ball loses one tenth of its speed. Plot the speed-time graph of its motion
between t = 0 to 12 s.

3.13 Explain clearly, with examples, the distinction between :
(a) magnitude of displacement (sometimes called distance) over an interval of time,

and the total length of path covered by a particle over the same interval;
(b) magnitude of average velocity over an interval of time, and the average speed

over the same interval. [Average speed of a particle over an interval of time is
defined as the total path length divided by the time interval]. Show in both
(a) and (b) that the second quantity is either greater than or equal to the first.
When is the equality sign true ? [For simplicity, consider one-dimensional
motion only].

3.14 A man walks on a straight road from his home to a market 2.5 km away with a
speed of 5 km h–1. Finding the market closed, he instantly turns and walks back
home with a speed of 7.5 km h–1. What is the
(a) magnitude of average velocity, and
(b) average speed of the man over the interval of time (i) 0 to 30 min, (ii) 0 to

50 min, (iii) 0 to 40 min ? [Note: You will appreciate from this exercise why it
is better to define average speed as total path length divided by time, and not
as magnitude of average velocity. You would not like to tell the tired man on
his return home that his average speed was zero !]

3.15 In Exercises 3.13 and 3.14, we have carefully distinguished between average speed
and magnitude of average velocity. No such distinction is necessary when we
consider instantaneous speed and magnitude of velocity. The instantaneous speed
is always equal to the magnitude of instantaneous velocity. Why ?
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3.16 Look at the graphs (a) to (d) (Fig. 3.20) carefully and state, with reasons, which of
these cannot possibly represent one-dimensional motion of a particle.

Fig. 3.20

3.17 Figure 3.21 shows the x-t plot of one-dimensional
motion of a particle. Is it correct to say from the
graph that the particle moves in a straight line for
t < 0 and on a parabolic path for t >0 ? If not, suggest
a suitable physical context for this graph.

3.18 A police van moving on a highway with a speed of
30 km h–1 fires a bullet at a thief’s car speeding away
in the same direction with a speed of 192 km h–1. If
the muzzle speed of the bullet is 150 m s–1, with
what speed does the bullet hit the thief’s car ? (Note:
Obtain that speed which is relevant for damaging
the thief’s car).

3.19 Suggest a suitable physical situation for each of the
following graphs (Fig 3.22):

Fig. 3.22

Fig. 3.21
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3.20 Figure 3.23 gives the x-t plot of a particle executing one-dimensional simple
harmonic motion. (You will learn about this motion in more detail in Chapter14).
Give the signs of position, velocity and acceleration variables of the particle at
t = 0.3 s, 1.2 s, – 1.2 s.

Fig. 3.23

3.21 Figure 3.24 gives the x-t plot of a
particle in one-dimensional motion.
Three different equal intervals of time
are shown. In which interval is the
average speed greatest, and in which
is it the least ?  Give the sign of average
velocity for each interval.

3.22 Figure 3.25 gives a speed-time graph of
a particle in motion along a constant
direction. Three equal intervals of time
are shown. In which interval is the
average acceleration greatest in
magnitude ? In which interval is the
average speed greatest ? Choosing the
positive direction as the constant
direction of motion, give the signs of v
and a in the three intervals. What are
the accelerations at the points A, B, C
and D ?

Additional Exercises

3.23 A three-wheeler starts from rest, accelerates uniformly with 1 m s–2 on a straight
road for 10 s, and then moves with uniform velocity. Plot the distance covered by
the vehicle during the nth second (n = 1,2,3….) versus n. What do you expect this
plot to be during accelerated motion : a straight line or a parabola ?

3.24 A boy standing on a stationary lift (open from above) throws a ball upwards with
the maximum initial speed he can, equal to 49 m s–1. How much time does the ball
take to return to his hands? If the lift starts moving up with a uniform speed of
5 m s-1 and the boy again throws the ball up with the maximum speed he can, how
long does the ball take to return to his hands ?

3.25 On a long horizontally moving belt (Fig. 3.26), a child runs to and fro with a speed
9 km h

–1
 (with respect to the belt) between his father and mother located 50 m apart

Fig. 3.24

Fig. 3.25
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on the moving belt. The belt moves with a speed of 4 km h–1. For an observer on
a stationary platform outside, what is the
(a) speed of the child running in the direction of motion of the belt ?.
(b) speed of the child running opposite to the direction of motion of the belt ?
(c) time taken by the child in (a) and (b) ?

Which of the answers alter if motion is viewed by one of the parents ?

Fig.  3.26

3.26 Two stones are thrown up simultaneously from the edge of a cliff 200 m high
with initial speeds of 15 m s–1 and 30 m s–1. Verify that the graph shown in
Fig. 3.27 correctly represents the time  variation of the relative position of
the second stone with respect to the first. Neglect air resistance and assume
that the stones do not rebound after hitting the ground. Take g = 10 m s–2.
Give the equations for the linear and curved parts of the plot.

3.27 The speed-time graph of a particle moving along a fixed direction is shown in
Fig. 3.28. Obtain the distance traversed by the particle  between (a) t = 0 s to
10 s, (b) t = 2 s to 6 s.

Fig. 3.28

Fig. 3.27
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What is the average speed of the particle over the intervals in (a) and (b) ?
3.28 The  velocity-time  graph  of  a  particle in one-dimensional  motion is shown in Fig. 3.29

:

Fig. 3.29

Which of the following formulae are correct for describing the motion of the particle over
the time-interval t

1
 to t

2
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) – x(t

1
) = area under the v-t curve bounded by the t-axis and the dotted line shown.
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APPENDIX  3.1 :  ELEMENTS OF CALCULUS

Differential Calculus

Using the concept of ‘differential coefficient’ or ‘derivative’, we can easily define velocity and
acceleration.  Though you will learn in detail in mathematics about derivatives, we shall introduce
this concept in brief in this Appendix so as to facilitate its use in describing physical quantities
involved in motion.

Suppose we have a quantity y whose value depends upon a single variable x, and is expressed
by an equation defining y as some specific function of x.  This is represented as:

 y = f (x) (1)

This relationship can be visualised by drawing a graph of function y = f (x) regarding y and x as
Cartesian coordinates, as shown in Fig. 3.30 (a).

                             (a)      (b)
Fig.  3.30

Consider the point P on the curve y = f (x) whose coordinates are (x, y) and another point Q
where coordinates are (x + x, y + y).  The slope of the line joining P and Q is given by:
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yyy
x
y
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 (2)

Suppose now that the point Q moves along the curve towards P.  In this process, y and x

decrease and approach zero; though their ratio 




y

x
  will not necessarily vanish.  What happens

to the line PQ as y 0, x 0. You can see that this line becomes a tangent to the curve at
point P as shown in Fig. 3.30(b).  This means that tan   approaches the slope of  the tangent at
P, denoted by m:
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(3)

The limit of the ratio y/x as  x approaches zero is called the derivative of y with respect to x
and is written as dy/dx. It represents the slope of the tangent line to the curve y = f (x) at the
point (x, y).

Since y = f (x) and y + y = f (x + x), we can write the definition of the derivative as:
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Given below are some elementary formulae for derivatives of functions.  In these u (x) and v (x)
represent arbitrary functions of x, and a and b denote constant quantities that are independent
of x.  Derivatives of some common functions are also listed .
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In terms of derivatives, instantaneous velocity and acceleration are defined as
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Integral Calculus

You are familiar with the notion of area.  The formulae for areas of simple geometrical figures are
also known to you.  For example, the area of a rectangle is length times breadth and that of a
triangle is half of the product of base and height.  But how to deal with the problem of determination
of area of an irregular figure?  The mathematical notion of integral is necessary in connection with
such problems.

Let us take a concrete example.  Suppose a variable force f (x) acts on a particle in its motion
along x - axis from x = a to x = b.  The problem is to determine the work done (W) by the force on the
particle during the motion.  This problem is discussed in detail in Chapter 6.

Figure 3.31 shows the variation of  F(x)  with x.  If the force were constant, work  would  be  simply
the area F (b-a) as shown in Fig. 3.31(i).  But in the general case, force is varying .

Fig. 3.31
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To calculate the area under this curve  [Fig. 3.31  (ii)], let us employ the following trick.  Divide the
interval on x-axis from a to b into a large number (N) of small intervals: x0(=a) to x1, x1 to x2 ; x2 to x3,
................................ xN-1 to xN (=b). The area under the curve is thus divided into N strips.  Each strip
is approximately a rectangle, since the variation of  F(x) over a strip is negligible.  The area of the ith

strip shown [Fig. 3.31(ii)] is then approximately

xxFxxxFA iiiii  )()–)(( 1–

where x is the width of the strip which we have taken to be the same for all the strips.  You may
wonder whether we should put F(xi-1) or the mean of F(xi)  and  F(xi-1) in the above expression.  If we
take N to be very very large (N),  it does not really matter, since then the strip will be so thin that
the difference between  F(xi) and F(xi-1)  is vanishingly small.  The total area under the curve then is:





N

i

i

N

i

i xxFAA
11

)(

The limit of this sum as N is known as the integral of F(x) over x from a to b. It is given a special
symbol as shown below:


b

a

dxxFA )(

The integral sign  looks like an elongated S, reminding us that it basically is the limit of the sum

of an infinite number of terms.
A most significant mathematical fact is that integration is, in a sense, an inverse of differentiation.

Suppose we have a function g (x) whose derivative is f (x), i.e. 
dx

xdg
xf

)(
)( 

The function g (x) is known as the indefinite integral of f (x) and is denoted as:

 dxxfxg )()(

An integral with lower and upper limits is known as a definite integral.   It is a number.  Indefinite
integral has no limits; it is a function.

A fundamental theorem of mathematics states that

               )(–)()()( agbg xgdx xf
b
a

b

a


As an example, suppose f (x) = x2 and we wish to determine the value of the definite integral from

x =1 to x = 2.  The function g (x) whose derivative is x2
 is x3/3.  Therefore,

        3
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Clearly, to evaluate definite integrals, we need to know the corresponding indefinite integrals.  Some
common indefinite integrals are



MOTION IN A STRAIGHT LINE 67

1

d                   ( –1)
1

n
n x

x x n
n

 

  
  

1
( )d ln               ( 0)x x x
x

   

sin  d – cos                cos  d sin

e d ex x

x x x x x x

x

  

 

  
 

This introduction to differential and integral calculus is not rigorous and is intended to convey to
you the basics of calculus.
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CHAPTER FOUR

MOTION IN A PLANE

4.1  INTRODUCTION

In the last chapter we developed the concepts of position,
displacement, velocity and acceleration that are needed to
describe the motion of an object along a straight line. We
found that the directional aspect of these quantities can be
taken care of by + and – signs, as in one dimension only two
directions are possible. But in order to describe motion of an
object in two dimensions (a plane) or three dimensions
(space), we need to use vectors to describe the above-
mentioned physical quantities.  Therefore, it is first necessary
to learn the language of vectors. What is a vector ? How to
add, subtract and multiply vectors ? What is the result of
multiplying a vector by a real number ? We shall learn this
to enable us to use vectors for defining velocity and
acceleration in a plane. We then discuss motion of an object
in a plane.  As a simple case of motion in a plane, we shall
discuss motion with constant acceleration and treat in detail
the projectile motion. Circular motion is a familiar class of
motion that has a special significance in daily-life situations.
We shall discuss uniform circular motion in some detail.

The equations developed in this chapter for motion in a
plane can be easily extended to the case of three dimensions.

4.2  SCALARS AND VECTORS

In physics, we can classify quantities as scalars or
vectors.  Basically, the difference is that a direction is
associated with a vector but not with a scalar.  A scalar
quantity is a quantity with magnitude only. It is specified
completely by a single number, along with the proper
unit. Examples are : the distance between two points,
mass of an object, the temperature of a body and the
time at which a certain event happened.  The rules for
combining scalars are the rules of ordinary algebra.
Scalars can be added, subtracted, multiplied and divided

4.1 Introduction

4.2 Scalars and vectors

4.3 Multiplication of vectors by
real numbers

4.4 Addition and subtraction of
vectors — graphical method

4.5 Resolution of vectors

4.6 Vector addition — analytical
method

4.7 Motion in a plane

4.8 Motion in a plane with
constant acceleration

4.9 Relative velocity in two
dimensions

4.10 Projectile motion

4.11 Uniform circular motion

Summary
Points to ponder
Exercises
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CHAPTER FIVE

LAWS OF MOTION

5.1  INTRODUCTION

In the preceding Chapter, our concern was to describe the
motion of a particle in space quantitatively. We saw that
uniform motion needs the concept of velocity alone whereas
non-uniform motion requires the concept of acceleration in
addition.  So far, we have not asked the question as to what
governs the motion of bodies. In this chapter, we turn to this
basic question.

Let us first guess the answer based on our common
experience. To move a football at rest, someone must kick it.
To throw a stone upwards, one has to  give it an upward
push.  A breeze causes the branches of a tree to swing; a
strong wind can even move heavy objects. A boat moves in a
flowing river without anyone rowing it. Clearly, some external
agency is needed to provide force to move a body from rest.
Likewise, an external force is needed also to retard or stop
motion.  You can stop a ball rolling down an inclined plane by
applying a force against the direction of its motion.

In these examples, the external agency of force (hands,
wind, stream, etc) is in contact with the object. This is not
always necessary. A stone released from the top of a building
accelerates downward due to the gravitational pull of the
earth.  A bar magnet can attract an iron nail from a distance.
This shows that external agencies (e.g. gravitational and
magnetic forces )  can exert  force on a body even from a
distance.

In short, a force is required to put a stationary body in
motion or stop a moving body, and some external agency is
needed to provide this force. The external agency may or may
not be in contact with the body.

So far so good. But what if a body is moving uniformly (e.g.
a skater moving straight with constant speed on a horizontal
ice slab) ?  Is an external force required to keep a body in
uniform motion?

5.1 Introduction

5.2 Aristotle’s fallacy

5.3 The law of inertia

5.4 Newton’s first law of motion

5.5 Newton’s second law of
motion

5.6 Newton’s third law of motion

5.7 Conservation of momentum

5.8 Equilibrium of a particle

5.9 Common forces in mechanics

5.10 Circular motion

5.11 Solving problems in
mechanics

Summary
Points to ponder
Exercises
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5.2  ARISTOTLE’S  FALLACY

The question posed above appears to be simple.
However, it took ages to answer it. Indeed, the
correct answer to this question given by Galileo
in the seventeenth century was the foundation
of Newtonian mechanics, which signalled the
birth of modern science.

The Greek thinker,  Aristotle (384 B.C– 322
B.C.), held the view that if a body is moving,
something external is required to keep it moving.
According to this view, for example, an arrow
shot from a bow keeps flying since the air behind
the arrow keeps pushing it. The view was part of
an elaborate framework of ideas developed by
Aristotle on the motion of bodies in the universe.
Most of the Aristotelian ideas on motion are now
known to be wrong and need not concern us.
For our purpose here, the Aristotelian law of
motion may be phrased thus: An external force
is required  to keep a body in motion.

Aristotelian law of motion is flawed, as we shall
see.  However, it is a natural view that anyone
would hold from common experience. Even a
small child playing with a simple (non-electric)
toy-car on a floor knows intuitively that it needs
to constantly drag the string attached to the toy-
car with some force to keep it going.  If it releases
the string, it comes to rest. This experience is
common to most terrestrial motion. External
forces seem to be needed to keep bodies in
motion. Left to themselves, all bodies eventually
come to rest.

What is the flaw in Aristotle’s argument? The
answer is: a moving toy car comes to rest because
the external force of friction on the car by the floor
opposes its motion. To counter this force, the child
has to apply an external force on the car in the
direction of motion.  When the car is in uniform
motion, there is no net external force acting on it:
the force by the child cancels the force ( friction)
by the floor.  The corollary is: if there were no friction,
the child would not be required to apply any force
to keep the toy car in uniform motion.

The opposing forces such as friction (solids)
and viscous forces (for fluids) are always present
in the natural world.  This explains why forces
by external agencies are necessary to overcome
the frictional forces to keep bodies in uniform
motion. Now we understand  where Aristotle
went wrong.  He coded this practical experience
in the form of a basic argument.  To get at the

true law of nature for forces and motion, one has
to imagine a world in which uniform motion is
possible with no frictional forces opposing. This
is what Galileo did.

5.3  THE LAW OF INERTIA

Galileo studied motion of objects on an inclined
plane.  Objects (i) moving down an inclined plane
accelerate, while those (ii) moving up retard.
(iii)  Motion on a horizontal plane  is an
intermediate situation.  Galileo concluded that
an object moving on a frictionless horizontal
plane must neither have acceleration nor
retardation, i.e. it should move with constant
velocity (Fig. 5.1(a)).

(i) (ii) (iii)
Fig. 5.1(a)

Another experiment by Galileo leading to the
same conclusion involves a double inclined plane.
A ball released from rest on one of the planes rolls
down and climbs up the other. If the planes are
smooth, the final height of the ball is nearly the
same as the initial height (a little less but never
greater). In the ideal situation, when friction is
absent, the final height of the ball is the same
as its initial height.

If the slope of the second plane is decreased
and the experiment repeated, the ball will still
reach the same height, but in doing so, it will
travel a longer distance.  In the limiting case, when
the slope of the second plane is zero (i.e. is a
horizontal) the ball travels an infinite distance.
In other words, its motion never ceases. This is,
of course, an idealised situation (Fig. 5.1(b)).

Fig. 5.1(b) The law of inertia was inferred by Galileo
from observations of motion of a ball on a
double inclined plane.
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In practice, the ball does come to a stop after
moving a finite distance on the horizontal plane,
because of the opposing force of friction which
can never be totally eliminated.  However, if there
were no friction, the ball would continue  to move
with a constant velocity on the horizontal plane.

Galileo thus, arrived at a new insight on
motion that had eluded Aristotle and those who
followed him.  The state of rest and the state of
uniform linear motion (motion with constant
velocity) are equivalent. In both cases, there is

no net force acting on the body.  It is incorrect to
assume that a net force is needed to keep a body
in uniform motion. To maintain a body in
uniform motion, we need to apply an external
force to ecounter the frictional force, so that
the two forces sum up to zero net external
force.

To summarise, if the net external force is zero,
a body at rest continues to remain at rest and a
body in motion continues to move with a uniform
velocity.  This property of the body is called
inertia. Inertia means ‘resistance to  change’.
A body does not change its state of rest or
uniform motion, unless an external force to
changes that state.

5.4  NEWTON’S FIRST LAW OF MOTION

Galileo’s simple, but revolutionary ideas
dethroned Aristotelian mechanics. A new
mechanics had to be developed. This task was

Ideas on Motion in Ancient Indian Science

Ancient Indian thinkers had arrived at an elaborate system of ideas on motion. Force, the cause of
motion, was thought to be of different kinds : force due to continuous pressure (nodan), as the force
of wind on a sailing vessel; impact (abhighat), as when a potter’s rod strikes the wheel; persistent
tendency (sanskara) to move in a straight line(vega) or restoration of shape in an elastic body;
transmitted force by a string, rod, etc. The notion of (vega) in the Vaisesika theory of motion perhaps
comes closest to the concept of inertia.  Vega, the tendency to move in a straight line, was thought to
be opposed by contact with objects including atmosphere, a parallel to the ideas of friction and air
resistance.  It was correctly summarised that the different kinds of motion (translational, rotational
and vibrational) of an extended body arise from only the translational motion of its constituent
particles. A falling leaf in the wind may have downward motion as a whole (patan) and also rotational
and vibrational motion (bhraman, spandan), but each particle of the leaf at an instant only has a
definite (small) displacement. There was considerable focus in Indian thought on measurement of
motion and units of length and time.  It was known that the position of a particle in space can be
indicated by distance measured along three axes.  Bhaskara (1150 A.D.) had introduced the concept
of ‘instantaneous motion’ (tatkaliki gati), which anticipated the modern notion of instantaneous
velocity using Differential Calculus. The difference between a wave and a current (of water) was clearly
understood; a current is a motion of particles of water under gravity and fluidity while a wave results
from the transmission of vibrations of water particles.

accomplished almost single-handedly by Isaac
Newton, one of the greatest scientists of all times.

Newton built on Galileo’s ideas and laid the
foundation of mechanics in terms of three laws
of  motion that go by his name.  Galileo’s law of
inertia was his starting point which he
formulated as the first law of motion:

Every body continues to be in its state
of rest or of uniform motion in a straight
line unless compelled by some external
force to act otherwise.

The state of rest or uniform linear motion both
imply zero acceleration. The first law of motion  can,
therefore, be simply expressed as:
If the net external force on a body is zero, its
acceleration is zero.  Acceleration can be non
zero only if there is a net external force on
the body.

Two kinds of situations are encountered in the
application of this law in practice. In some
examples, we know that the net external force
on the object is zero. In that case we can
conclude that the acceleration of the object is
zero.  For example, a spaceship out in
interstellar space, far from all other objects and
with all its rockets turned off, has no net
external force acting on it.  Its acceleration,
according to the first law, must be zero.  If it is
in motion, it must continue to move with a
uniform velocity.
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More often, however, we do not know all the
forces to begin with.  In that case, if we know
that an object is unaccelerated (i.e. it is either
at rest or in uniform linear motion), we can infer
from the first law that the net external force on
the object must be zero. Gravity is everywhere.
For terrestrial phenomena, in particular, every
object experiences gravitational force due to the
earth.  Also objects in motion generally experience
friction, viscous drag, etc. If then, on earth, an
object is at rest or in uniform linear motion, it is
not because there are no forces acting on it, but
because the various external forces cancel out
i.e. add up to zero net external force.

Consider a book at rest on a horizontal surface
Fig. (5.2(a)).  It is subject to two external forces :
the force due to gravity (i.e. its weight W) acting
downward and the upward force on the book by
the table, the normal force R . R is a self-adjusting
force. This is an example of the kind of situation
mentioned above. The forces are not quite known
fully but the state of motion is known. We observe
the book to be at rest.  Therefore, we conclude
from the first law that the magnitude of R equals
that of W. A statement often encountered is :
“Since W = R, forces cancel and, therefore, the book
is at rest”. This is incorrect reasoning. The correct
statement is : “Since the book is observed to be at
rest, the net external force on it must be zero,
according to the first law. This implies that the

Galileo Galilei, born in Pisa, Italy in 1564 was a key figure in the scientific revolution
in Europe about four centuries ago.  Galileo proposed the concept of acceleration.
From experiments on motion of bodies on inclined planes or falling freely, he
contradicted the Aristotelian notion that a force was required to keep a body in
motion, and that heavier bodies fall faster than lighter bodies under gravity.  He
thus arrived at the law of inertia that was the starting point of the subsequent
epochal work of Isaac Newton.

Galileo’s discoveries in astronomy were equally revolutionary.  In 1609, he designed
his own telescope (invented earlier in Holland) and used it to make a number of
startling  observations :  mountains  and depressions on  the  surface of the moon;
dark spots on the sun; the moons of Jupiter and the phases of Venus.  He concluded
that the Milky Way derived its luminosity because of a large number of stars not visible to the naked eye.
In his masterpiece of scientific reasoning : Dialogue on the Two Chief World Systems, Galileo advocated
the heliocentric theory of the solar system proposed by Copernicus, which eventually got universal
acceptance.

With Galileo came a turning point in the very method of scientific inquiry. Science was no longer
merely observations of nature and inferences from them. Science meant devising and doing experiments
to verify or refute theories. Science meant measurement of quantities and a search for mathematical
relations between them. Not undeservedly, many regard Galileo as the father of modern science.

normal force R  must be equal and opposite to the
weight W ”.

Fig. 5.2 (a) a book at rest on the table, and (b) a car
moving with uniform velocity. The net force
is zero in each case.

Consider the motion of a car starting from
rest, picking up speed and then moving on a
smooth straight road with uniform speed (Fig.
(5.2(b)).  When the car is stationary, there is no
net force acting on it. During pick-up, it
accelerates. This must happen due to a net
external force. Note, it has to be an external force.
The acceleration of the car cannot be accounted
for by any internal force.  This might sound
surprising, but it is true.  The only conceivable
external force along the road is the force of
friction.  It is the frictional force that accelerates
the car as a whole.  (You will learn about friction
in section 5.9).  When the car moves with
constant velocity, there is no net external force.

Galileo Galilei (1564 - 1642)
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It relates the net external force to the
acceleration of the body.

Momentum
Momentum of a body is defined to be the product
of its mass m and velocity v, and is denoted
by p:

p = m v             (5.1)

Momentum is clearly a vector quantity.  The
following common experiences indicate the
importance of this quantity for considering the
effect of force on motion.
• Suppose a light-weight vehicle (say a small

car) and a heavy weight vehicle (say a loaded
truck) are parked on a horizontal road. We all
know that a much greater force is needed to
push the truck than the car to bring them to
the same speed in same time.  Similarly, a
greater opposing force is needed to stop a
heavy body than a light body in the same time,
if they are moving with the same speed.

• If two stones, one light and the other heavy,
are dropped from the top of a building, a
person on the ground will find it easier to catch
the light stone than the heavy stone.  The
mass of a body is thus an important
parameter that determines the effect of force
on its motion.

• Speed is another important parameter to
consider. A bullet fired by a gun can easily
pierce human tissue before it stops, resulting
in casualty.  The same bullet fired with
moderate speed will not cause much damage.
Thus for a given mass, the greater the speed,
the greater is the opposing force needed to stop
the body in a certain time.  Taken together,
the product of mass and velocity, that is
momentum, is evidently a relevant variable
of motion. The greater the change in the
momentum in a given time, the greater is the
force that needs to be applied.

• A seasoned cricketer catches a cricket ball
coming in with great speed far more easily
than a novice, who can hurt his hands in the
act.  One reason is that the cricketer allows a
longer time for his hands to stop the ball.  As
you may have noticed, he draws in the hands
backward in the act of catching the ball (Fig.
5.3).  The novice, on the other hand, keeps
his hands fixed and tries to catch the ball
almost instantly. He needs to provide a much
greater force to stop the ball instantly, and

The property of inertia contained in the First
law is evident in many situations.  Suppose we
are standing in a stationary  bus and the driver
starts the bus suddenly. We get thrown
backward with a jerk. Why ? Our feet are in touch
with the floor. If there were no friction, we would
remain where we were, while the floor of the bus
would simply slip forward under our feet and the
back of the bus would hit us.  However,
fortunately, there is some friction between the
feet and the floor.  If the start is not too sudden,
i.e. if the acceleration is moderate, the frictional
force would be enough to accelerate our feet
along with the bus.  But our body is not strictly
a rigid body. It is deformable, i.e. it allows some
relative displacement between different parts.
What this means is that while our feet go with
the bus, the rest of the body remains where it is
due to inertia.  Relative to the bus, therefore, we
are thrown backward.  As soon as that happens,
however, the muscular forces on the rest of the
body (by the feet) come into play to move the body
along with the bus. A similar thing happens
when the bus suddenly stops.  Our feet stop due
to the friction which does not allow relative
motion between the feet and the floor of the bus.
But the rest of the body continues to move
forward due to inertia.  We are thrown forward.
The restoring muscular forces again come into
play and bring the body to rest.

Example 5.1  An astronaut accidentally
gets separated out of his small spaceship
accelerating in inter stellar space at a
constant rate of 100 m s-2.  What is the
acceleration of the astronaut the instant after
he is outside the spaceship ? (Assume that
there are no nearby stars to exert
gravitational force on him.)

Answer  Since there are no nearby stars to exert
gravitational force on him and the small
spaceship exerts negligible gravitational
attraction on him, the net force acting on the
astronaut, once he is out of the spaceship, is
zero. By the first law of motion the acceleration
of the astronaut is zero.

5.5  NEWTON’S SECOND LAW OF MOTION
The first law refers to the simple case when the
net external force on a body is zero.  The second
law of motion refers to the general situation when
there is a net external force acting on the body.
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this hurts. The conclusion is clear: force not
only depends on the change in momentum,
but also on how fast the change is brought
about.  The same change in momentum
brought about in a shorter time needs a
greater applied force. In short, the greater the
rate of change of momentum, the greater is
the force.

Fig. 5.3 Force not only depends on the change in
momentum but also on how fast the change
is brought about. A seasoned cricketer draws
in his hands during a catch, allowing greater
time for the ball to stop and hence requires a
smaller force.

• Observations confirm that the product of
mass and velocity (i.e. momentum) is basic to
the effect of force on motion.  Suppose a fixed
force is applied for a certain interval of time
on two bodies of different masses, initially at
rest,  the lighter body picks up a greater speed
than the heavier body.  However, at the end of
the time interval, observations show that each
body acquires the same momentum.  Thus
the same force for the same time causes
the same change in momentum for
different bodies.  This is a crucial clue to the
second law of motion.

• In the preceding observations, the vector
character of momentum has not been evident.
In the examples so far, momentum and change
in momentum both have the same direction.
But this is not always the case.  Suppose a
stone is rotated with uniform speed in a
horizontal plane by means of a string, the
magnitude of momentum is fixed, but its
direction changes (Fig. 5.4). A force is needed
to cause this change in momentum vector.

This force is provided by our hand through
the string.  Experience suggests that our hand
needs to exert a greater force if the stone is
rotated at greater speed or in a circle of
smaller radius, or both. This corresponds to
greater acceleration or equivalently a greater
rate of change in momentum vector. This
suggests that the greater the rate of change
in momentum vector the greater is the force
applied.

Fig. 5.4 Force is necessary  for changing the direction
of momentum, even if its magnitude is
constant. We can feel this while rotating a
stone in a horizontal circle with uniform speed
by means of a string.

These qualitative observations lead to the
second law of motion expressed by Newton as
follows :

The rate of change of momentum of a body is
directly proportional to the applied force and
takes place in the direction in which the force
acts.

Thus, if under the action of a force F for time
interval t, the velocity of a body of mass m
changes from v to v + v i.e. its initial momentum

p = m v changes by m   p v . According to the
Second Law,

            or     k
t t

 
 

 
p p

F F

where k  is a constant of proportionality.  Taking

the limit t  0,  the term 
t

p
 becomes the

derivative or differential co-efficient of p with

respect to t, denoted by d
dt

p .  Thus
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For a body of fixed mass m,

     d d d
d d d

m m m 
t t t

   
p v

v a      (5.3)

i.e the Second Law can also be written as
             F  =   k m a         (5.4)

which shows that force is proportional to the
product of mass m and acceleration a.

The unit of force has not been defined so far.
In fact, we use Eq. (5.4) to define the unit of force.
We, therefore, have the liberty to choose any
constant value for k.  For simplicity, we choose
k = 1. The second law then is

a
p

F  m
t

    
d

d
   (5.5)

In SI unit force is one that causes an acceleration
of 1 m s-2 to a mass of 1 kg. This unit is known as
newton : 1 N = 1 kg m s-2.

Let us note at this stage some important points
about the second law :

1. In the second law, F = 0 implies a = 0. The
second law is obviously  consistent with the
first law.

2. The second law of motion is a vector law. It is
equivalent to three equations, one for each
component of the vectors :
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d
d

                                  (5.6)

This means that if a force is not parallel to
the velocity of the body, but makes some angle
with it, it changes only the component of
velocity along the direction of force. The
component of velocity normal to the force
remains unchanged. For example, in the
motion of a projectile under the vertical
gravitational force, the horizontal component
of velocity remains unchanged (Fig. 5.5).

3. The second law of motion given by Eq. (5.5) is
applicable to a single point particle. The force
F in the law stands for the net external force

on the particle and a stands for acceleration
of the particle. It turns out, however, that the
law in the same form applies to a rigid body or,
even more generally, to a system of particles.
In that case, F refers to the total external force
on the system and a refers to the acceleration
of the system as a whole.  More precisely, a is
the acceleration of the centre of mass of the
system about which we shall study in detail in
chapter 7. Any internal forces in the system
are not to be included in F.

Fig. 5.5 Acceleration at an instant is determined by
the force at that instant. The moment after a
stone is dropped out of an accelerated train,
it has no horizontal acceleration or force, if
air resistance is neglected. The stone carries
no memory of its acceleration with the train
a moment ago.

4. The second law of motion is a local relation
which means that force F at a point in space
(location of the particle) at a certain instant
of time is related to a at that point at that
instant. Acceleration here and now is
determined by the force here and now, not by
any history of the motion of the particle
(See Fig. 5.5).

Example 5.2  A bullet of mass 0.04 kg
moving with a speed of 90 m s-1 enters a
heavy wooden block and is stopped after a
distance of 60 cm. What is the average
resistive force exerted by the block on  the
bullet?

Answer  The retardation ‘a’ of the bullet
(assumed constant) is given by

2–
2
u

a
s

 = 2 2– 90 90
m s – 6750 m s

2 0.6
   

 
 











 

  

 







LAWS OF MOTION 101

always occur in pairs. Further, the mutual forces
between two bodies are always equal and
opposite.  This idea was expressed by Newton in
the form of the third law of motion.

To every action, there is always an equal and
opposite reaction.

Newton’s wording of the third law is so crisp and
beautiful that it has become a part of common
language. For the same reason perhaps,
misconceptions about the third law abound.  Let
us note some important points about the third
law, particularly in regard to the usage of the
terms : action and reaction.
1. The terms action and reaction in the third law

mean nothing else but ‘force’. Using different
terms for the same physical concept
can sometimes be confusing. A simple
and clear way of stating the third law is as
follows :

Forces always occur in pairs.  Force on a
body A by B is equal and opposite to the
force on the body B by A.

2. The terms action and reaction in the third law
may give a wrong impression that action

comes before reaction i.e action is the cause
and reaction the effect. There is no cause-
effect relation implied in the third law.  The
force on A by B and the force on B by A act
at the same instant.  By the same reasoning,
any one of them may be called action and the
other reaction.

3. Action and reaction forces act on different
bodies, not on the same body. Consider a pair
of bodies A and B.  According to the third law,

F
AB

  =  – F
BA  

(5.8)

(force on A by B)  =  – (force on B by A)

Thus if we are considering the motion of any
one body (A or B), only one of the two forces is
relevant.  It is an error to add up the two forces
and claim that the net force is zero.

However, if you are considering the system
of two bodies as a whole, F

AB
 and F

BA
 are

internal forces of the system (A + B). They add
up to give a null force. Internal forces in a
body or a system of particles thus cancel away
in pairs.  This is an important fact that
enables the second law to be applicable to a
body or a system of particles (See Chapter 7).

Isaac Newton (1642 – 1727)

Isaac Newton was born in Woolsthorpe, England in 1642, the year Galileo died.
His extraordinary mathematical ability and mechanical aptitude remained hidden
from others in his school life.   In 1662, he went to Cambridge for undergraduate
studies.  A plague epidemic in 1665 forced the university town to close and Newton
had to return to his mother’s farm. There in two years of solitude, his dormant
creativity blossomed in a deluge of fundamental discoveries in mathematics and
physics : binomial theorem for negative and fractional exponents, the beginning of
calculus, the inverse square law of gravitation, the spectrum of white light, and so
on. Returning to Cambridge, he pursued his investigations in optics and devised a
reflecting telescope.

In 1684, encouraged by his friend Edmund Halley, Newton embarked on writing what was to be one of
the greatest scientific works ever published : The Principia Mathematica.  In it, he enunciated the three
laws of motion and the universal law of gravitation, which explained all the three Kepler’s laws of
planetary motion.  The book was packed with a host of path-breaking achievements : basic principles of
fluid mechanics, mathematics of wave motion, calculation of masses of the earth, the sun and other
planets, explanation of the precession of equinoxes, theory of tides, etc. In 1704, Newton brought out
another masterpiece Optics that summarized his work on light and colour.

The scientific revolution triggered by Copernicus and steered vigorously ahead by Kepler and Galileo
was brought to a grand completion by Newton. Newtonian mechanics unified terrestrial and celestial
phenomena. The same mathematical equation governed the fall of an apple to the ground and the
motion of the moon around the earth.  The age of reason had dawned.
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Example 5.5  Two identical billiard balls
strike a rigid wall with the same speed but
at different angles, and get reflected without
any change in speed,  as shown in Fig. 5.6.
What is (i) the direction of the force on the
wall due to each ball? (ii) the ratio of the
magnitudes of impulses imparted to the
balls by the wall ?

       Fig. 5.6

Answer  An instinctive answer to (i) might be
that the force on the wall in case (a) is normal to
the wall, while that in case (b) is inclined at 30°
to the normal. This answer is wrong.  The force
on the wall is normal to the wall in both cases.

How to find the force on the wall? The trick is
to consider the force (or impulse) on  the ball
due to  the wall using the second law, and then
use the third law to answer (i). Let u be the speed
of each ball before and after collision with the
wall, and m the mass of each ball. Choose the x
and y axes as shown in the figure, and consider
the change in momentum of the ball in each
case :

Case (a)

    initial initial 0x yp mu          p  

    finalfinal
0x yp mu          p   

Impulse is the change in momentum vector.
Therefore,

x-component of impulse  =  – 2 m u
y-component of impulse  =   0

Impulse and force are in the same direction.
Clearly, from above, the force on the ball due to
the wall is normal to the wall, along the negative
x-direction.  Using Newton’s third law of motion,
the force on the wall due to the ball is normal to
the wall along the positive x-direction. The

magnitude of force cannot be ascertained since
the small time taken for the collision has not
been specified in the problem.

Case (b)

   cos 30initialxp m u   ,      sin 30initialyp m u   

   – cos 30finalxp m u   ,     sin 30finalyp m u   

Note,  while p
x
 changes sign  after collision,  p

y

does not.  Therefore,

x-component of impulse = –2 m u  cos  30°
y-component of impulse = 0

The direction of impulse (and force) is the same
as in (a) and is normal to the wall along the
negative x direction.  As before, using Newton’s
third law, the force on the wall due to the ball is
normal to the wall along the positive x direction.

The ratio of the magnitudes  of the impulses
imparted to the balls in (a) and (b) is

  2
2 / 2 cos30 1.2

3
m u m u    

5.7  CONSERVATION OF MOMENTUM

The second and third laws of motion lead to
an important consequence: the law of
conservation of momentum.  Take a familiar
example. A bullet is fired  from a gun. If the force
on the bullet by the gun is F, the force on the gun
by the bullet is – F, according to the third law.
The two forces act for a common interval of time
t.  According to the second law, F t is the
change in momentum of the bullet and – F t is
the change in momentum of the gun. Since
initially, both are at rest, the change in
momentum equals the final momentum for each.
Thus if p

b
 is the momentum of the bullet after

firing and p
g is the recoil momentum of the gun,

p
g
 = – p

b
  i.e. p

b
 + p

g
 = 0.  That is, the total

momentum of the (bullet + gun) system is
conserved.

Thus in an isolated system (i.e. a system with
no external force), mutual forces between pairs
of particles in the system can cause momentum
change in individual particles, but since the
mutual forces for each pair are equal and
opposite, the momentum changes cancel in pairs
and the total momentum remains unchanged.
This fact is known as the law of conservation
of momentum :
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The total momentum of an isolated system
of interacting particles is conserved.

An important example of the application of the
law of conservation of momentum is the collision
of two bodies. Consider two bodies A and B, with
initial momenta p

A
 and p

B
. The bodies collide,

get apart, with final momenta pA and pB
respectively. By the Second Law

F p pAB A At   
 
and

F p pBA B Bt   

(where we have taken a common interval of time
for both forces i.e. the time for which the two
bodies are in contact.)

Since F FAB BA   by the third law,

      p p p pA A B B

i.e.     p p p pA B A B   (5.9)

which shows that the total final momentum of
the isolated system equals its initial momentum.
Notice that this is true whether the collision is
elastic or inelastic. In elastic collisions, there is
a second condition that the total initial kinetic
energy of the system equals the total final kinetic
energy (See Chapter 6).

5.8  EQUILIBRIUM OF A PARTICLE

Equilibrium of a particle in mechanics refers to
the situation when the net external force on the
particle is zero.*  According to the first law, this
means that, the particle is either at rest or in
uniform motion.

If two forces F1 and F2, act on a particle,
equilibrium requires

F1  =  F2 (5.10)

i.e. the two forces on the particle  must be equal
and opposite. Equilibrium under three
concurrent forces F1, F2  and F3 requires that
the vector sum of the three forces is zero.

F1  + F2  + F3  =  0 (5.11)

* Equilibrium of a body requires not only translational equilibrium (zero net external force) but also rotational
equilibrium (zero net external torque), as we shall see in Chapter 7.

Fig. 5.7  Equilibrium under concurrent forces.

In other words, the resultant of any two forces
say F1 and F2, obtained by the parallelogram
law of forces must be equal and opposite to the
third force, F3.  As seen in Fig. 5.7, the three
forces in equilibrium can be represented by the
sides of a triangle with the vector arrows taken
in the same sense. The result can be
generalised to any number of forces. A particle
is in equilibrium under the action of forces F1,
F2,... Fn if they can be represented by the sides
of a closed n-sided polygon with arrows directed
in the same sense.

Equation (5.11) implies that

F
1x 

+ F
2x 

+ F
3x

 = 0

F
1y

 + F
2y

 + F
3y

 = 0

F
1z

 + F
2z

 + F
3z

 = 0       (5.12)

where F1x, F1y and F1z are the components of F1

along x, y and z directions respectively.

Example 5.6   See Fig. 5.8 A mass of 6 kg
is suspended by a  rope  of  length 2 m
from the ceiling.  A force of 50 N in the
horizontal direction is  applied  at  the mid-
point P of the rope, as shown. What is the
angle the rope makes with the vertical in
equilibrium ?  (Take g = 10 m s-2). Neglect
the mass of the rope.

(a) (b) (c)
Fig. 5.8
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Answer  Figures 5.8(b) and 5.8(c) are known as
free-body diagrams. Figure 5.8(b) is the free-body
diagram of W and Fig. 5.8(c) is the free-body
diagram of point P.

Consider the equilibrium of the weight W.
Clearly,T2 = 6 × 10 = 60 N.

Consider the equilibrium of the point P under
the action of three forces - the tensions T1 and
T2, and the horizontal force 50 N.  The horizontal
and vertical components of the resultant force
must vanish separately :

T1 cos   =  T2  =  60 N

T1  sin  =  50  N
which gives that

15 5
tan    or  tan 40

6 6
          

θ θ

Note the answer does not depend on the length
of the rope  (assumed massless) nor on the point
at which the horizontal force is applied. 

5.9  COMMON FORCES IN MECHANICS

In mechanics, we encounter several kinds of
forces. The gravitational force is, of course,
pervasive.  Every object on the earth experiences
the force of gravity due to the earth. Gravity also
governs the motion of celestial bodies.  The
gravitational force can act at a distance without
the need of any intervening medium.

All the other forces common in mechanics are
contact forces.* As the name suggests, a contact
force on an object arises due to contact with some
other object: solid or fluid. When bodies are in
contact (e.g.  a book resting on a table, a system
of rigid bodies connected by rods, hinges and

other types of supports), there are mutual
contact forces (for each pair of bodies) satisfying
the third law.  The component of contact force
normal to the surfaces in contact is called
normal reaction.  The component parallel to the
surfaces in contact is called friction.  Contact
forces arise also when solids are in contact with
fluids.  For example, for a solid immersed in a
fluid, there is an upward bouyant force equal to
the weight of the fluid displaced. The viscous
force, air resistance, etc are also examples of
contact forces (Fig. 5.9).

Two other common forces are tension in a
string and the force due to spring. When a spring
is compressed or extended by an external force,
a restoring force is generated. This force is
usually proportional to the compression or
elongation (for small displacements). The spring
force F is written as F = – k x where x is the
displacement and k is the force constant. The
negative sign denotes that the force is opposite
to the displacement from the unstretched state.
For an inextensible string, the force constant is
very high. The restoring force in a string is called
tension. It is customary to use a constant tension
T throughout the string. This assumption is true
for a string of negligible mass.

In Chapter 1, we learnt that there are four
fundamental forces in nature.  Of these, the weak
and strong forces appear in domains that do not
concern us here. Only the gravitational and
electrical forces are relevant in the context of
mechanics. The different contact forces of
mechanics mentioned above fundamentally arise
from electrical forces.  This may seem surprising

* We are not considering,  for simplicity, charged and magnetic bodies. For these, besides gravity, there are
electrical and magnetic non-contact forces.

Fig. 5.9  Some examples of contact forces in mechanics.
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since we are talking of uncharged and non-
magnetic bodies in mechanics. At the microscopic
level, all bodies are made of charged constituents
(nuclei and electrons) and the various contact
forces arising due to elasticity of bodies, molecular
collisions and impacts, etc. can ultimately be
traced to the electrical forces between the charged
constituents of different bodies. The detailed
microscopic origin of these forces is, however,
complex and not useful for handling problems in
mechanics at the macroscopic scale.  This is why
they are treated as different types of forces with
their characteristic properties determined
empirically.

5.9.1  Friction

Let us return to the example of a body of mass m
at rest on a horizontal table. The force of gravity
(mg)  is cancelled by the normal reaction force
(N) of the table. Now suppose a force F is applied
horizontally to the body.  We know from
experience that a small  applied force may not
be enough to move the body.  But if the applied
force F were the only external force on the body,
it must move with acceleration F/m, however
small. Clearly, the body remains at rest because
some other force comes into play in the
horizontal direction and opposes the applied
force F, resulting in zero net force on the body.
This force f

s
 parallel to the surface of the body in

contact with the table is known as frictional
force, or simply friction (Fig. 5.10(a)).  The
subscript stands for static friction to distinguish
it from kinetic friction f

k
 that we consider later

(Fig. 5.10(b)).  Note that  static friction does not

Fig. 5.10 Static and sliding friction: (a)  Impending
motion of the body is opposed by static
friction. When external force exceeds the
maximum limit of static friction, the body
begins to move.  (b) Once the body is in
motion, it is subject to sliding or kinetic friction
which opposes relative motion between the
two surfaces in contact. Kinetic friction is
usually less than the maximum value of static
friction.

exist by itself.  When there is no applied force,
there is no static friction. It comes into play the
moment there is an applied force. As the applied
force F increases, f

s
 also increases, remaining

equal and opposite to the applied force (up to a
certain limit), keeping the body at rest. Hence, it
is called static friction.  Static friction opposes
impending motion. The term impending motion
means motion that would take place (but does
not actually take place) under the applied force,
if friction were absent.

We know from experience that as the applied
force exceeds a certain limit, the body begins to
move.  It is found experimentally that the limiting

value of static friction   
maxsf  is independent of

the area of contact and varies with the normal
force(N)  approximately as :

  
maxs sf N  (5.13)

where 
s is a constant of proportionality

depending only on the nature of the surfaces in
contact. The constant 

s  is called the coefficient
of static friction.  The law of static friction may
thus be written as

f
s
    

s  N (5.14)

If the applied force F exceeds   
maxsf  the body

begins to slide on the surface. It is found
experimentally that when relative motion has
started, the frictional force decreases from the

static maximum value   
maxsf . Frictional force

that opposes relative motion between surfaces
in contact is called kinetic or sliding friction and
is denoted by fk 

.  Kinetic friction, like static
friction, is found to be independent of the area
of contact.  Further, it is nearly independent of
the velocity. It satisfies a law similar to that for
static friction:

k k f N (5.15)

where k the coefficient of kinetic friction,
depends only on the surfaces in contact. As
mentioned above, experiments show that k is
less than s . When relative motion has begun,
the acceleration of the body according to the
second law is ( F – fk )/m.  For a body moving with
constant velocity, F = fk. If the applied force on
the body is removed, its acceleration is – fk /m
and it eventually comes to a stop.

The laws of friction given above do not have
the status of fundamental laws like those for
gravitational, electric and magnetic forces. They
are empirical relations that are only
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approximately true.  Yet they are very useful in
practical calculations in mechanics.

Thus, when two bodies are in contact, each
experiences a contact force by the other. Friction,
by definition, is the component of the contact force
parallel to the surfaces in contact, which opposes
impending or actual relative motion between the
two surfaces. Note that it is not motion, but
relative motion that the frictional force opposes.
Consider a box lying in the compartment of a train
that is accelerating.  If the box is stationary
relative to the train, it is in fact accelerating along
with the train. What forces cause the acceleration
of the box?  Clearly, the only conceivable force in
the horizontal direction is the force of friction. If
there were no friction, the floor of the train would
slip by and the box would remain at its initial
position due to inertia (and hit the back side of
the train). This impending relative motion is
opposed by the static friction f

s
. Static friction

provides the same acceleration to the box as that
of the train, keeping it stationary relative to the
train.

Example 5.7 Determine the maximum
acceleration of the train in which a box
lying on its floor will remain stationary,
given that the co-efficient of static friction
between the box and the train’s floor is
0.15.

Answer  Since the acceleration of the box is due
to the static friction,

ma  =  f
s
  

s
 N  =  

s
  m g

i.e.   a   
s
 g

 a
max

 =  
s 
g  = 0.15  x 10 m s–2

= 1.5  m s–2  

Example 5.8  See Fig. 5.11. A mass of 4 kg
rests on a horizontal plane. The plane is
gradually inclined until at an angle   =  15°
with the horizontal, the mass just begins to
slide. What is the coefficient of static friction
between the block and the surface ?

Fig. 5.11

Answer  The forces acting on a block of mass m
at rest on an inclined plane are (i) the weight
mg acting vertically downwards (ii) the normal
force N of the plane on the block, and (iii) the
static frictional force f

s
 opposing the impending

motion. In equilibrium, the resultant of these
forces must be zero.  Resolving the weight mg
along the two directions shown, we have

m g sin =  f
s
   ,     m g  cos   =  N

As   increases, the self-adjusting frictional force
f
s
 increases until at = 

max
,  f

s
 achieves its

maximum value,   
maxsf = 

s
 N.

Therefore,

tan 
max

  =  
s
  or  

max
  =  tan–1  

s

When   becomes just a little more than  
max

 ,
there is a small net force on the block and it
begins to slide.  Note that  

max
 depends only on


s
 and is  independent of the mass of the block.

For 
max

   =  15°,


s
      =  tan 15°

 =  0.27 

Example 5.9  What is the acceleration of
the block  and  trolley system shown in a
Fig. 5.12(a), if the coefficient of kinetic friction
between the trolley and the surface is 0.04?
What is the tension in the string? (Take
g = 10 m s-2).  Neglect the mass of the string.

(a)

(b) (c)

Fig. 5.12
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is the reason why discovery of the wheel has
been a major milestone in human history.

Rolling friction again has a complex origin,
though somewhat different from that of static
and sliding friction. During rolling, the surfaces
in contact get momentarily deformed a little, and
this results in a finite area (not a point) of the
body being in contact with the surface.  The net
effect is that the component of the contact force
parallel to the surface opposes motion.

We often regard friction as something
undesirable. In many situations, like in a
machine with different moving parts, friction
does have a negative role. It opposes relative
motion and thereby dissipates power in the form
of heat, etc. Lubricants are a way of reducing
kinetic friction in a machine. Another way is to
use ball bearings between two moving parts of a
machine [Fig. 5.13(a)]. Since the rolling friction
between ball bearings and the surfaces in
contact is very small, power dissipation is
reduced. A thin cushion of air maintained
between solid surfaces in relative motion is
another effective way of reducing friction (Fig.
5.13(a)).

In many practical situations, however, friction
is critically needed. Kinetic friction that
dissipates power is nevertheless important for
quickly stopping relative motion. It is made use
of by brakes in machines and automobiles.
Similarly, static friction is important in daily
life.  We are able to walk because of friction.  It
is impossible for a car to move on a very slippery
road. On an ordinary road, the friction between
the tyres and the road provides the necessary
external force to accelerate the car.

Answer  As the string is inextensible, and the
pully is smooth, the 3 kg block and the 20 kg
trolley both have same magnitude of
acceleration.  Applying second law to motion of
the block (Fig. 5.12(b)),

30 – T  = 3a
Apply the second law to motion of the trolley (Fig.
5.12(c)),

T – fk  =  20 a.
Now      f

k
= 

k
 N,

Here 
k

= 0.04,
     N   =  20 x 10

= 200 N.
Thus the equation for the motion of the trolley is

T – 0.04 x 200 = 20 a Or  T – 8 = 20a.

These equations give a = 22

23
 m s –2 = 0.96 m s-2

and T  = 27.1 N.                                                 

Rolling friction

A body like a ring or a sphere rolling without
slipping over a horizontal plane will suffer no
friction, in principle. At every instant, there is
just one point of contact between the body and
the plane and this point has no motion relative
to the plane. In this ideal situation, kinetic or
static friction is zero and the body should
continue to roll with constant velocity.  We know,
in practice, this will not happen and some
resistance to motion (rolling friction) does occur,
i.e. to keep the body rolling, some applied force
is needed. For the same weight, rolling friction
is much smaller (even by 2 or 3 orders of
magnitude) than static or sliding friction.  This

Fig. 5.13 Some ways of reducing friction. (a) Ball bearings placed between moving parts of a machine.
(b) Compressed cushion of air between surfaces in relative motion.
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5.10  CIRCULAR MOTION

We have seen in Chapter 4 that acceleration of
a body moving in a circle of radius R  with uniform
speed v is v2/R directed towards the centre.
According to the second law, the force f

c
 providing

this acceleration is :

              
2

c

mv
f =

R
(5.16)

where m is the mass of the body.  This force
directed forwards the centre is called the
centripetal force. For a stone rotated in a circle
by a string, the centripetal force is provided by
the tension in the string.  The centripetal force
for motion of a planet around the sun is the

is the static friction that provides the centripetal
acceleration. Static friction opposes the
impending motion of the car moving away from
the circle. Using equation (5.14) & (5.16) we get
the result

2

s

mv
f N

R
 

2 s
s

RN
v Rg

m


  [N = mg]

which is independent of the mass of the car.
This shows that for a given value of s and R,
there is a maximum speed of circular motion of
the car possible, namely

max sv Rg

(a) (b)

Fig. 5.14  Circular motion of a car on (a) a level road, (b) a banked road.

gravitational force on the planet due to the sun.
For a car taking a circular turn on a horizontal
road, the centripetal force is the force of friction.

The circular motion of a car on a flat and
banked road give interesting application of the
laws of motion.

Motion of a car on a level road

Three forces act on the car (Fig. 5.14(a):
(i) The weight of the car, mg
(ii) Normal reaction, N
(iii) Frictional force, f
As there is no acceleration in the vertical
direction
N – mg = 0
N = mg (5.17)
The centripetal force required for circular motion
is along the surface of the road, and is provided
by the component of the contact force between
road and the car tyres along the surface. This
by definition is the frictional force. Note that it

(5.18)
Motion of a car on a banked road

We can reduce the contribution of friction to the
circular motion of the car if the road is banked
(Fig. 5.14(b)). Since there is no acceleration along
the vertical direction, the net force along this
direction must be zero. Hence,

N cos   = mg + f sin          (5.19a)

The centripetal force is provided by the horizontal
components of N and f.

N sin   + f cos   = 
2mv

R
 (5.19b)

But f sN

Thus to obtain vmax  we put

sf N .

Then Eqs. (5.19a) and (5.19b) become

N cos   = mg + sN  sin                  (5.20a)
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N sin   + sN cos   = mv2/R                 (5.20b)

From Eq. (5.20a), we obtain

– s

mg
N

cos sin  


Substituting value of N in Eq. (5.20b), we get

  2
max

–
s

s

mg sin cos mv

cos sin R

 
 

   
   

or 

1
2

max 1 –
s

s

tan
v Rg

tan

 
 

 
  
 

(5.21)

Comparing this with Eq. (5.18) we see that
maximum possible speed of a car on a banked
road is greater than that on a flat road.

For s=  0  in  Eq. (5.21 ),
vo  

=
  
( R g  tan ) ½       (5.22)

At this speed, frictional force is not needed at all
to provide the necessary centripetal force.
Driving at this speed on a banked road will cause
little wear and tear of the tyres. The same
equation also tells you that for v < v

o
, frictional

force will be up the slope and that a car can be
parked only if tan  

s
.

Example  5.10  A cyclist speeding at 18
km/h on a level road takes a sharp circular
turn of radius 3 m without reducing the
speed.  The co-efficient of static friction
between the tyres and the road is 0.1.  Will
the cyclist slip while taking the turn ?

Answer   On an unbanked road, frictional force
alone can provide the centripetal force needed
to keep the cyclist moving on a circular turn
without  slipping. If the speed is too large, or if
the turn is too sharp (i.e. of too small a radius)
or both, the frictional force is not sufficient to
provide the necessary centripetal force, and the
cyclist slips. The condition for the cyclist not to
slip is given by Eq. (5.18) :

v2  s R g

Now, R = 3 m,  g = 9.8 m s-2,  
s
 = 0.1.  That is,


s
 R g = 2.94 m2 s-2. v = 18  km/h = 5  m s-1; i.e.,

v2 = 25  m2 s-2.  The condition is not obeyed.
The cyclist will slip while taking the circular
turn. 

Example 5.11 A circular racetrack of
radius 300 m is banked at an angle of 15°.
If the coefficient of friction between the
wheels of a race-car and the road is 0.2,
what is the (a) optimum speed of the race-
car to avoid wear and tear on its tyres, and
(b) maximum permissible speed to avoid
slipping ?

Answer  On a banked road, the horizontal
component of the normal force and the frictional
force contribute to provide centripetal force to
keep the car moving on a circular turn without
slipping.  At the optimum speed, the normal
reaction’s component is enough to provide the
needed centripetal force, and the frictional force
is not needed.  The optimum speed v

o
 is given by

Eq.  (5.22):
v

O
  =  (R g tan )1/2

Here R  =  300 m,  =  15°,  g  =  9.8  m s-2;  we
have

v
O
  =  28.1  m s-1.

The maximum permissible speed v
max

 is given by
Eq. (5.21):

1tan
38.1 m s

1 tan

1/2

s
max

s

v R g     
       

  
  

5.11  SOLVING PROBLEMS IN MECHANICS

The three laws of motion that you have learnt in
this chapter are the foundation of mechanics.
You should now be able to handle a large variety
of problems in mechanics.  A typical problem in
mechanics usually does not merely involve a
single body under the action of given forces.
More often, we will need to consider an assembly
of different bodies exerting forces on each other.
Besides, each body in the assembly experiences
the force of gravity.  When trying to solve a
problem of this type, it is useful to remember
the fact that we can choose any part of the
assembly and apply the laws of motion to that
part provided  we include all forces on the chosen
part due to the  remaining parts of the assembly.
We may call the chosen part of the assembly as
the system and the remaining part of the
assembly (plus any other agencies of forces) as
the environment. We have followed the same
method in solved examples. To handle a typical
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problem in mechanics systematically, one
should use the following steps :
(i) Draw a diagram showing schematically the

various parts of the assembly of bodies, the
links, supports, etc.

(ii) Choose a convenient part of the assembly
as one system.

(iii) Draw a separate diagram which shows this
system and all the forces on the system by
the remaining part of the assembly.  Include
also the forces on the system by other
agencies. Do not include the forces on the
environment by the system.  A diagram of
this type is known as ‘a free-body diagram’.
(Note this does not imply that the system
under consideration is without a net force).

(iv) In a free-body diagram, include information
about forces (their magnitudes and
directions) that are either given or you are
sure of (e.g., the direction of tension in a
string along its length).  The rest should be
treated as unknowns to be determined using
laws of motion.

(v) If necessary, follow the same procedure for
another choice of the system.  In doing so,
employ Newton’s third law.  That is, if in the
free-body diagram of A, the force on A due to
B is shown as F, then in the free-body
diagram of B, the force on B due to A should
be shown as –F.

The following example illustrates the above
procedure :

Example 5.12 See (Fig. 5.15) A wooden
block of mass 2 kg rests on a soft horizontal
floor.  When an iron cylinder of mass 25 kg
is placed on top of the block, the floor yields
steadily and the block and the cylinder
together go down with an acceleration of
0.1 m s–2.  What is the action of the block
on the floor (a) before and (b) after the floor
yields ? Take g = 10 m s–2. Identify the
action-reaction pairs in the problem.

Answer

(a) The block is at rest on the floor. Its free-body
diagram shows two forces on the block, the
force of gravitational attraction by the earth
equal to 2  10 = 20 N; and the normal force
R of the floor on the block. By the First Law,
the net force on the block must be zero i.e.,

R = 20 N.  Using third law the action of the
block (i.e. the force exerted on the floor by
the block) is equal to 20 N and directed
vertically downwards.

(b) The system (block + cylinder) accelerates
downwards with 0.1 m s-2. The free-body
diagram of the system shows two forces on
the system : the force of gravity due to the
earth (270 N); and the normal force R  by the
floor.  Note, the free-body diagram of the
system does not show the internal forces
between the block and the cylinder.  Applying
the second law to the system,

270 – R   =  27 × 0.1N
                 ie. R   =  267.3 N

Fig. 5.15

By the third law, the  action  of the system on
the floor is equal to 267.3 N vertically downward.

Action-reaction pairs

For (a): (i) the force of gravity (20 N) on the block
by the earth (say, action); the force of
gravity on the earth by the block
(reaction) equal to 20 N directed
upwards (not shown in the figure).
(ii) the force on the floor by the block
(action); the force on the block by the
floor (reaction).

For (b): (i) the force of gravity (270 N) on the
system by the earth (say, action); the
force of gravity on the earth by the
system (reaction), equal to 270 N,
directed upwards (not shown in the
figure).
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(ii) the force on the floor by the system
(action); the force on the system by the
floor (reaction).  In addition, for (b), the
force on the block by the cylinder and
the force on the cylinder by the block
also constitute an action-reaction pair.

The important thing to remember is that an
action-reaction pair consists of mutual forces
which are always equal and opposite between
two bodies.  Two forces on the same body which
happen to be equal and opposite can never
constitute an action-reaction pair. The force of
gravity on the mass in (a) or (b) and the normal

force on the mass by the floor are not action-
reaction pairs. These forces happen to be equal
and opposite for (a) since the mass is at rest.
They are not so for case (b), as seen already.
The weight of the system is 270 N, while the
normal force R is 267.3 N. 

The practice of drawing free-body diagrams is
of great help in solving problems in mechanics.
It allows you to clearly define your system and
consider all forces on the system due to objects
that are not part of the system itself.  A number
of exercises in this and subsequent chapters will
help you cultivate this practice.

SUMMARY

1. Aristotle’s view that a force is necessary to keep a body in uniform motion is wrong.
A force is necessary in practice to counter the opposing force of friction.

2. Galileo extrapolated simple observations on motion of bodies on inclined planes, and
arrived at the law of inertia.  Newton’s first law of motion is the same law rephrased
thus: “Everybody continues to be in its state of rest or of uniform motion in a straight line,
unless compelled by some external force to act otherwise”.  In simple terms, the First Law
is “If external force on a body is zero, its acceleration is zero”.

3. Momentum (p ) of a body is the product of its mass (m) and velocity (v) :
p  =  m v

4. Newton’s second law of motion :
The rate of change of momentum of a body is proportional to the applied force and takes
place in the direction in which the force acts.  Thus

d

d
k k m 

t
  

p
F a

where F is the net external force on the body and a its acceleration. We set the constant
of proportionality k = 1 in SI units.  Then

d

d
m

t
  

p
F a

The SI unit of force is newton : 1 N = 1 kg m s-2.
(a) The second law is consistent with the First Law (F = 0 implies a = 0)
(b) It is a vector equation
(c) It is applicable to a particle, and also to a body or a system of particles, provided  F

is the total external force on the system and a  is the acceleration of the system as
a whole.

(d) F at a point at a certain instant determines a at the same point at that instant.
That is the Second Law is a local law; a at an instant does not depend on the history
of motion.

5. Impulse is the product of force and time which equals change in momentum.

The notion of impulse is useful when a large force acts for a short time to produce a
measurable change in momentum. Since the time of action of the force is very short, one
can assume that there is no appreciable change in the position of the body during the
action of the impulsive force.

6. Newton’s third law of motion:
To every action, there is always an equal and opposite reaction
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In simple terms, the law can be stated thus :
Forces in nature always occur between pairs of bodies.  Force on a body A by body
B is equal and opposite to the force on the body B by A.
Action and reaction forces are simultaneous forces.  There is no cause-effect
relation between action and reaction.  Any of the two mutual forces can be
called action and the other reaction.  Action and reaction act on different
bodies and so they cannot be cancelled out.  The internal action and reaction
forces between different parts of a body do, however, sum to zero.

7. Law of Conservation of Momentum
The total momentum of an isolated system of particles is conserved.  The law
follows from the second and third law of motion.

8. Friction
Frictional force opposes (impending or actual) relative motion between two
surfaces in contact.  It is the component of the contact force along the common
tangent to the surface in contact.  Static friction fs opposes impending relative
motion; kinetic friction fk opposes actual relative motion. They are independent
of the area of contact and satisfy the following approximate laws :

  
max

f f Rs s s   

k
f R

k
  

s (co-efficient of static friction) and k (co-efficient of kinetic friction) are
constants characteristic of the pair of surfaces in contact.  It is found
experimentally that k is less than s .

POINTS TO PONDER

1. Force is not always in the direction of motion.  Depending on the situation, F
may be along v, opposite to v, normal to v or may make some other angle with
v.  In every case, it is parallel to acceleration.

2. If v = 0 at an instant, i.e. if a body is momentarily at rest, it does not mean that
force or acceleration are necessarily zero at that instant.  For example, when a
ball thrown upward reaches its maximum height, v = 0 but the force continues
to be its weight mg and the acceleration is not zero but g.

3. Force on a body at a given time is determined by the situation at the location of
the body at that time.  Force is not ‘carried’ by the body from its earlier history
of motion.  The moment after a stone is released out of an accelerated train,
there is no horizontal force (or acceleration) on the stone, if the effects of the
surrounding air are neglected.  The stone then has only the vertical force of
gravity.

4. In the second law of motion F = m a, F stands for the net force due to all
material agencies external to the body.  a is the effect of the force.  ma  should
not be regarded as yet another force, besides F.

J
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5. The centripetal force should not be regarded as yet another kind of force. It is
simply a name given to the force that provides inward radial acceleration to a
body in circular motion. We should always look for some material force like
tension, gravitational force, electrical force, friction, etc as the centripetal force
in any circular motion.

6. Static friction is a self-adjusting force up to its limit 
s
 N (fs s N).  Do not put

fs= s N  without being sure that the maximum value of static friction is coming
into play.

7. The familiar equation mg = R for a body on a table is true only if the body is in
equilibrium.  The two forces mg and R can be different (e.g. a body in an
accelerated lift). The equality of mg and R has no connection with the third
law.

8. The terms ‘action’ and ‘reaction’ in the third Law of Motion simply stand for
simultaneous mutual forces between a pair of bodies. Unlike their meaning in
ordinary language, action does not precede or cause reaction.  Action and reaction
act on different bodies.

9. The different terms like ‘friction’, ‘normal reaction’ ‘tension’, ‘air resistance’,
‘viscous drag’, ‘thrust’, ‘buoyancy’ ‘weight’ ‘centripetal force’ all stand for ‘force’
in different contexts.  For clarity, every force and its equivalent terms
encountered in mechanics should be reduced to the phrase ‘force on A by B’.

10. For applying the second law of motion, there is no conceptual distinction between
inanimate and animate objects.  An animate object such as a human also
requires an external  force to accelerate.  For example, without the external
force of friction, we cannot walk on the ground.

11. The objective concept of force in physics should not be confused with the
subjective concept of the ‘feeling of force’.  On a merry-go-around, all parts of
our body are subject to an  inward force,  but we have a feeling of being pushed
outward – the direction of impending motion.

EXERCISES

Very Short Answer Questions (2 Marks)

1. What is inertia? What gives the measure of inertia?
2. According to Newton’s third law, every force is accompanied by an equal

and opposite force. How can a movement ever take place?
3. When a bullet is fired from a gun, the gun gives a kick in the backward

direction. Explain.
4. Why does a heavy rifle not recoil as strongly as a light rifle using the same

cartridges?
5. If a bomb at rest explodes into two pieces, the pieces must travel in opposite

directions. Explain.
6. Define force. What are the basic forces in nature?
7. Can the coefficient of friction be greater than one?
8. Why does  the car with a flattened tyre stop sooner than the one with

inflated tyres ‘?
9. A horse has to pull harder during the start of the motion than later. Explain.
10. What happens to the coefficient of friction if the weight of the  body is

doubled?

Short Answer Questions (4 Marks)

1. A stone of mass 0.1 kg is thrown vertically upwards. Give the magnitude
and direction of the net force on the stone (a) during its upward motion, (b)
during its downward motion, (c) at the highest point, where it momentarily
comes to rest.
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2. Define the terms momentum and impulse. State and explain the law of
conservation of linear momentum. Give   examples.

3. Why are shock absorbers used in motor cycles and cars?

4. Explain the terms limiting friction, dynamic friction and rolling friction.  .

5. Explain advantages and disadvantages of friction.

6. Mention the methods used to decrease friction.

7. State the laws of rolling friction.

8. Why is pulling the lawn roller preferred to pushing it?

Long Answer Questions (8 Marks)

1) a) State Newton’s second law of motion. Hence derive the equation of motion
    F = ma from it.
b)  A body is moving along a circular path such that its speed always

              remains constant. Should there be a force acting on the body?

2) A block of mass 4 kg is resting on a rough horizontal plane and is about to
move when a horizontal force of 30 N is applied on it. If g = 10 m/s2. Find
the total contact force exerted by the plane on the block.

(Ans:  30 N)

Problems

1. The linear momentum of a particle as a function of time t is given by

p a bt  , where a and b are positive constants. What is the force acting

on the particle ? (Ans: b)
2. Calculate the time needed for a net force of 5 N to change the velocity of a

10 kg mass by 2 m/s.            (Ans: 4s)
3. A ball of mass m is thrown vertically upward from the ground and reaches

a height h before momentarily coming to rest. If g is acceleration due to
gravity. What is  the impulse received by the ball due to gravity force

during its flight ? (neglect air resistance)            (Ans: )

4. A constant force acting on a body of mass 3.0 kg changes its speed from 2.0
m s-1 to 3.5 m s-1 in 25 s. The direction of  motion of the body remains
unchanged. What is the magnitude and direction of the force ?

(Ans: 0.18N, in the direction of  motion of the body)
5. A man in a lift feels an apparent weight W when the lift is moving up with

a uniform acceleration of 1/3rd of the acceleration due to gravity. If the
same man were in the same lift now moving down with a uniform acceleration
that is 1/2 of the acceleration due to gravity, then what is his apparent

weight ?       (Ans: 3W/8)
6. A container of mass 200 kg rests on the back of an open truck. If the truck

accelerates at 1.5m/s2, what is the minimum coefficient of static friction
between the container and the bed of the truck required to prevent the

container from sliding off the back of the truck?             (Ans: 153.0 )

7. A bomb initially at rest at a height of 40 m above the ground suddenly
explodes in to two identical fragments. One of them starts moving vertically
downwards with an initial speed of 10 m/s. If acceleration due to gravity is
10 m/s2,What is the separation between the fragments 2s after the explosion?

(Ans:  40 m)
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5.3 Give  the magnitude and direction of the net force acting on a stone of mass 0.1 kg,
(a) just after it is dropped from the window of a stationary train,
(b) just after it is dropped from the window of a train running at a constant velocity

of 36 km/h,
(c ) just after it is dropped from the window of a train accelerating with 1 m s-2,
(d) lying on the floor of a train which is accelerating with 1 m s-2, the stone being at

rest relative to the train.
Neglect air resistance throughout.

5.4 One end of a string of length l is connected to a particle of mass m and the other to a
small peg on a smooth horizontal table. If the particle moves in a circle with speed v
the net force on the particle (directed towards the centre) is :
(i)  T,  (ii) 

l
mv

T
2

 , (iii)  
l

mv
+T

2
, (iv)  0

T is the tension in the string. [Choose the correct alternative].
5.5 A constant retarding force of 50 N is applied to a body of mass 20 kg moving initially

with a speed of 15 m s-1. How long does the body take to stop ?
5.6 A constant force acting on a body of mass 3.0 kg changes its speed from 2.0 m s-1 to   3.5

m s-1 in 25 s.  The direction of the motion of the body remains unchanged.  What is
the magnitude and direction of the force ?

5.7 A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N. Give the
magnitude and direction of the acceleration of the body.

5.8 The driver of a three-wheeler moving with a speed of 36 km/h sees a child standing in
the middle of the road and brings his vehicle to rest in 4.0 s just in time to save the
child. What is the average retarding force on the vehicle ? The mass of the three-
wheeler is 400 kg and the mass of the driver is 65 kg.

5.9 A rocket with a lift-off mass 20,000 kg is blasted upwards with an initial acceleration
of 5.0 m s-2. Calculate the initial thrust (force) of the blast.

5.10 A body of mass 0.40 kg moving initially with a constant speed of 10 m s-1 to the north
is subject to a constant force of 8.0 N directed towards the south for 30 s.  Take the
instant the force is applied to be  t = 0, the position of the body at that time to be x =
0, and predict its position at  t = –5 s, 25 s, 100 s.

5.11 A truck starts from rest and accelerates uniformly at 2.0 m s-2.  At t = 10 s, a stone is
dropped by a person standing on the top of the truck (6 m high from the ground).
What are the (a) velocity, and (b) acceleration of the stone at t = 11s ?  (Neglect air
resistance.)

5.12 A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is set into
oscillation.  The speed of the bob at its mean position is 1 m s-1.  What is the trajectory
of the bob if the string is cut when the bob is (a) at one of its extreme positions, (b) at
its mean position.

5.13 A man of mass 70 kg  stands on a weighing scale in a lift which is moving
(a) upwards with a uniform speed of 10 m s-1,
(b) downwards with a uniform acceleration of 5 m s-2,
(c) upwards with a uniform acceleration of 5 m s-2.

What would be the readings on the scale in each case?
(d) What would be the reading if the lift mechanism failed and it hurtled down freely

under gravity ?
5.14 Figure 5.16 shows the position-time graph of a particle of mass 4 kg.  What is the (a)

force on the particle for t < 0, t > 4 s, 0 < t < 4 s? (b) impulse at t = 0 and t = 4 s ?
(Consider one-dimensional motion only).

Fig. 5.16
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5.15 Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal surface
are tied to the ends of a light string. a horizontal force F = 600 N is applied to (i) A, (ii)
B along the direction of string. What is the tension in the string in each case?

5.16 Two masses 8 kg and 12 kg are connected at the two ends of a light  inextensible
string that goes over a frictionless pulley.  Find the acceleration of the masses, and
the tension in the string when the masses are released.

5.17 A nucleus is at rest in the laboratory frame of reference.  Show that if it disintegrates
into two smaller nuclei the products must move in opposite directions.

5.18 Two billiard balls each of mass 0.05 kg moving in opposite directions with speed 6 m s-1

collide and rebound with the same speed.  What is the impulse imparted to each ball due
to the other ?

5.19 A shell of mass 0.020 kg is fired by a gun of mass 100 kg.  If the muzzle  speed of the
shell is 80 m s-1, what is the recoil speed of the gun ?

5.20 A batsman deflects a ball by an angle of 45° without changing its initial speed which is
equal to 54 km/h.  What is the impulse imparted to the ball ?  (Mass of the ball is 0.15 kg.)

5.21 A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius
1.5 m with a speed of 40 rev./min in a horizontal plane. What is the tension in  the
string ?  What is the maximum speed with which the stone can be whirled around if
the string can withstand a maximum tension of 200 N ?

5.22 If, in Exercise 5.21, the speed of the stone is increased beyond the maximum permissible
value, and the string breaks suddenly, which of the following correctly describes the
trajectory of the stone after the string breaks :
(a) the stone moves radially outwards,
(b) the  stone flies off tangentially from the instant the string breaks,
(c) the stone flies off at an angle with the tangent whose magnitude depends on the

 speed of the particle ?
5.23 Explain why

(a) a horse cannot pull a cart and run in empty space,
(b) passengers are thrown forward from their seats when a speeding bus stops
     suddenly,
(c) it is easier to pull a lawn mower than to push it,
(d) a cricketer moves his hands backwards while holding a catch.

5.24 Figure 5.17 shows the position-time graph of a body of mass 0.04 kg.  Suggest a
suitable physical context for this motion.  What is the time between two consecutive
impulses received by the body ? What is the magnitude of each impulse ?

Fig. 5.17

5.25 Figure 5.18 shows a man standing stationary with respect to a horizontal conveyor
belt that is accelerating with 1 m s-2. What is the net force on the man? If the
coefficient of static friction between the man’s shoes and the belt is 0.2, up to what
acceleration of the belt can the man continue to be stationary relative to the belt ?
(Mass of the man = 65 kg.)

Fig. 5.18
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Fig. 5.19

5.26 A stone of mass m tied to the end of a string revolves in a vertical circle of radius R.
The net forces at the lowest and highest points of the circle directed vertically downwards
are : [Choose the correct alternative]

Lowest Point Highest Point

(a)    mg – T1 mg + T2

(b)    mg + T1 mg – T2

(c)    mg + T1 – (m v 21 ) / R mg – T2 +  (m v 21 ) / R

(d)    mg – T1 – (m v 21 ) / R mg + T2 + (m v 21 ) / R

T1 and v1 denote the tension and speed at the lowest point. T2 and v2 denote corresponding
values at the highest point.

5.27 A helicopter of mass 1000 kg rises with a vertical acceleration of 15 m s-2. The crew and
the passengers weigh 300 kg. Give the magnitude and direction of the
(a) force on the floor by the crew and passengers,
(b) action of the rotor of the helicopter on the surrounding air,
(c) force on the helicopter due to the surrounding air.

5.28 A stream of water flowing horizontally with a speed of 15 m s-1 gushes out of a tube of
cross-sectional area 10-2 m2, and hits a vertical wall nearby. What is the force exerted
on the wall by the impact of water, assuming it does not rebound ?

5.29 Ten one-rupee coins are put on top of each other on a table.  Each coin has a mass m.
Give the magnitude and direction of
(a) the force on the  7th coin (counted from the bottom) due to all the coins on its top,
(b) the force on the 7th coin by the eighth coin,
(c) the reaction of the 6th coin on the 7th coin.

5.30 An aircraft executes a horizontal loop at a speed of 720 km/h with its wings banked at
15°.  What is the radius of the loop ?

5.31 A train runs along an unbanked circular track of radius 30 m at a speed of 54 km/h.
The mass of the train is 106 kg.  What provides the centripetal force required for this
purpose — The engine or the rails ?  What is the angle of banking required to prevent
wearing out of the rail ?

5.32 A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in
Fig. 5.19.  What is the action on the floor by the man in the two cases ?  If the floor
yields to a normal force of 700 N, which mode should the man adopt to lift the block
without the floor yielding ?
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Fig. 5.20

5.33 A monkey of mass 40 kg climbs on a rope (Fig. 5.20) which can
stand a maximum tension of  600 N. In which of the following
cases will the rope break: the monkey
(a) climbs up with an acceleration of 6 m s-2

(b) climbs down with an acceleration of 4 m s-2

(c) climbs up with a uniform speed of 5 m s-1

(d) falls down the rope nearly freely under gravity?
(Ignore the mass of the rope).

5.34 Two  bodies A and B of masses 5 kg and 10 kg in contact
with each other rest on a table against a rigid wall (Fig.
5.21). The coefficient of friction between the bodies and
the table is 0.15.  A force of 200 N is applied horizontally
to A.  What are (a) the
 reaction of the partition (b) the action-reaction forces
between A and B ?  What happens when the wall is
removed?  Does the answer to (b) change, when the bodies
are in motion?  Ignore the difference between s and k.

5.35 A block of mass 15 kg is placed on a long trolley. The coefficient of static friction
between the block and the trolley is 0.18.  The trolley accelerates from rest with
0.5 m s-2 for 20 s and then moves with uniform velocity.  Discuss the motion of
the block as viewed by (a) a stationary observer on the ground, (b) an observer
moving with the trolley.

5.36 The rear side of a truck is open and a box of 40
kg mass is placed 5 m away from the open end
as shown in Fig. 5.22.  The coefficient of friction
between the box and the surface below it is
0.15.  On a straight road, the truck starts from
rest and accelerates with 2 m s-2.  At what
distance from the starting point does the box
fall off the truck?  (Ignore the size of the box).

5.37 A disc  revolves with a speed of 33
1
3
 rev/min, and has a radius of 15 cm. Two coins are

placed at 4 cm and 14 cm away from the centre of the record. If the co-efficient of
friction between the coins and the record is 0.15, which of the coins will revolve with
the record ?

5.38 You may have seen in a circus a motorcyclist driving in vertical loops inside a
‘death-well’ (a hollow spherical chamber with holes, so the spectators can watch
from outside).  Explain clearly why the motorcyclist does not drop down when he
is at the uppermost point, with no support from below.  What is the minimum
speed required at the uppermost position to perform a vertical loop if the radius
of the chamber is 25 m ?

5.39 A 70 kg man stands in contact against the inner wall of a hollow cylindrical
drum of radius 3 m rotating about its vertical axis with 200 rev/min.  The
coefficient of friction between the wall and his clothing is 0.15.  What is the
minimum rotational speed of the cylinder to enable the man to remain stuck to
the wall (without falling) when the floor is suddenly removed ?

5.40 A thin circular loop of radius R rotates about its vertical diameter with an angular
frequency .  Show that a small bead on the wire loop remains at its lowermost

point for   g / R .  What  is the  angle made by the radius vector joining the

centre to  the bead with the vertical downward direction for    2g / R  ?

Neglect friction.

Fig. 5.21

Fig. 5.22



CHAPTER SIX

WORK, ENERGY AND POWER

6.1  INTRODUCTION

The terms ‘work’, ‘energy’ and ‘power’ are frequently used
in everyday language. A farmer ploughing the field, a
construction worker carrying bricks, a student studying for
a competitive examination, an artist painting a beautiful
landscape, all are said to be working. In physics, however,
the word ‘Work’ conveys a definite and precise meaning.
Somebody who has the capacity to work for 14-16 hours a
day is said to have  large stamina or energy. We admire a
long distance runner for her stamina or energy. Energy is
thus our capacity to do work. In Physics too, the term ‘energy’
is related to work in this sense, but as said above the term
‘work’ itself is defined much more precisely. The word ‘power’
is used in everyday life with different shades of meaning. In
karate or boxing we talk of ‘powerful’ punches. These are
delivered at a great speed. This shade of meaning is close to
the meaning of the word ‘power’ used in physics. We shall
find that there is at best a loose correlation between the
physical definitions and the physiological pictures these
terms generate in our minds. The aim of this chapter is to
develop an understanding of these three physical quantities.
Before we proceed to this task, we need to develop a
mathematical prerequisite, namely the scalar product of two
vectors.

6.1.1 The Scalar Product

We have learnt about vectors and their use in Chapter 4.
Physical quantities like displacement, velocity, acceleration,
force etc. are vectors. We have also learnt how vectors are
added or subtracted. We now need to know how vectors are
multiplied. There are two ways of multiplying vectors which
we shall come across : one way known as the scalar product
gives a scalar from two vectors and the other known as the
vector product produces a new vector from two vectors. We
shall look at the vector product in Chapter 7. Here we take
up the scalar product of two vectors. The scalar product or
dot product of any two vectors A and B, denoted as A.B (read

6.1 Introduction

6.2 Notions of work and kinetic
energy : The work-energy
theorem

6.3 Work

6.4 Kinetic energy

6.5 Work done by a variable force

6.6 The work-energy theorem for
a variable force

6.7 The concept of potential
energy

6.8 The conservation of
mechanical energy

6.9 The potential energy of a
spring

6.10 Various forms of energy : the
law of conservation of energy

6.11 Power

6.12 Collisions

Summary
Points to ponder
Exercises
Appendix 6.1



A dot B) is defined as

A.B = A B cos  (6.1a)

where  is the angle between the two vectors as
shown in Fig. 6.1(a). Since A, B and cos  are
scalars, the dot product of A and B is a scalar
quantity. Each vector, A and B, has a direction
but their scalar product does not have a
direction.

From Eq. (6.1a), we have

A.B  = A (B cos )
       = B (A cos )

Geometrically, B cos  is the projection of B onto
A in Fig.6.1 (b) and A cos   is the projection of A
onto B in Fig. 6.1 (c). So, A.B is the product of
the magnitude of A and the component of B along
A. Alternatively, it is the product of the
magnitude of B and the component of A along B.

Equation (6.1a) shows that the scalar product
follows the commutative law :

A.B = B.A

Scalar product obeys the distributive
law:

A. (B + C) = A.B + A.C

Further, A. ( B) =  (A.B)

where is a real number.

The proofs  of the above equations are left to
you as an exercise.

For unit vectors   i, j,k  we have

     i i j j k k     1

     i j j k k i      0

Given two vectors

A i j k  A A Ax y z
  

B i j k  B B Bx y z
  

their scalar product is

    ˆ ˆ ˆ ˆ ˆ ˆ. .
x y z x y zA A A B B B     A B i j k i j k

   A B A B A Bx x y y z z (6.1b)

From the definition of scalar product and
(Eq. 6.1b) we have :

( i ) x x y y z zA A A A A A   A A 

Or, A A A A2
x
2

y
2

z
2   (6.1c)

since A.A = |A ||A| cos 0 = A2.
(ii) A.B = 0, if A and B are perpendicular.

Example 6.1  Find the angle between force

F =  (3 i + 4 j – 5 k) unit and displacement

d =  (5 i + 4 j + 3 k) unit. Also find the

projection of F on d.

Answer F.d = x x y y z zF d F d F d  
= 3 (5) + 4 (4) + (– 5) (3)
= 16 unit

Hence F.d = cosF d   = 16 unit

Now F.F = 2 2 2 2  x y zF F F F   
= 9 + 16 + 25
= 50 unit

and d.d = d2 = 2 2 2  x y zd d d  
= 25 + 16 + 9
= 50 unit

  cos  = 
16 16

= = 0.32
5050 50

,

 = cos–1  0.32 

Fig. 6.1 (a) The scalar product of two vectors A and B is a scalar : A.B = A B cos .  (b) B cos  is the projection
of B onto A. (c) A cos  is the projection of A onto B.
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Table 6.1   Alternative Units of Work/Energy in J

Example 6.3  A cyclist comes to a skidding
stop in 10 m.  During this process, the force
on the cycle due to the road is 200 N and
is directly opposed to the motion.  (a) How
much work does the road do on the cycle ?
(b) How much work does the cycle do on
the road ?

Answer  Work done on the cycle by the road is
the work done by the stopping (frictional) force
on the cycle due to the road.
(a) The stopping force and the displacement make

an angle of 180o  ( rad) with each other.
Thus, work done by the road,

W
r
 =  Fd cos

     =  200  10  cos 

= – 2000 J
It is this negative work that brings the cycle
to a halt in accordance with WE theorem.

(b) From Newton’s Third Law an equal and
opposite force acts on the road due to the
cycle. Its magnitude is 200 N. However, the
road undergoes no displacement.  Thus,
work done by cycle on the road is zero.            

The lesson of Example 6.3 is that though the
force on a body A exerted by the body B is always
equal and opposite to that on B by A (Newton’s
Third Law); the work done on A by B is not
necessarily equal and opposite to the work done
on B by A.

6.4  KINETIC ENERGY

As noted earlier, if an object of mass m has
velocity v, its kinetic energy K  is

2K m mv
  

  
  

v v.                        (6.5)

Kinetic energy is a scalar quantity. The kinetic
energy of an object is a measure of the work an

The work done by the force is defined to be
the product of component of the force in the
direction of the displacement and the
magnitude of this displacement.  Thus

W = (F cos )d = F.d (6.4)

We see that if there is no displacement, there
is no work done even if the force is large.  Thus,
when you push hard against a rigid brick wall,
the force you exert on the wall does no work.  Yet
your muscles are alternatively contracting and
relaxing and internal energy is being used up
and you do get tired.  Thus, the meaning of work
in physics is different from its usage in everyday
language.

No work is done if :
(i) the displacement is zero as seen in the

example above. A weightlifter holding a 150
kg mass steadily on his shoulder for 30 s
does no work on the load during this time.

(ii) the force is zero.  A block moving on a smooth
horizontal table is not acted upon by a
horizontal force (since there is no friction), but
may undergo a large displacement.

(iii) the force and displacement are mutually
perpendicular. This is so since, for  = /2 rad
(= 90o), cos (2) = 0.  For the block moving on
a smooth horizontal table, the gravitational
force mg  does no work since it acts at right
angles to the displacement. If we assume that
the moon’s orbits around the earth is
perfectly circular then the earth’s
gravitational force does no work.  The moon’s
instantaneous displacement is tangential
while the earth’s force is radially inwards and
  =/2.

Work can be both positive and negative.  If   is
between 0o and 90o, cos   in Eq. (6.4) is positive.
If   is  between 90o and 180o,   cos   is negative.
In many examples the frictional force opposes
displacement and   = 180o. Then the work done
by friction is negative (cos 180o = –1).

From Eq. (6.4) it is clear that  work and energy
have the same dimensions,  [ML2T–2]. The SI unit
of these is joule (J), named after the famous British
physicist James Prescott Joule  (1811-1869). Since
work and energy are so widely used as physical
concepts, alternative units abound and some of
these are listed in Table 6.1.
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object can do by the virtue of its motion. This
notion has been intuitively known for a long time.
The kinetic energy of a fast flowing stream
has been used to grind corn. Sailing
ships employ the kinetic energy of the wind. Table
6.2 lists the kinetic energies for various
objects.

Example 6.4  In a ballistics demonstration
a police officer fires a bullet of mass 50.0 g
with speed 200 m s-1 (see Table 6.2) on soft
plywood of thickness 2.00 cm.  The bullet
emerges with only 10% of its initial kinetic
energy.  What is the emergent speed of the
bullet ?

Answer  The initial kinetic energy of the bullet
is mv2/2 = 1000 J.  It has a final kinetic energy
of 0.11000 = 100 J.  If v

f
  is the emergent speed

of the bullet,




mv f

2
100 J

kg 05.0
 J 1002

fv

                63.2 m s–1

The speed is reduced by approximately 68%
(not 90%).                                                                      

6.5  WORK DONE BY A VARIABLE FORCE

A constant force is rare.  It is the variable force,
which is more commonly encountered.  Fig. 6.2
is a plot of a varying force in one dimension.

If the displacement x is small, we can take
the force F (x)  as approximately constant and
the work done is then

W =F (x)x

Table 6.2  Typical kinetic energies (K)

This is illustrated in Fig. 6.3(a).  Adding
successive rectangular areas in Fig. 6.3(a) we
get the total work done as

  
f

i

x

x

xxFW (6.6)

where the summation is from the initial position
x

i
  to the final position x

f
.

If the displacements are allowed to approach
zero, then the number of terms in the sum
increases without limit, but the sum approaches
a definite value equal to the area under the curve
in Fig. 6.3(b). Then the work done is

            d
f

i

x

x

F x x  (6.7)

where ‘lim’ stands for the limit of the sum when
x  tends to zero.  Thus, for a varying force
the work done can be expressed as a definite
integral of force over displacement (see also
Appendix 3.1).

limW =
x 

  
f

i

x

x

xxF
0

Fig. 6.3(a)
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Fig. 6.3 (a) The shaded rectangle represents the
work done by the varying force F(x), over
the small displacement x, W = F(x)x.
(b) adding the areas of all the rectangles we
find that for x  0, the area under the curve
is exactly equal to the work done by F(x).

Example 6.5  A woman pushes a trunk on
a railway platform which has a rough
surface.  She applies a force of 100 N over a
distance of 10 m.  Thereafter, she gets
progressively tired and her applied force
reduces linearly with distance to 50 N.  The
total distance through which the trunk has
been moved is 20 m.  Plot the force applied
by the woman and the frictional force, which
is 50 N versus displacement.  Calculate the
work done by the two forces over 20 m.

Answer

Fig. 6.4 Plot of the force F applied by the woman and
the opposing frictional force f versus
displacement.

The plot of the applied force is shown in Fig.
6.4.  At x  = 20 m, F  = 50 N ( 0).  We are given
that the frictional force f is |f|= 50 N. It opposes
motion and acts in a direction opposite to F.  It
is therefore, shown on the negative side of the
force axis.

The work done by the woman is

W
F 
 area of the rectangle ABCD + area of

the trapezium CEID

 WF     100 10
1
2

100 50 10

1000 + 750
    1750 J

The work done by the frictional force is

W
f 
 area of the rectangle AGHI

W
f
(50)  20

    1000 J
The area on the negative side of the force axis
has a negative sign. 

6.6 THE WORK-ENERGY THEOREM FOR A
VARIABLE FORCE

We are now familiar with the concepts of work
and kinetic energy to prove the work-energy
theorem for a variable force.  We confine
ourselves to one dimension. The time rate of
change of kinetic energy is

2d d 1
d d 2
K

m v
t t

       

      
d
d
v

m v
t

 

      v F  (from Newton’s Second Law)

      
d
d
x

F
t

 

Thus
             dK = Fdx
Integrating from the initial position  (x 

i
 ) to final

position ( x 
f
 ), we have

d d
f f

i i

K x

K x

K F x   
where,  K

i
  and K 

f
  are the initial and final kinetic

energies corresponding to x
 i 
 and  x f.

or d
f

i

x

f i
x

K K F x    (6.8a)

From Eq. (6.7), it follows that

           K
f
  K

i  
= W (6.8b)

Thus, the WE theorem is proved for a variable
force.

While the WE theorem is useful in a variety of
problems, it does not, in general, incorporate the
complete dynamical information of Newton’s
second law. It is an integral form of Newton’s
second law. Newton’s second law is a relation
between acceleration and force at any instant of
time. Work-energy theorem involves an integral
over an interval of time. In this sense, the temporal
(time) information contained in the statement of
Newton’s second law is ‘integrated over’ and is
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not available explicitly. Another observation is that
Newton’s second law for two or three dimensions
is in vector form whereas the work-energy
theorem is in scalar form. In the scalar form,
information with respect to directions contained
in Newton’s second law is not present.

Example 6.6  A block of mass m  = 1 kg,
moving on a horizontal surface with speed
v

i
 = 2 ms–1 enters a rough patch ranging from

x = 0.10 m to x = 2.01 m. The retarding force
F

r
 on the block in this range is inversely

proportional  to x  over this range,

F
k

xr =
−

 for 0.1 < x < 2.01 m

= 0 for x < 0.1m and x > 2.01 m
where k = 0.5 J.  What is the final kinetic
energy and speed v

f
  of the block as it

crosses this patch ?

Answer  From Eq. (6.8a)

  
d

2.01

f i
0.1

k
K K x

x

 
   

  2.01
0.1

1
ln

2
2
imv k x  

  1
ln 2.01/0.1

2
2
imv k    

 2  0.5 ln (20.1)

 2  1.5   0.5 J

1sm  1/2  mKv ff

Here, note that ln is a symbol for the natural
logarithm to the base e and not the logarithm to
the base 10 [ln X = loge X = 2.303 log10 X]. 

6.7  THE CONCEPT OF POTENTIAL ENERGY

The word potential suggests possibility or
capacity for action. The term potential energy
brings to one’s mind ‘stored’ energy. A stretched
bow-string possesses potential energy. When it
is released, the arrow flies off at a great speed.
The earth’s crust is not uniform, but has
discontinuities and dislocations that are called
fault lines. These fault lines in the earth’s crust

are like ‘compressed springs’. They possess a
large amount of potential energy. An earthquake
results when these fault lines readjust. Thus,
potential energy is the ‘stored energy’ by virtue
of the position or configuration of a body. The
body left to itself releases this stored energy in
the form of kinetic energy. Let us make our notion
of potential energy more concrete.

The gravitational force on a ball of mass m is
mg . g may be treated as a constant near the earth
surface. By ‘near’ we imply that the height h  of
the ball above the earth’s surface is very small
compared to the earth’s radius R

E 
(h <<R

E
) so that

we can ignore the variation of g near the earth’s
surface*. In what follows we have taken the
upward direction to be positive. Let us raise the
ball up to a height h. The work done by the external
agency against the gravitational force is mgh. This
work gets stored as potential energy.
Gravitational potential energy of an object, as a
function of the height h, is denoted by V(h) and it
is the negative of work done by the gravitational
force in raising the object to that height.

V (h)  mgh
If h is taken as a variable, it is easily seen that
the gravitational force F equals the negative of
the derivative of V(h) with respect to h. Thus,

d
d

F V(h) m g
h

    

The negative sign indicates that the
gravitational force is downward. When released,
the ball comes down with an increasing speed.
Just before it hits the ground, its speed is given
by the kinematic relation,

v2  2gh
This equation can be written as

2
1

m v2 = m g h

which shows that the gravitational potential
energy of the object at height h, when the object
is released, manifests itself as kinetic energy of
the object on reaching the ground.

Physically, the notion of potential energy is
applicable only to the class of forces where work
done against the force gets ‘stored up’ as energy.
When external constraints are removed, it
manifests itself as kinetic energy. Mathematically,
(for simplicity, in one dimension) the potential

* The variation of g with height is discussed in Chapter 9 on Gravitation.
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The total mechanical energies E0, Eh
, and E

H

of the ball at the indicated heights zero (ground
level), h and H, are

E
H
   = mgH

                          (6.11 a)
1
2

2
h hE mgh mv  (6.11 b)

E
0     

= (1/2) mv
f
2 (6.11 c)

The constant force is a special case of a spatially
dependent force F(x). Hence, the mechanical
energy is conserved.  Thus

EH = E0

or,
1
2

2
fmgH mv 

2fv gH 
a result that was obtained in section 3.7 for a
freely falling body.
Further,

E
H
 = E

h

which implies,

v g(H h)h
2 2                (6.11 d)

and is a familiar result from kinematics.
At the height H, the energy is purely potential.

It is partially converted to kinetic at height h  and
is fully kinetic at ground level. This illustrates
the conservation of mechanical energy.

Example 6.7  A bob of mass m is suspended
by a light string of length L .  It is imparted a
horizontal velocity v

o
 at the lowest point A such

that it completes a semi-circular trajectory in
the vertical plane with the string becoming
slack only on reaching the topmost point, C.
This is shown in Fig. 6.6. Obtain an expression
for (i) v

o
; (ii)  the speeds at points B and C; (iii)

the ratio  of  the kinetic energies (K
B
/K

C
) at B

and C. Comment on the nature of the trajectory
of the bob after it reaches the point C.

Fig. 6.6

Answer  (i)  There are two external forces on
the bob : gravity and the tension (T ) in the
string. The latter does no work since the
displacement of the bob is always normal to the
string. The potential energy of the bob is thus
associated with the gravitational force only. The
total mechanical energy E  of the system is
conserved.  We take the potential energy of the
system to be zero at the lowest point A. Thus,
at A :

E mv0
2

1

2
(6.12)

       
L

mv
mgT

2
0

A     [Newton’s Second Law]

where T
A
 is the tension  in the string at A. At the

highest point C, the string slackens, as the
tension in the string (T

C
) becomes zero.

Thus, at C

2mgLmvE c  2

2
1

(6.13)

L
mv

mg
2
c     [Newton’s Second Law] (6.14)

where v
C
 is the speed at C. From Eqs. (6.13)

and (6.14)

5
E mgL

2
 

Equating this to the energy at A

5
2 2

2
0

m
mgL v 

or, 50v gL 

(ii) It is clear from Eq. (6.14)

gLvC 

At B, the energy is

1
2

2
BE mv mgL  

Equating this to the energy at A and employing

the result from (i), namely gLv2
0 5 ,

1 1
2 2

2 2
B 0mv mgL mv  

5
2

m g L 
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gLvB 3

(iii) The ratio of the kinetic energies at B and C
  is :

 
1
3

  

2
1
2
1

  
2
C

2
B

C

B

mv

mv

K

K

At point C, the string becomes slack and the
velocity of the bob is horizontal and to the left.  If
the connecting string is cut at this instant, the
bob will execute a projectile motion with
horizontal projection akin to a rock kicked
horizontally from the edge of a cliff.  Otherwise
the bob will continue on its circular path and
complete the revolution.

6.9  THE POTENTIAL ENERGY OF A SPRING

The spring force is an example of a variable force
which is conservative. Fig. 6.7 shows a block
attached to a spring and resting on a smooth
horizontal surface.  The other end of the spring
is attached to a rigid wall. The spring is light
and may be treated as massless.  In an ideal
spring, the spring force F

s
  is proportional to

x where x  is the displacement of the block from
the equilibrium position. The displacement could
be either positive [Fig. 6.7(b)] or negative
[Fig. 6.7(c)].  This force law for the spring is called
Hooke’s law and is mathematically stated as

F
s
 =   kx

The constant k is called the spring constant.  Its
unit is N m-1.  The spring is said to be stiff if k is
large and soft if k is small.

Suppose that we pull the block outwards as in
Fig. 6.7(b). If the extension is x

m
, the work done by

the spring force is

d
mx

s s
0

W F  x      d
mx

0

kx x   

2

2
mx k



         (6.15)

This expression may also be obtained by
considering the area of the triangle as in
Fig. 6.7(d).  Note that the work done by the
external pulling force F is positive since it

overcomes the spring force.

Fig. 6.7 Illustration of the spring force with a block
attached to the free end of the spring.
(a) The spring force Fs is zero when the
displacement x  from the equilibrium position
is zero. (b) For the stretched spring x > 0 and
Fs  < 0 (c) For the compressed spring
x < 0 and  Fs > 0.(d) The plot of Fs  versus x.
The area of the shaded triangle represents
the work done by the spring force. Due to the
opposing signs of Fs and x, this work done is

negative, W kx /s m
2  2 .

2

2
mx k

W  (6.16)

The same is true when the spring is
compressed with a displacement x

c
 (< 0).  The

spring force does work 2/ 2
cs kxW   while the
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Fig. 6.8 Parabolic plots of the potential energy V and
kinetic energy K of a block attached to a
spring obeying Hooke’s law. The two plots
are complementary, one decreasing as the
other increases. The total mechanical energy
E = K + V remains constant.



external force F does work   kxc
2

/ 2 . If the block

is moved from an initial displacement x
i
  to a

final displacement x
f
 , the work done by the

spring force W
s
 is

  
22

d     
2 2

f

i

x
fi

s
x

k xk x
W k x x                       (6.17)

Thus the work done by the spring force depends
only on the end points.  Specifically, if the block
is pulled from x

i
  and allowed to return to x

i
 ;

      
2 2

d     
2 2

i

i

x
i i

s
x

k x k x
W k x x             

       0 (6.18)
The work done by the spring force in a cyclic
process is zero.  We have explicitly demonstrated
that the spring force (i) is position dependent
only as first stated by Hooke, (F

s
 =  kx); (ii) does

work which only depends on the initial and final
positions, e.g. Eq. (6.17).  Thus, the spring force
is a conservative force.

We define the potential energy V(x) of the spring
to be zero when block and spring system is in the
equilibrium position.  For an extension (or
compression) x  the above analysis suggests that

V(x)
kx2


2

(6.19)

You may easily verify that  dV/dx =  k x, the
spring force.  If the block of mass m in Fig. 6.7 is
extended to x

m
 and released from rest, then its

total mechanical energy at any arbitrary point x,
where x lies between – x

m 
 and + x

m, will be given by

222
m v mx kx k

2
1

2
1

2
1



where we have invoked the conservation of
mechanical energy.  This suggests that the speed
and the kinetic energy will be maximum at the
equilibrium position, x = 0, i.e.,

2
m

2
m x k  v m

2
1

2
1



where v
m
 is the maximum speed.

or mm x 
m

k
v 

Note that k/m has the dimensions of [T-2] and
our equation is dimensionally correct. The
kinetic energy gets converted to potential energy

and vice versa, however, the total mechanical
energy remains constant. This is graphically
depicted in Fig. 6.8.

Example 6.8  To simulate car accidents, auto
manufacturers study the collisions of moving
cars with mounted springs of different spring
constants.  Consider a typical simulation with
a car of mass 1000 kg moving with a speed
18.0 km/h on a smooth road and colliding
with a horizontally mounted spring of spring
constant 6.25 × 103 N m–1. What is the
maximum compression of the spring ?

Answer   At maximum compression the kinetic
energy of the car is converted entirely into the
potential energy of the spring.

The kinetic energy of the moving car is

K mv2
1
2

    
5510

2
1 3 

            K  = 1.25  104 J

where we have converted 18 km h–1 to 5 m s–1  [It is
useful to remember that 36 km h–1 = 10 m s–1].
At maximum compression x

m
, the potential

energy V of the spring is equal to the kinetic
energy K of the moving car from the principle of
conservation of mechanical energy.

2
mx k  V

2
1



                = 1.25  104 J
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We obtain

x
m
 = 2.00 m

We note that we have idealised the situation.
The spring is considered to be massless. The
surface has been considered to possess
negligible friction. 

We conclude this section by making a few
remarks on conservative forces.

(i) Information on time is absent from the above
discussions. In the example considered
above, we can calculate the compression, but
not the time over which the compression
occurs.  A solution of Newton’s Second Law
for this system is required for temporal
information.

(ii) Not all forces are conservative. Friction, for
example, is a non-conservative force. The
principle of conservation of energy will have
to be modified in this case. This is illustrated
in Example 6.9.

(iii) The zero of the potential energy is arbitrary.
It is set according to convenience.  For the
spring force we took V(x) = 0, at x = 0, i.e. the
unstretched spring has zero potential
energy.  For the constant gravitational force
mg, we took V = 0  on the earth’s surface.  In
a later chapter we shall see that for the force
due to the universal law of gravitation, the
zero is best defined at an infinite distance
from the gravitational source. However, once
the zero of the potential energy is fixed in a
given discussion, it must be consistently
adhered to throughout the discussion. You
cannot change horses in midstream !

Example 6.9   Consider Example 6.8 taking
the coefficient of friction, , to be 0.5 and
calculate the  maximum compression of the
spring.

Answer  In presence of friction, both the spring
force and the frictional force act so as to oppose
the compression of the spring as shown in
Fig. 6.9.

We invoke the work-energy theorem, rather
than the conservation of mechanical energy.

The change in kinetic energy is

Fig. 6.9  The forces acting on the car.

K  = K
f
 K

i 
2v m   

2
1

0 

The work done by the net force is

1
2

2
m mW   kx   m g x   μ

Equating we have

1 1
2 2

2 2
m mm v   k x  m g x  μ

Now mg  = 0.5  103  105  103 N (taking
g =10.0 m s-2). After rearranging the above
equation we obtain the following quadratic
equation in the unknown x

m
.

22 2
m mk x m g x m v 0   μ

1/22 2 2 2

m

 m g m g m k v
x

k

          

where we take the positive square root since x
m

is positive.  Putting in numerical values we
obtain

x
m
  = 1.35 m

which, as expected, is less than the result in
Example 6.8.

If the two forces on the body consist of a
conservative force F

c
 and a non-conservative

force  F
nc
 , the conservation of mechanical energy

formula will have to be modified. By the WE
theorem

(F
c
+ F

nc
) x = K

But     F
c
 x =  V

Hence,             (K + V) = F
nc 
x

                       E    = F
nc 
x

where E  is the total mechanical energy. Over
the path this assumes the form

E
f
  Ei

  = W
nc

Where W
nc

  is the total work done by the
non-conservative forces over the path. Note that
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unlike the conservative force, W
nc  

depends on
the particular path i  to  f. 

6.10 VARIOUS FORMS OF ENERGY : THE LAW
OF CONSERVATION OF ENERGY

In the previous section we have discussed
mechanical energy.  We have seen that it can be
classified into two distinct categories : one based
on motion, namely kinetic energy; the other on
configuration (position), namely potential energy.
Energy comes in many  forms which transform
into one another in ways which may not often
be clear to us.

6.10.1  Heat

We have seen that the frictional force is not a
conservative force. However, work is associated
with the force of friction, Example 6.5. A block of
mass m sliding on a rough horizontal surface
with speed v0 comes to a halt over a distance x0.
The work done by the force of kinetic friction f
over x0 is –f x0. By the work-energy theorem

2
o 0m v /2  f  x .  If we confine our scope to

mechanics, we would say that the kinetic energy
of the block is ‘lost’ due to the frictional force.
On examination of the block and the table we
would detect a slight increase in their
temperatures. The work done by friction is not
‘lost’, but is transferred as heat energy. This
raises the internal energy of the block and the
table. In winter, in order to feel warm, we
generate heat by vigorously rubbing our palms
together. We shall see later that the internal
energy is associated with the ceaseless, often
random, motion of molecules. A quantitative idea
of the transfer of heat energy is obtained by
noting that 1 kg of water releases about 42000 J
of energy when it cools by10 °C.

6.10.2   Chemical Energy

One of the greatest technical achievements of
humankind occurred when we discovered how
to ignite and control fire. We learnt to rub two
flint stones together (mechanical energy), got
them to heat up and to ignite a heap of dry leaves
(chemical energy), which then provided
sustained warmth.  A matchstick ignites into a
bright flame when struck against a specially
prepared chemical surface. The lighted
matchstick, when applied to a firecracker,
results in a spectacular display of sound and
light.

Chemical energy arises from the fact that the
molecules participating in the chemical reaction
have different binding energies. A stable chemical
compound has less energy than the separated parts.
A chemical reaction is basically a rearrangement
of atoms. If the total energy of the reactants is more
than the products of the reaction, heat is released
and the reaction is said to be an exothermic
reaction. If the reverse is true, heat is absorbed and
the reaction is endothermic. Coal consists of
carbon and a kilogram of it when burnt releases
about 3  107 J of energy.

Chemical energy is associated with the forces
that give rise to the stability of substances. These
forces bind atoms into molecules, molecules into
polymeric chains, etc. The chemical energy
arising from the combustion of coal, cooking gas,
wood and petroleum is indispensable to our daily
existence.

6.10.3  Electrical Energy

The flow of electrical current causes bulbs to
glow, fans to rotate and bells to ring.  There are
laws governing the attraction and repulsion of
charges and currents, which we shall learn
later. Energy is associated with an electric
current. An urban Indian  household consumes
about 200 J of energy per second on an average.

6.10.4  The Equivalence of Mass and Energy

Till the end of the nineteenth century, physicists
believed that in every physical and chemical
process, the mass of an isolated system is
conserved. Matter might change its phase, e.g.
glacial ice could melt into a gushing stream, but
matter is neither created nor destroyed; Albert
Einstein (1879-1955) however, showed that mass
and energy are equivalent and are related by
the relation

E = m c2 (6.20)
where c, the speed of light in vacuum is
approximately 3 108 m s–1.  Thus, a staggering
amount of energy is associated with a mere
kilogram of matter

E = 1 (3 108)2 J = 9 1016 J.
This is equivalent to the annual electrical output
of a large (3000 MW) power generating station.

6.10.5  Nuclear Energy

The most destructive weapons made by man, the
fission and fusion bombs are manifestations of
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the above equivalence of mass and energy [Eq.
(6.20)]. On the other hand the explanation of the
life-nourishing energy output of the sun is also
based on the above equation.  In this case
effectively four light hydrogen nuclei fuse to form
a helium nucleus whose mass is less than the
sum of the masses of the reactants. This mass
difference, called the mass defect m  is the
source of energy (m)c2.  In fission, a heavy

nucleus like uranium U235
92 , is split by a neutron

into lighter nuclei.  Once again the final mass is
less than the initial mass and the mass difference
translates into energy, which can be tapped to
provide electrical energy as in nuclear power
plants (controlled nuclear fission) or can be
employed in making nuclear weapons
(uncontrolled nuclear fission). Strictly, the energy
E released in a chemical reaction can also be
related to the mass defect m = E/c2. However,
for a chemical reaction, this mass defect is much
smaller than for a nuclear reaction. Table 6.3
lists the total energies for a variety of events and
phenomena.

Table 6.3   Approximate energy associated with various phenomena

Example 6.10  Examine Tables 6.1-6.3
and express (a) The energy required to
break one bond in DNA in eV; (b) The
kinetic energy of an air molecule (10—21 J)
in eV; (c) The daily intake of a human adult
in kilocalories.

Answer  (a) Energy required to break one bond
of DNA is

 
20

19

10 J ~ 0.06 eV
1.6 10 J/eV

 

  

Note 0.1 eV = 100 meV (100 millielectron volt).

(b) The kinetic energy of an air molecule is

 
21

19

10 J ~ 0.0062 eV
1.6 10 J/eV

 

  
This is the same as 6.2 meV.

(c) The average energy human consumption in
a day is

7

 3

10 J
~ 2400 kcal

4.2×10 J/kcal
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We point out a common misconception created
by newspapers and magazines. They mention
food values in calories and urge us to restrict
diet intake to below 2400 calories. What they
should be saying is kilocalories (kcal) and not
calories. A person consuming 2400 calories a
day will soon starve to death! 1 food calorie is
1 kcal. 

6.10.6 The Principle of Conservation of
Energy

We have seen that the total mechanical energy
of the system is conserved if the forces doing work
on it are conservative. If some of the forces
involved are non-conservative, part of the
mechanical energy may get transformed into
other forms such as heat, light and sound.
However, the total energy of an isolated system
does not change, as long as one accounts for all
forms of energy.  Energy may be transformed from
one form to another but the total energy of an
isolated system remains constant. Energy can
neither be created, nor destroyed.

Since the universe as a whole may be viewed
as an isolated system, the total energy of the
universe is constant. If one part of the universe
loses energy, another part must gain an equal
amount of energy.

The principle of conservation of energy cannot
be proved. However, no violation of this principle
has been observed.  The concept of conservation
and transformation of energy into various forms
links together various branches of physics,
chemistry and life sciences. It provides a
unifying, enduring element in our scientific
pursuits. From engineering point of view all
electronic, communication and mechanical
devices rely on some forms of energy
transformation.

6.11  POWER

Often it is interesting to know not only the work
done on an object, but also the rate at which
this work is done. We say a person is physically
fit if he not only climbs four floors of a building
but climbs them fast. Power is defined as the
time rate at which work is done or energy is
transferred.

The average power of a force is defined as the
ratio of the work, W, to the total time t taken

P
W

t
av 

The instantaneous power is defined as the
limiting value of the average power as time
interval approaches zero,

d
d
W

P
t

 (6.21)

The work dW done by a force F for a displacement
dr is dW = F.dr.  The instantaneous power can
also be expressed as

d
d

P
t

 F.
r

= F.v (6.22)

where v is the instantaneous velocity when the
force is F.

Power, like work and energy, is a scalar
quantity.  Its dimensions are [ML2T–3]. In the SI,
its unit is called a watt (W).  The watt is 1 J s–1.
The unit of power is named after James Watt,
one of the innovators of the steam engine in the
eighteenth century.

There is another unit of power, namely the
horse-power (hp)

1 hp = 746 W
This unit is still used to describe the output of
automobiles, motorbikes, etc.

We encounter the unit watt when we buy
electrical goods such as bulbs, heaters and
refrigerators.  A 100 watt bulb which is on for 10
hours uses 1 kilowatt hour (kWh) of energy.

100 (watt)  10 (hour)
= 1000 watt hour
=1 kilowatt hour (kWh)
= 103 (W)  3600 (s)
= 3.6  106 J

Our electricity bills carry the energy
consumption in units of kWh.  Note that kWh is
a unit of energy and not of power.

Example 6.11  An elevator can carry a
maximum load of 1800 kg (elevator +
passengers) is moving up with a constant
speed of 2 m s–1. The frictional force opposing
the motion is 4000 N. Determine the
minimum power delivered by the motor to
the elevator in watts as well as in horse
power.
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Answer  The downward force on the elevator is

F = m g + F
f
 = (1800 10) + 4000 = 22000 N

The motor must supply enough power to balance
this force.  Hence,

P = F. v = 22000  2 = 44000 W = 59 hp        

6.12  COLLISIONS

In physics we study motion (change in position).
At the same time, we try to discover physical
quantities, which do not change in a physical
process. The laws of momentum and energy
conservation are typical examples. In this
section we shall apply these laws to a commonly
encountered phenomena, namely collisions.
Several games such as billiards, marbles or
carrom involve collisions.We shall study the
collision of two masses in an idealised form.

Consider two masses m
1
 and m

2
.  The particle

m
1
 is moving with speed v

1i , the subscript ‘i’
implying initial. We can cosider m

2
  to be at rest.

No loss of generality is involved in making such
a selection. In this situation the  mass m

1

collides  with  the stationary  mass m
2
  and  this

is depicted in  Fig. 6.10.

Fig. 6.10 Collision of mass m
1
, with a stationary mass m

2
.

The masses m1 and m2 fly-off in different
directions.  We shall see that there are
relationships, which connect the masses, the
velocities and the angles.

6.12.1  Elastic and  Inelastic Collisions

In all collisions the total linear momentum is
conserved; the initial momentum of the system
is equal to the final momentum of the system.
One can argue this as follows.  When two objects
collide, the mutual impulsive forces acting over
the collision time t cause a change in their
respective momenta :

p1 = F12  t
p2 = F21  t

where F12 is  the force exerted on the first particle

by the second particle. F21 is likewise the force
exerted on the second particle by the first particle.
Now from Newton’s third law, F12 = F21.  This
implies

p1 + p2 =  0

The above conclusion is true even though the
forces vary in a complex fashion during the
collision time t. Since the third law is true at
every instant, the total impulse on the first object
is equal and opposite to that on the second.

On the other hand, the total kinetic energy of
the system is not necessarily conserved. The
impact and deformation during collision may
generate heat and sound. Part of the initial kinetic
energy is transformed into other forms of energy.
A useful way to visualise the deformation during
collision is in terms of a ‘compressed spring’. If
the ‘spring’ connecting the two masses regains
its original shape without loss in energy, then
the initial kinetic energy is equal to the final
kinetic energy but the kinetic energy during the
collision time t is not constant. Such a collision
is called an elastic collision. On the other hand
the deformation may not be relieved and the two
bodies could move together after the collision. A
collision in which the two particles move together
after the collision is called a completely inelastic
collision. The intermediate case where the
deformation is partly relieved and some of the
initial kinetic energy is lost is more common and
is appropriately called an inelastic collision.

6.12.2  Collisions in One Dimension

Consider first a completely inelastic collision
in one dimension. Then,  in Fig. 6.10,

 1 = 2 = 0

 m1v1i
 = (m1+m2)vf  

  (momentum conservation)

 
1

1
1 2

f i

m
v v

m m
 

                             (6.23)

The loss in kinetic energy on collision is

2 2
1 1 2

1 1
2 21i fK m v m m v    ( )

    

2
2 21

1 1 1
1 2

1 1
2 2i i

m
m v v

 m m
  

 
    [using Eq. (6.23)]

2 1
1 1

1 2

1
1

2 i

m
m v

m m
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21 2
1

1 2

1
2 i

m m
v

m m
 

 

which is a positive quantity as expected.

Consider next an elastic collision.  Using the
above nomenclature with 1 = 2 = 0, the
momentum and kinetic energy conservation
equations are

m1v1i
 = m1v1f

 + m2v2f
(6.24)

2 2 2
1 1 1 1 2 2i f fm v m v m v  (6.25)

From  Eqs. (6.24)  and (6.25) it follows that,

1 1 2 1 1 1 2 1( ) ( )i f i f f fm v v v m v v v   

or, 2 2
2 1 1 1 1( )f i f i fv v v v v   

1 1 1 1( )( )i f i fv v v v   

Hence,  2 1 1f i fv v v   (6.26)

Substituting this in Eq. (6.24), we obtain

1 2
1 1

1 2

( )
f i

m m
v v

m m

 
 

 (6.27)

and
1 1

2
1 2

2 i
f

m v
v

m m
 

 (6.28)

Thus, the ‘unknowns’ {v1f
, v

2f
} are obtained in

terms of the ‘knowns’ {m1, m2, v1i
}. Special cases

of our analysis are interesting.

Case I : If the two masses are equal

v1f
 = 0

v2f
 =  v1i

The first mass comes to rest and pushes off the
second mass with its initial speed on collision.

Case II : If one mass dominates, e.g. m2 > > m1

v1f
  ~  v1i

      v2f
 ~ 0

The heavier mass is undisturbed while the
lighter mass reverses its velocity.

6.12.3 Coefficent of Restitution

Let u1 and u2 be the velocities of the
bodies before collision and v1 and v2 their final
velocities after collision; all along the same
line in the same direction.

The coefficient of restitution (e) is de-
fined as the ratio of the relative velocity of

separation )( 12 vv    to the relative velocity

of approach )( 21 uu  , and  is denoted by “e”.

                        
21

12
uu
vv

e





“e” depends on the nature of colliding bodies.
When e=1 , implies a perfectly elastic collision
and  e=0 implies a perfectly inelastic collision,
The practical value of ‘e’ lies between ‘0’ and ‘1’.

Determination of Coefficent of Restitution

To determine the coefficient of restitu-
tion between two materials, one of them is taken
in the form of a small sphere.The small sphere
is dropped on a plate from a height “h1”.Let u be
its velocity when it hits  the plate. It rebounds
to a height “h2”after collision. Let the velocity of
the plate before and after collision  be zero i.e.
u2 =v2 =0.

We have 2111 22 ghvghu  ,
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Thus “e” is a number and  has no dimensions.

Example 6.12  Slowing down of neutrons:
In a nuclear reactor a neutron of high
speed (typically 107 m s–1) must be slowed
to 103 m s–1 so that it can have a high

probability of interacting with isotope 92
235U

and causing it to fission. Show that a
neutron can lose most of its kinetic energy
in an elastic collision with a light nuclei
like deuterium or carbon which has a mass
of only a few times the neutron mass.  The
material making up the light nuclei, usually
heavy water (D2O) or graphite, is called a
moderator.




h2

h1
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Answer  The initial kinetic energy of the neutron
is

2
1 1 1

1
2i iK m v 

while its final kinetic energy from Eq. (6.27)

2

2 21 2
1 1 1 1 1

1 2

1 1
2 2f f i

m m
K m v     m v

m m

   
       

The fractional kinetic energy lost is

2
1 1 2

1
1 1 2

f

i

K m m
f

K m m

   
       

while the fractional kinetic energy gained by the
moderating nuclei K

2f 
/K

1i  is

f2 = 1  f1 (elastic collision)

  
1 2

2
1 2

4m m

m m
 

 

One can also verify this result by substituting
from Eq. (6.28).

For deuterium m
2
 = 2m1 and we obtain

f1 = 1/9  while f
2
 = 8/9.  Almost 90% of the

neutron’s energy is transferred to deuterium. For
carbon f1 = 71.6% and f2 = 28.4%.  In practice,
however, this number is smaller since head-on
collisions are rare. 

If the initial velocities and final velocities of
both the bodies are along the same straight line,
then it is called a one-dimensional collision, or
head-on collision. In the case of small spherical
bodies, this is possible if the direction of travel
of body 1 passes through the centre of body 2
which is at rest. In general, the collision is two-
dimensional, where the initial velocities and the
final velocities lie in a plane.

6.12.4 Collisions in Two Dimensions

Fig. 6.10 also depicts the collision of a moving
mass m1 with the stationary mass m2. Linear
momentum is conserved in such a collision.
Since momentum is a vector this implies three
equations for the three directions {x, y, z}.
Consider the plane determined by the final
velocity directions of m1 

and m2 
and choose it to

be the x-y plane. The conservation of the
z-component of the linear momentum implies
that the entire collision is in the x-y plane. The

x- and y-component equations are

m1v1i
 = m1v1f

 cos 1 + m2v2f
 cos 2     (6.29)

0  = m1v1f
  sin 1   m2v2f

 sin 2        (6.30)

One knows {m1, m2, v1i
} in most situations.  There

are thus four unknowns {v1f
, v2f

, 1 
and 2}, and

only two equations. If  1 =  2 = 0, we regain
Eq. (6.24) for one dimensional collision.

If, further the collision is elastic,

2 2 2
1 1 1 1 2 2

1 1 1
2 2 2i f fm v m v m v  (6.31)

We obtain an additional equation. That still
leaves us one equation short.  At least one of
the four unknowns, say 1, must be made known
for the problem to be solvable. For example, 1

can be determined by moving a detector in an
angular fashion from the x  to the y  axis. Given
{m1, m2, v

1i
, 1} we can determine {v

1f
, v

2f
, 

2
}

from Eqs. (6.29)-(6.31).

Example 6.13  Consider the collision
depicted in Fig. 6.10 to be between two
billiard balls with equal masses m

1
 = m

2
.

The first  ball  is  called the cue while the
second ball is called the target. The
billiard player wants to ‘sink’ the target
ball in a corner pocket, which is at an
angle 2 = 37°. Assume that the collision
is elastic and that friction and rotational
motion are not important.  Obtain 1.

Answer   From momentum conservation, since
the masses are equal

2f1f1i vvv 

or     2
1 2 1 21iv     v v v vf f f f

          
2 2

1 2 1 22 .f f f fv v   v v

    2 2
1 2 1 2 1 2 cos  37  f f f fv v v v       

    (6.32)

Since the collision is elastic and m
1
 = m

2
 it follows

from conservation of kinetic energy that
2 2 2

1 1 2  i f fv v v                                       (6.33)

Comparing Eqs. (6.32) and (6.33), we get

cos (1 + 37°) = 0

or 1 + 37° = 90°

Thus,1 =
 53°
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This proves the following result :  when two equal
masses undergo a glancing elastic collision with
one of them at rest, after the collision, they will
move at right angles to each other.               

The matter simplifies greatly if we consider
spherical masses with smooth surfaces, and
assume that collision takes place only when the
bodies touch each other. This is what happens
in the games of marbles, carrom and billiards.

In our everyday world, collisions take place only

when two bodies touch each other. But consider
a comet coming from far distances to the sun, or
alpha particle coming towards a nucleus and
going away in some direction. Here we have to
deal with forces involving action at a distance.
Such an event is called scattering. The velocities
and directions in which the two particles go away
depend on their initial velocities as well as the
type of interaction between them, their masses,
shapes and sizes.

SUMMARY

1. The work-energy theorem states  that  the change in kinetic energy of a body is the work
done by the net force on the body.

Kf - Ki = Wnet

2. A  force is conservative if (i) work done by it on an object is path  independent and
depends only on the end points {xi, xj}, or (ii) the work done by the force is zero for an
arbitrary closed path taken by the object such that it returns to its initial position.

3. For a conservative force in one dimension, we may define a potential energy function V(x)
such that

F x
V x

x
( ) = −

( )d

d

or V V = F x  xi f
x

x

i

f

− ( )∫ d

4. The principle of conservation of mechanical energy states that the total mechanical
energy of a body remains constant if the only forces that act on the body are conservative.

5. The gravitational potential energy of a particle of mass m at a height x  about the earth’s
surface is

V(x) = m g x
where the variation of g with height is ignored.

6. The elastic potential energy of a spring of force constant k  and extension x is

V x    k x( ) =
1
2

2

7. The scalar or dot product of two vectors A and B is written as A.B  and is a scalar
quantity given by :A.B = AB cos  where is the angle between A and B.  It can be
positive, negative or zero depending upon the value of . The scalar product of two
vectors can be interpreted as the product of magnitude of one vector and component
of the other vector along the first vector. For unit vectors :

ˆ ˆ ˆ ˆ ˆ ˆi i j j k k⋅ = ⋅ = ⋅ = 1 and ˆ ˆ ˆ ˆ ˆ ˆi j j k k i⋅ = ⋅ = ⋅ = 0
Scalar products obey the commutative and  the distributive laws.
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POINTS TO PONDER

1. The phrase ‘calculate the work done’ is incomplete. We should refer (or imply
clearly by context) to the work done by a specific force or a group of forces on a
given  body over a certain displacement.

2. Work done is a scalar quantity. It can be positive or negative unlike mass and
kinetic energy which are positive scalar quantities. The work done by the friction
or viscous force on a moving body is negative.

3. For two bodies, the sum of the mutual forces exerted between them is zero from
Newton’s Third Law,

F12  +  F21  =  0

But the sum of the work done by the two forces need not always cancel, i.e.

W12  + W21    0

However, it may sometimes be true.
4. The work done by a force can be calculated sometimes even if the exact nature of

the force is not known. This is clear from Example 6.2 where the WE theorem is
used in such a situation.

5. The WE theorem is not independent of Newton’s Second Law. The WE theorem
may be viewed as a scalar form of the Second Law. The principle of conservation
of mechanical energy may be viewed as a consequence of the  WE theorem for
conservative forces.

6. The WE theorem holds in all inertial frames. It can also be extended to non-
inertial frames provided we include the pseudoforces in the calculation of the
net force acting on the body under consideration.

7. The potential energy of a body subjected to a conservative force is always
undetermined upto a constant. For example, the point where the potential
energy is zero is a matter of choice. For the gravitational  potential energy mgh,
the zero of the potential energy is chosen to be the ground. For the spring
potential energy kx2/2 , the zero of the potential energy is the equilibrium position
of the oscillating mass.

8. Every force encountered in mechanics does not have an associated potential
energy. For example, work done by friction over a closed path is not zero and no
potential energy can be associated with friction.

9. During a collision : (a) the total linear momentum is conserved at each instant of
the collision ; (b) the kinetic energy conservation (even if the collision is  elastic)
applies after the collision is over and does not hold at every instant of the collision.
In fact the two colliding objects are deformed and may be momentarily at rest
with respect to each other.
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EXERCISES

Very Short Answer Questions (2 Marks)

1. State the conditions under which a force does no work.
2. Define: Work, Power and Energy. State their SI units.
3. State the relation between the kinetic energy and momentum of a body.
4. State the sign of work done by a force in the following.

(a)  work done by a man in lifting a bucket out of a well by means of a rope tied to the
 bucket.

(b)  work done by gravitational force in the above case.
5. State the sign of work done by a force in the following.

(a)  work done by friction on a body sliding down an inclined plane.
(b)  work done by gravitational force in the above case.

6. State the sign of work done by a force in the following
(a)  work done by an applied force on a body moving on a rough horizontal plane with

 uniform velocity.
(b) work done by the resistive force of air on a vibrating pendulum in bringing it to rest.

7. State if each of the following statements is true or false. Give reasons for your
answer.
(a)  Total energy of a system is always conserved, no matter what internal and external

 forces on the body are present.
(b)  The work done by earth’s gravitational force in keeping the moon in its orbit for

 its one revolution is zero.
8. Which physical quantity remains constant

(i) in an elastic collision (ii) in am. inelastic collision?
9. A body freely falling from a certain height ‘h’, after striking a smooth floor rebounds

and h rises to a height h/2.  What is the coefficient of restitution between the floor
and the body?

10. What is the total displacement of a freely falling body, after successive rebounds
from the same place of ground, before it comes to stop? Assume that ‘e’ is the coefficient
of restitution between the body and the ground.

Short Answer Questions (4 Marks)

1. What is potential energy? Derive an expression for the gravitational potential energy.
2. A lorry and a car moving with the same momentum are brought to rest by the

application of brakes, which provide equal retarding forces. Which of them will come
to rest in shorter time? Which will come to rest in less distance?

3. Distinguish between conservative and non-conservative forces with one example each.
4. Show that in the case of one dimensional elastic collision, the relative velocity of

approach of two colliding bodies before collision is equal to the relative velocity of
separation after collision.

5. Show that two equal masses undergo oblique elastic collision will move at right
angles after collision, if the second body initially at rest.

6. Derive an expression for the height attained by a freely falling body after ‘n’ number
of rebounds from the floor.

7. Explain the law of conservation of energy?

Long Answer Questions (8 Marks)

1. Develop the notions of work and kinetic energy and show that it leads to work-
energy theorem.
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Additional Problems

6.1 The sign of work done by a force on a
body is important to understand.
State carefully if the following
quantities are positive or negative:
(a) work done by a man in lifting a

bucket out of a well by means of
a rope tied to the bucket.

(b) work done by gravitational force
in the above case,

(c) work done by friction on a body
sliding down an inclined plane,

(d) work done by an applied force on
a body moving on a rough
horizontal plane with uniform
velocity,

(e) work done by the resistive force
of air on a vibrating pendulum
in bringing it to rest.

6.2 A body of mass 2 kg initially at rest
moves under the action of an applied
horizontal force of 7 N on a table with
coefficient of kinetic friction = 0.1.
Compute the
(a) work done by the applied force in

10 s,
(b) work done by friction in 10 s,
(c) work done by the net force on the

body in 10 s,
(d) change in kinetic energy of the

body in 10 s,
and interpret your results.

6.3 Given in Fig. 6.11 are examples of
some potential energy functions in
one dimension. The total energy of the
particle is indicated by a cross on the
ordinate axis. In each case, specify
the regions, if any, in which the
particle cannot be found for the given
energy.  Also, indicate the minimum
total energy the particle must have
in each case. Think of simple physical
contexts for which these potential
energy shapes are relevant.

Fig. 6.11
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6.4 The potential energy function for a particle
executing linear simple harmonic motion is
given by V(x) = kx2/2, where k  is the force
constant of the oscillator.  For k  = 0.5 N m-1,
the graph of V(x)  versus  x  is shown in Fig.
6.12.  Show that a particle of total energy 1 J
moving under this potential must ‘turn back’
when it
reaches x  = ± 2 m.

     6.5 Answer the following :
(a) The casing of a rocket in flight burns

up due to friction.  At whose expense is
the heat energy required for burning
obtained?  The rocket or the
atmosphere?

(b) Comets move around the sun in highly
elliptical orbits.  The gravitational force
on the comet due to the sun is not
normal to the comet’s velocity in
general.  Yet the work done by the
gravitational force over every complete
orbit of the comet is zero.  Why ?

(c) An artificial satellite orbiting the earth
in very thin atmosphere loses its energy gradually due to dissipation against
atmospheric resistance, however small. Why  then does its speed increase
progressively as it comes closer and closer to the earth ?

(d) In Fig. 6.13(i) the man walks  2 m carrying a mass of 15 kg on his hands. In Fig.
6.13(ii), he walks the same distance pulling the rope behind him. The rope goes
over a pulley, and a mass of 15 kg hangs at its other end. In which case is the
work done greater ?

6.6 Underline the correct alternative :
(a) When a conservative force does positive work on a body, the potential energy of

the body increases/decreases/remains unaltered.
(b) Work done by a body against friction always results in a loss of its kinetic/

potential energy.
(c) The rate of change of total momentum of a many-particle system is proportional

to the external force/sum of the internal forces on the system.
(d) In an inelastic collision of two bodies, the quantities which do not change after

the collision are the total kinetic energy/total linear momentum/total energy
of the system of two bodies.

6.7 State if each of the following statements is true or false.  Give reasons for your
answer.
(a) In an elastic collision of two bodies, the momentum and energy of each body is

conserved.
(b) Total energy of a system is always conserved, no matter what internal and

external forces on the body are present.
(c) Work done in the motion of a body over a closed loop is zero for every force in

nature.
(d) In an inelastic collision, the final kinetic energy is always less than the initial

kinetic energy of the system.
6.8 Answer carefully, with reasons :

(a) In an elastic collision of two billiard balls, is the total kinetic energy conserved
during the short time of collision of the balls (i.e. when they are in contact) ?

(b) Is the total linear momentum conserved during the short time of an elastic
collision of two balls ?

(c) What are the answers to (a) and (b) for an inelastic collision ?
(d) If the potential energy of two billiard balls depends only on the separation

Fig. 6.12

Fig. 6.13
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distance between their centres, is the collision elastic or inelastic ?  (Note, we are
talking here of potential energy corresponding to the force during collision, not
gravitational potential energy).

6.9 A body is initially at rest. It undergoes one-dimensional motion with constant acceleration.
The power delivered to it at time t is proportional to
(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

6.10 A body is moving unidirectionally under the influence of a source of constant power.  Its
displacement in time t

 
is proportional to

(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

6.11 A body constrained to move along the z-axis of a coordinate system is subject to a
constant force F given by

Nˆ 3ˆ 2ˆ  kjiF 

where k ,j ,i ˆˆˆ  are unit vectors along the x-, y- and z-axis of the system respectively.  What

is the work done by this force in moving the body a distance of 4 m along the z-axis ?
6.12 An electron and a proton are detected in a cosmic ray experiment, the first with kinetic

energy 10 keV, and the second with 100 keV.  Which is faster, the electron or the proton
? Obtain the ratio of their speeds. (electron mass = 9.1110-31 kg, proton mass = 1.6710–

27 kg, 1 eV = 1.60 10–19 J).
6.13 A rain drop of radius 2 mm falls from a height of 500 m above the ground.  It falls with

decreasing acceleration (due to viscous resistance of the air) until at half its original
height, it attains its maximum (terminal) speed, and moves with uniform speed thereafter.
What is the work done by the gravitational force on the drop in the first and second half
of its journey ? What is the work done by the resistive force in the entire journey if its
speed on reaching the ground is 10 m s–1  ?

6.14 A molecule in a gas container hits a horizontal wall with speed 200 m s–1 and angle 30°
with the normal, and rebounds with the same speed.  Is momentum conserved in the
collision ?  Is the collision elastic or inelastic ?

6.15 A pump on the ground floor of a building can pump up water to fill a tank of volume 30 m3

in 15 min.  If the tank is 40 m above the ground, and the efficiency of the pump is 30%,
how much electric power is consumed by the pump ?

6.16 Two identical ball bearings in contact with each other and resting on a frictionless table
are hit head-on by another ball bearing of the same mass moving initially with a speed
V.  If the collision is elastic, which of the following  (Fig. 6.14) is a possible result after
collision ?

Fig. 6.14
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6.17 The bob A of a pendulum released from 30o to the vertical hits
another bob B of the same mass at rest on a table as shown in Fig.
6.15.  How high does the bob A rise after the collision ? Neglect the
size of the bobs and assume the collision to be elastic.

6.18 The bob of a pendulum is released from a horizontal position. If
the length of the pendulum is 1.5 m, what is the speed with which
the bob arrives at the lowermost point, given that it dissipated 5%
of its initial energy against air resistance ?

6.19 A trolley of mass 300 kg carrying a sandbag of 25 kg is moving
uniformly with a speed of 27 km/h on a frictionless track.  After a
while, sand starts leaking out of a hole on the floor of the trolley at
the rate of 0.05 kg s–1.  What is the speed of the trolley after the
entire sand bag is empty ?

6.20 A body of mass 0.5 kg travels in a straight line with velocity  v =a x3/2  where
a = 5 m–1/2  s–1.  What is the work done by the net force during its displacement from x = 0 to
x = 2 m ?

6.21 The blades of a windmill sweep out a circle of area A.  (a) If the wind flows at a velocity v
perpendicular to the circle, what is the mass of the air passing through it in time t ?  (b)
What is the kinetic energy of the air ?  (c) Assume that the windmill converts 25% of the
wind’s energy into electrical energy, and that A = 30 m2, v = 36 km/h and the density of air
is 1.2 kg m–3.  What is the electrical power produced ?

6.22 A person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a height
of  0.5 m each time. Assume that the potential energy lost each time she lowers the mass
is dissipated. (a) How much work does she do against the gravitational force ?  (b) Fat
supplies 3.8 × 107J of energy per kilogram which is converted to mechanical energy with a
20% efficiency rate.  How much fat will the dieter use up?

6.23 A family uses 8 kW of power. (a) Direct solar energy is incident on the horizontal surface at
an average rate of 200 W per square meter.  If 20% of this energy can be converted  to
useful  electrical  energy, how large an area is needed to supply 8 kW?  (b) Compare this
area to that of the roof of a typical house.

6.24 A bullet of mass 0.012 kg and horizontal speed 70 m s–1 strikes a block of wood of mass 0.4
kg and instantly comes to rest with respect to the block. The block is suspended from the
ceiling by means of thin wires. Calculate the height to which the block rises.  Also, estimate
the amount of heat produced in the block.

6.25 Two inclined frictionless tracks, one gradual and the other steep meet at A from where two
stones are allowed to slide down from rest, one on each track (Fig. 6.16). Will the stones
reach the bottom at the same time? Will they reach there with the same speed?  Explain.
Given 1 = 300,2 = 600, and h = 10 m, what are the speeds and times taken by the two
stones ?

Fig. 6.16

Fig. 6.15



PHYSICS146

6.26 A 1 kg block situated on a rough incline is connected to a spring of spring constant 100
N m–1 as shown in Fig. 6.17.  The block is released from rest with the spring in the
unstretched position. The block moves 10 cm down the incline before coming to rest.
Find the coefficient of friction between the block and the incline. Assume that the
spring has a negligible mass and the pulley is frictionless.

Fig. 6.17

6.27 A bolt of mass 0.3 kg falls from the ceiling of an elevator moving down with an uniform
speed of 7 m s–1.  It hits the floor of the elevator (length of the elevator = 3 m) and does
not rebound. What is the heat produced by the impact ? Would your answer be different
if the elevator were stationary ?

6.28 A trolley of mass 200 kg moves with a uniform speed of 36 km/h on a frictionless track.
A child of mass 20 kg runs on the trolley from one end to the other (10 m away) with a
speed of 4 m s–1 relative to the trolley in a direction opposite to the its motion, and
jumps out of the trolley. What is the final speed of the trolley ? How much has the
trolley moved from the time the child begins to run ?

6.29 Which of the following potential energy curves in Fig. 6.18 cannot possibly describe the
elastic collision of two billiard balls ?  Here r is the distance between centres of the balls.

Fig. 6.18



WORK, ENERGY AND POWER 147

6.30 Consider the decay of a free neutron at rest :  n p + e–

Show that the two-body decay of this type must necessarily give an electron of
fixed energy and, therefore, cannot account for the observed continuous energy
distribution in the -decay of a neutron or a nucleus (Fig. 6.19).

Fig. 6.19
[Note: The simple result of this exercise was one among the several arguments advanced

by W. Pauli to predict the existence of a third particle in the decay products of -
decay.  This particle is known as neutrino.  We now know that it is a particle of
intrinsic spin ½  (like e—, p or n), but is neutral, and either massless or having an
extremely small mass (compared to the mass of electron) and which interacts very
weakly with matter. The correct decay process of neutron is : n p + e – +  ]
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APPENDIX 6.1 : POWER CONSUMPTION IN WALKING

The table below lists the approximate power expended by an adult human of mass 60 kg.

Table 6.4 Approximate power consumption

Mechanical work must not be confused with the everyday usage of the
term work.  A woman standing with a very heavy load on her head may get
very tired.  But no mechanical work is involved. That is not to say that
mechanical work cannot be estimated in ordinary human activity.

Consider a person walking with constant speed v0. The mechanical work
he does may be estimated simply with the help of the work-energy theorem. Assume :
(a) The major work done in walking is due to the acceleration and deceleration of the legs with each stride

(See Fig. 6.20).
(b) Neglect air resistance.
(c) Neglect the small work done in lifting the legs against gravity.
(d) Neglect the swinging of hands etc. as is common in walking.

As we can see in Fig. 6.20, in each stride the leg is brought from rest to a speed, approximately equal to the
speed of walking, and then brought to rest again.

Fig. 6.20 An illustration of a single stride in walking. While the first leg is maximally off the round, the second leg
is on the ground and vice-versa

The work done by one leg in each stride is 2
0l v m   by the work-energy theorem. Here ml  is the mass of the leg.

Note 2/2
0l v m  energy is expended by one set of leg muscles to bring the foot from rest to speed v0 while an

additional 2/2
0l v m   is expended by a complementary set of leg muscles to bring the foot to rest from speed v0.

Hence work done by both legs in one stride is (study Fig. 6.20 carefully)

2
0ls v mW 2 (6.34)

Assuming ml = 10 kg and slow running of a nine-minute mile which translates to 3 m s-1 in SI units, we obtain
Ws 180 J/stride

If we take a stride to be 2 m long, the person covers 1.5 strides per second at his speed of  3 m s-1.  Thus the
power expended

     
second
stride

1.5
stride

J
180 P

        =  270 W

We must bear in mind that this is a lower estimate since several avenues of power loss (e.g. swinging of hands,
air resistance etc.) have been ignored.  The interesting point is that we did not worry about the forces involved.
The forces, mainly friction and those exerted on the leg by the muscles of the rest of the body, are hard to
estimate. Static friction does no work and we bypassed the impossible task of estimating the work done by the
muscles by taking recourse to the work-energy theorem. We can also see the advantage of a wheel. The wheel
permits smooth locomotion without the continual starting and stopping in mammalian locomotion.



CHAPTER SEVEN

SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

7.1 INTRODUCTION

In the earlier chapters we primarily considered the motion
of a single particle. (A particle is represented as a point mass.
It has practically no size.)  We applied the results of our
study even to the motion of bodies of finite size, assuming
that motion of such bodies can be described in terms of the
motion of a particle.

Any real body which we encounter in daily life has a
finite size.  In dealing with the motion of extended bodies
(bodies of finite size) often the idealised model of a particle is
inadequate.  In this chapter we shall try to go beyond this
inadequacy.  We shall attempt to build an understanding of
the motion of extended bodies.  An extended body, in the
first place, is a system of particles.  We shall begin with the
consideration of motion of the system as a whole.  The centre
of mass of a system of particles will be a key concept here.
We shall discuss the motion of the centre of mass of a system
of particles and usefulness of this concept in understanding
the motion of extended bodies.

A large class of problems with extended bodies can be
solved by considering them to be rigid bodies.  Ideally a rigid
body is a body with a perfectly definite and unchanging
shape.  The distances between all pairs of particles of such
a body do not change. It is evident from this definition of a
rigid body that no real body is truly rigid, since real bodies
deform under the influence of forces. But in many situations
the deformations are negligible.  In a number of situations
involving bodies such as wheels, tops, steel beams, molecules
and planets on the other hand, we can ignore that they warp,
bend or vibrate and treat them as rigid.

7.1.1 What kind of motion can a rigid body have?

Let us try to explore this question by taking some examples
of the motion of rigid bodies.  Let us begin with a rectangular
block sliding down an inclined plane without any sidewise

7.1 Introduction

7.2 Centre of mass

7.3 Motion of centre of mass

7.4 Linear momentum of a
system of particles

7.5 Vector product of two vectors

7.6 Angular velocity and its
relation with linear velocity

7.7 Torque and angular
momentum

7.8 Equilibrium of a rigid body

7.9 Moment of inertia

7.10 Theorems of perpendicular
and parallel axes

7.11 Dynamics of rotational
motion about a fixed axis

7.12 Angular momentum in case
of rotation about a fixed axis

7.13 Rolling motion
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Fig 7.23

Further, the direction of l is perpendicular
to the plane of r and v. It is into the page of the
figure.This direction does not change with time.

Thus, l remains the same in magnitude and
direction and is therefore conserved. Is there
any external torque on the particle? 

7.8  EQUILIBRIUM OF A RIGID BODY

We are now going to concentrate on the motion
of rigid bodies rather than on the motion of
general systems of particles.

We shall recapitulate what effect the external
forces have on a rigid body. (Henceforth we shall
omit the adjective ‘external’ because unless
stated otherwise, we shall deal with only
external forces and torques.) The forces change
the translational state of the motion of the rigid
body, i.e. they change its total linear momentum
in accordance with Eq. (7.18). But this is not
the only effect the forces have. The total torque
on the body may not vanish. Such a torque
changes the rotational state of motion of the rigid
body, i.e. it changes the total angular momentum
of the body in accordance with Eq. (7.32 b).

A rigid body is said to be in mechanical
equilibrium, if both its linear momentum and
angular momentum are not changing with time,
or equivalently, the body has neither linear
acceleration nor angular acceleration. This
means
(1) the total force, i.e. the vector sum of the

forces, on the rigid body is zero;

1 2
1

...
n

n i
i

    F F F F 0 (7.34a)

If the total force on the body is zero, then
the total linear momentum of the body does
not change with time. Eq. (7.34a) gives the
condition for the translational equilibrium
of the body.

(2) The total torque, i.e. the vector sum of the
torques on the rigid body is zero,

1 2
1

...
n

n i
i 

     0    (7.34b)

If the total torque on the rigid body is zero,
the total angular momentum of the body does
not change with time. Eq. (7.34 b) gives the
condition for the rotational equilibrium of the
body.

One may raise a question, whether the
rotational equilibrium condition [Eq. 7.34(b)]
remains valid, if the origin with respect to which
the torques are taken is shifted. One can show
that if the translational equilibrium condition
[Eq. 7.34(a)] holds for a rigid body, then such a
shift of origin does not matter, i.e. the rotational
equilibrium condition is independent of the
location of the origin about which the torques
are taken. Example 7.10 gives a proof of this
result in a special case of a couple, i.e. two forces
acting on a rigid body in translational
equilibrium. The generalisation of this result to
n forces is left as an exercise.

Eq. (7.34a) and Eq. (7.34b), both, are vector
equations. They are equivalent to three scalar
equations each. Eq. (7.34a) corresponds to

1

0
n

ix
i

F


 , 
1

0
n

iy
i

F


  and
1

0
n

iz
i

F


  (7.35a)

where F
ix
, F

iy
 and F

iz
 are respectively the x, y and

z components of the forces F
i
. Similarly, Eq.

(7.34b) is equivalent to three scalar equations

1

0
n

ix
i




 , 
1

0
n

iy
i




  and 
1

0
n

iz
i




   (7.35b)

where 
ix
, 

iy
  and  

iz 
are respectively the x, y and

z components of the torque i
 .

Eq. (7.35a) and (7.35b) give six independent
conditions to be satisfied for mechanical
equilibrium of a rigid body. In a number of
problems all the forces acting on the body are
coplanar. Then we need only three conditions
to be satisfied for mechanical equilibrium. Two
of these conditions correspond to translational
equilibrium; the sum of the components of the
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present section. To keep the discussion simple,
we shall consider rotation about a fixed axis
only. Let us try to get an expression for the
kinetic energy of a rotating body. We know
that for a body rotating about a fixed axis, each
particle of the body moves in a circle with linear
velocity given by Eq. (7.20). (Refer to Fig. 7.19).
For a particle at a distance from the axis, the

linear velocity is i ir  . The kinetic energy of
motion of this particle is

2 2 21 1
2 2i i i i ik m m r  

where m
i is the mass of the particle. The total

kinetic energy K of the body is then given by the
sum of the kinetic energies of individual
particles,

2 2

1 1

1
( )

2

n n

i i i
i i

K k m r 
 

  
Here n is the number of particles in the body.

Note is the same for all particles. Hence, taking
out of the sum,

2 2

1

1
( )

2

n

i i
i

K m r


 

We define a new parameter characterising
the rigid body, called the moment of inertia I ,
given by

2

1

n

i i
i

I m r


  (7.37)

With this definition,

21
2

K I (7.38)

Note that the parameter I is independent of
the magnitude of the angular velocity. It is a
characteristic of the rigid body and the axis
about which it rotates.

Compare Eq. (7.38) for the kinetic energy of
a rotating body with the expression for the
kinetic energy of a body in linear (translational)
motion,

21
2

K m 

Here m is the mass of the body and v is its
velocity. We have already noted the analogy
between angular velocity  (in respect of rotational
motion about a fixed axis) and linear velocity v (in
respect of linear motion). It is then evident that

the parameter, moment of inertia I, is the desired
rotational analogue of mass. In rotation (about
a fixed axis), the moment of inertia plays a similar
role as mass does in linear motion.

We now apply the definition Eq. (7.37), to
calculate the moment of inertia in two simple
cases.
(a) Consider a thin ring of radius R and mass

M, rotating in its own plane around its
centre with angular velocity . Each mass
element of the ring is at a distance R from
the axis, and moves with a speed R.  The
kinetic energy is therefore,

2 2 21 1
2 2

K M MR  

Comparing with Eq. (7.35) we get I = MR 2  for
the ring.

Fig. 7.28 A light rod of length l with a pair of masses
rotating about an axis through the centre of
mass of the system and perpendicular to the
rod. The total mass of the system is M.

(b) Next, take a rigid massless rod of length l
with a pair of small masses, rotating about
an axis through the centre of mass
perpendicular to the rod (Fig. 7.28). Each
mass M/2 is at a distance l/2 from the axis.
The moment of inertia of the masses is
therefore given by

(M/2) (l/2)2 + (M/2)(l/2)2

Thus, for the pair of masses, rotating about
the axis through the centre of mass
perpendicular to the rod

I = Ml 2 / 4
Table 7.1 gives the moments of inertia of various
familiar regular shaped solids about specific
axes.

As the mass of a body resists a change in its
state of linear motion, it is a measure of its inertia
in linear motion. Similarly, as the moment of
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Table 7.1 Moments of Inertia of some regular shaped bodies about specific axes

Z Body Axis Figure I

(1) Thin circular Perpendicular to M R 2

ring, radius R plane, at centre

(2) Thin circular Diameter M R2/2
ring, radius R

(3) Thin rod, Perpendicular to M L2/12
length  L rod, at mid point

(4) Circular disc, Perpendicular to M R2/2
radius R disc at centre

(5) Circular disc, Diameter M R2/4
radius R

(6) Hollow cylinder, Axis of cylinder M R2

radius R

(7) Solid cylinder, Axis of cylinder M R2/2
radius R

(8) Solid sphere, Diameter 2 M R2/5
radius R

inertia about a given axis of rotation resists a
change in its rotational motion, it can be
regarded as a measure of rotational inertia of
the body; it is a measure of the way in which
different parts of the body are distributed at
different distances from the axis. Unlike the

mass of a body, the moment of inertia is not a
fixed quantity but depends on the orientation
and position of the axis of rotation with respect
to the body as a whole. As a measure of the way
in which the mass of a rotating rigid body is
distributed with respect to the axis of rotation,
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CHAPTER EIGHT

OSCILLATIONS

8.1 INTRODUCTION

In our daily life we come across various kinds of motions.
You have already learnt about some of them, e.g. rectilinear
motion and motion of a projectile. Both these motions are
non-repetitive. We have also learnt about uniform circular
motion and orbital motion of planets in the solar system. In
these cases, the motion is repeated after a certain interval of
time, that is, it is periodic. In your childhood you must have
enjoyed rocking in a cradle or swinging on a swing. Both
these motions are repetitive in nature but different from the
periodic motion of a planet. Here, the object moves to and fro
about a mean position. The pendulum of a wall clock executes
a similar motion. Examples of such periodic to and fro motion
abound : a boat tossing up and down in a river, the piston in
a steam engine going back and forth, etc. Such a motion is
termed as oscillatory motion. In this chapter we study this
motion.

The study of oscillatory motion is basic to physics; its
concepts are required for the understanding of many physical
phenomena. In musical instruments like the sitar, the guitar
or the violin, we come across vibrating strings that produce
pleasing sounds. The membranes in drums and diaphragms
in telephone and speaker systems vibrate to and fro about
their mean positions. The vibrations of air molecules make
the propagation of sound possible. In a solid, the atoms vibrate
about their equilibrium positions, the average energy of
vibrations being proportional to temperature. AC power
supply gives voltage that oscillates alternately going positive
and negative about the mean value (zero).

The description of a periodic motion in general, and
oscillatory motion in particular, requires some fundamental
concepts like period, frequency, displacement, amplitude and
phase. These concepts are developed in the next section.

8.1 Introduction

8.2 Periodic and oscillatory
motions

8.3 Simple harmonic motion

8.4 Simple harmonic motion
and uniform circular
motion

8.5 Velocity and acceleration
in simple harmonic motion

8.6 Force law for simple
harmonic motion

8.7 Energy in simple harmonic
motion

8.8 Some systems executing
SHM

8.9 Damped simple harmonic
motion

8.10 Forced oscillations and
resonance

Summary
Points to ponder
Exercises



A n y m aterial m ediu m  can  be pictu red as a

collection  of a  la rge n u m b er of cou p led
oscillators. Th e collective oscillation s of th e

con stitu en ts of a m ediu m  m an ifest th em selves

as w aves.  E xam ples of w aves in clu de w ater
w aves, seism ic w aves, electrom agn etic w aves.

W e sh all stu dy th e w ave ph en om en on  in  th e

later ch apters.
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the value of the function remains the same. The
function f (t ) is then periodic and its period, T,
is given by

    
2

=  T     (8.3b)

Thus, the function f (t) is periodic with period T,

f (t) = f (t+T )

The same result is obviously correct if we
consider a sine function, f (t ) = A sin t. Further,
a linear combination of sine and cosine functions
like,

       f (t )  =  A sin t + B cos t                 (8.3c)
is also a periodic function with the same period
T. Taking,

A = D cos  and  B = D sin 

Eq. (8.3c) can be written as,

f (t) = D sin (t + ) ,                        (8.3d)

Here D and  are constants given by

2 2 1and tan
B–D = A + B    
A

           

The great importance of periodic sine and
cosine functions is due to a remarkable result
proved by the French mathematician, Jean
Baptiste Joseph Fourier (1768-1830): Any
periodic function can be expressed as a
superposition of sine and cosine functions
of different time periods with suitable
coefficients.

 Example 8.2   Which of the following
functions of time represent (a) periodic and
(b) non-periodic motion? Give the period for
each case of periodic motion [ is any
positive constant].
(i) sin t + cos t
(ii) sin t + cos 2 t + sin 4 t
(iii) e–t

(iv) log (t)

Answer

(i) sin t + cos t is a periodic function, it can

also be written as 2  sin (t + /4).

Now 2  sin (t +/4)= 2  sin (t + /4+2)

       = 2  sin [ (t + 2/) + /4]

The periodic time of the function is 2/.

(ii) This is an example of a periodic motion. It
can be noted that each term represents a
periodic function with a different angular
frequency. Since period is the least interval
of time after which a function repeats its
value, sin t has a period T0= 2/ ; cos 2 t
has a period / =T

0
/2; and sin 4 t has a

period 2/4 = T
0
/4. The period of the first

term is a multiple of the periods of the last
two terms. Therefore, the smallest interval
of time after which the sum of the three
terms repeats is T0, and thus the sum is a
periodic function with a period 2/.

(iii) The function e–t is not periodic, it
decreases monotonically with increasing
time and tends to zero as t   and thus,
never repeats its value.

(iv) The function log(t) increases mono-
tonically with time t. It, therefore, never
repeats its value and is a non-periodic
function. It may be noted that as t  ,
 log(t) diverges to . It, therefore, cannot
represent any kind of physical
displacement.               

8.3 SIMPLE HARMONIC MOTION

Consider a particle oscillating back and forth
about the origin of an x-axis between the limits
+A and –A as shown in Fig. 8.3. This oscillatory
motion is said to be simple harmonic if the

Fig. 8.3 A particle vibrating back and forth about
the origin of x-axis, between the limits +A
and –A.

displacement x of the particle from the origin
varies with time as :

x (t) = A cos (t + ) (8.4)
where A,  and  are constants.

Thus, simple harmonic motion (SHM) is not
any periodic motion but one in which
displacement is a sinusoidal function of time.
Fig. 8.4 shows what the positions of a particle
executing SHM are at discrete value of time, each
interval of time being T/4 where T is the period

 x - + xo
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P

P

P

P

P

of motion. Fig. 8.5 plots the graph of x versus t,
which gives the values of displacement as a
continuous function of time. The quantities A,
 and  which characterize a given SHM have
standard names, as summarised in Fig. 8.6. Let
us understand these quantities.

The amplitutde A of SHM is the magnitude
of maximum displacement of the particle.
[Note, A can be taken to be positive without
any loss of generality]. As the cosine function
of time varies from +1 to –1, the displacement
varies between the extremes A and – A. Two
simple harmonic motions may have same 
and  but different amplitudes A and B, as
shown in Fig. 8.7 (a).

Fig. 8.4 The location of the particle (P) in SHM at
the discrete values t = 0, T/4, T/2, 3T/4,
T, 5T/4. The time after which motion
repeats itself is T. T will remain fixed, no
matter what location you choose as the
initial (t = 0) location. The speed is
maximum for zero displacement (at x = 0)
and zero at the extremes of motion.

Fig. 8.5 Displacement as a continuous function of
time for simple harmonic motion.

Fig. 8.7 (b) A plot obtained from Eq. (8.4). The curves
3 and 4 are for  = 0 and/4
respectively. The amplitude A is same for
both the plots.

Fig. 8.7 (a) A plot of displacement as a function of
time as obtained from Eq. (8.4) with
 = 0. The curves 1 and 2 are for two
different amplitudes A and B.

x (t) : displacement x as a function of time t
A : amplitude
 : angular frequency
t +  : phase (time-dependent)
 : phase constant

Fig. 8.6  The meaning of standard symbols
in Eq. (8.4)

While the amplitude A is fixed for a given
SHM, the state of motion (position and velocity)
of the particle at any time t is determined by the
argument (t + ) in the cosine function. This
time-dependent quantity, (t + ) is called the
phase of the motion. The value of phase at t = 0
is  and is called the phase constant (or phase
angle). If the amplitude is known,  can be
determined from the displacement at t = 0. Two
simple harmonic motions may have the same A
and  but different phase angle , as shown in
Fig. 8.7 (b).
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Fig. 8.14

Answer Let the mass be displaced by a small
distance x to the right side of the equilibrium
position, as shown in Fig. 8.15. Under this
situation the spring on the left side gets

Fig. 8.15

elongated by a length equal to x and that on
the right side gets compressed by the same
length. The forces acting on the mass are
then,

F
1
   = –k x (force exerted by the spring on

the left side, trying to pull the
mass towards the mean
position)

F
2 
  =

  
–k x (force exerted by the spring on

the right side, trying to push the
mass towards the mean
position)

The net force, F, acting on the mass is then
given by,

F   = –2kx

Hence the force acting on the mass is
proportional to the displacement and is directed
towards the mean position; therefore, the motion
executed by the mass is simple harmonic. The
time period of oscillations is,

T = 2  
m

2k
 

8.7 ENERGY IN SIMPLE HARMONIC
MOTION

Both kinetic and potential energies of a particle
in SHM vary between zero and their maximum
values.

In section 8.5 we have seen that the velocity
of a particle executing SHM, is a periodic
function of time. It is zero at the extreme positions
of displacement. Therefore, the kinetic energy (K)
of such a particle, which is defined as

2

2
1

mv =  K

2 2 21
sin ( + )

2
= m A  t    

2
 

1
sin ( + )

2
2=  k A t       (8.15)

is also a periodic function of time, being zero
when the displacement is maximum and
maximum when the particle is at the mean
position. Note, since the sign of v is immaterial
in K, the period of K is T/2.

What is the potential energy (U) of a particle
executing simple harmonic motion? In
Chapter 6, we have seen that the concept of
potential energy is possible only for conservative
forces. The spring force F = –kx is a conservative
force, with associated potential energy

21
2

U = k x (8.16)

Hence the potential energy of a particle
executing simple harmonic motion is,

U(x)  =   2

2
1

x k 

         
2 2

 
1

cos ( + )
2

= k A t    (8.17)

Thus, the potential energy of a particle
executing simple harmonic motion is also
periodic, with period T/2, being zero at the mean
position and maximum at the extreme
displacements.
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CHAPTER NINE

GRAVITATION

9.1 INTRODUCTION

Early in our lives, we become aware of the tendency of all
material objects to be attracted towards the earth.  Anything
thrown up falls down towards the earth, going uphill is lot
more tiring than going downhill, raindrops from the clouds
above fall towards the earth and  there are many other such
phenomena.  Historically it was the Italian Physicist Galileo
(1564-1642) who recognised the fact that all bodies,
irrespective of their masses, are accelerated towards the earth
with a constant acceleration.  It is said  that he made a public
demonstration of this fact.  To find the truth, he certainly did
experiments with bodies rolling down inclined planes and
arrived at a value of the acceleration due to gravity which is
close to the more accurate value obtained later.

A seemingly unrelated phenomenon, observation of stars,
planets and their motion has been the subject of attention in
many countries since the earliest of times.  Observations since
early times recognised stars which appeared in the sky with
positions unchanged year after year.  The more interesting
objects are the planets which seem to have regular motions
against the background of stars.  The earliest recorded model
for planetary motions proposed by Ptolemy about 2000 years
ago was a ‘geocentric’ model in which all celestial objects,
stars, the Sun and the planets, all revolved around the earth.
The only motion that was thought to be possible for celestial
objects was motion in a circle.  Complicated schemes of motion
were put forward by Ptolemy in order to describe the observed
motion of the planets.  The planets were described as moving
in circles with the centre of the circles themselves moving in
larger circles.  Similar theories were also advanced by Indian
astronomers some 400 years later.  However a more elegant
model in which the Sun was the centre around which the
planets revolved – the ‘heliocentric’ model – was already
mentioned by Aryabhatta (5th century A.D.) in his treatise. A
thousand years later, a Polish monk named Nicolas

9.1 Introduction
9.2 Kepler’s laws
9.3 Universal law of

gravitation
9.4 The gravitational

constant
9.5 Acceleration due to

gravity of the earth
9.6 Acceleration due to

gravity below and above
the surface of earth

9.7 Gravitational potential
energy

9.8 Escape speed
9.9 Earth satellites
9.10 Energy of an orbiting

satellite
9.11 Geostationary and polar

satellites
9.12 Weightlessness

Summary
Points to ponder
Exercises
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CHAPTER TEN

MECHANICAL PROPERTIES OF SOLIDS

10.1 INTRODUCTION

In Chapter 7, we studied the rotation of the bodies and then
realised that the motion of a body depends on how mass is
distributed within the body.  We restricted ourselves to simpler
situations of rigid bodies.  A rigid body generally means a
hard solid object having a definite shape and size.  But in
reality,  bodies can be stretched, compressed and bent. Even
the  appreciably  rigid  steel bar can be deformed when a
sufficiently large external force is applied on it.  This means
that solid bodies are not perfectly rigid.

A solid has  definite shape and size. In order to change (or
deform) the shape or size of a body, a force  is required. If
you stretch a helical spring by gently pulling its ends, the
length of the spring increases slightly. When you leave the
ends of the spring, it regains its original size and shape.  The
property of a body, by virtue of  which  it tends to regain
its original size and shape when the applied force is
removed, is known as elasticity and the deformation
caused is known as elastic deformation. However, if you
apply force to a lump of dough or clay, they have no gross
tendency to regain their previous shape, and they get
permanently deformed. Such substances are called plastic
and this property is called plasticity. Dough and clay are
close to ideal plastics.

 The elastic behaviour of materials plays an important role
in engineering design.  For example, while designing a
building, knowledge of elastic properties of materials like steel,
concrete etc. is essential.  The same is true in the design of
bridges, automobiles, ropeways etc.  One could also ask  —
Can we design an aeroplane which is very  light  but
sufficiently  strong?  Can we design an artificial limb which
is lighter but stronger?  Why does a railway track have a
particular shape  like I?  Why  is glass brittle while brass is
not?  Answers to such questions begin with the study of how
relatively  simple kinds of loads or forces act to deform
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10.6.3 Shear Modulus

The ratio of shearing stress to the corresponding
shearing strain is called the shear modulus of
the material and is represented by G. It is also
called the modulus of rigidity.

G  = shearing stress (s)/shearing strain
G  = (F/A)/(x/L)
    = (F  L)/(A  x) (10.10)

Similarly, from Eq. (10.3 or 10.4)
G  = (F/A)/
     = F/(A  ) (10.11)

The shearing stress s can also be expressed as
s  =  G    (10.12)
SI unit of shear modulus is N m–2 or Pa. The

shear moduli of a few common materials are
given in Table 10.2. It can be seen that shear
modulus (or modulus of rigidity) is generally less
than Young’s modulus (from Table 10.1). For most
materials G  Y/3.

Table 10.2 Shear moduli (G) of some common
materials

Material G (109 Nm–2

or GPa)

Aluminium 25
Brass 36
Copper 42
Glass 23
Iron 70
Lead 5.6
Nickel 77
Steel 84
Tungsten 150
Wood 10

 Example 10.4 A square lead slab of side
50 cm and thickness 10 cm is subject to a
shearing force (on its narrow face) of 9.0 
104 N. The lower edge is riveted to the floor.
How much will the upper edge be displaced?

Answer  The lead slab is fixed and the force is
applied parallel to the narrow face as shown in
Fig. 10.7. The area of the face parallel to which
this force is applied is

 A  = 50 cm  10 cm
                 = 0.5 m  0.1 m

= 0.05 m2

Therefore, the stress applied is
    = (9.4   104 N/0.05 m2)

                         = 1.80  106 N.m–2

Fig. 10.7

We know that shearing strain = (x/L)= Stress /G.
Therefore the displacement x = (Stress  L)/G
 = (1.8  106 N m–2 0.5m)/(5.6  109 N m–2)
 = 1.6  10–4 m = 0.16 mm 

10.6.4  Bulk Modulus

In Section (10.3), we have seen that when a body
is submerged in a fluid, it undergoes a hydraulic
stress (equal in magnitude to the hydraulic
pressure). This leads to the decrease in the
volume of the body thus producing a strain called
volume strain [Eq. (10.5)]. The ratio of hydraulic
stress to the corresponding hydraulic strain is
called bulk modulus. It is denoted by symbol B.

B = – p/(V/V) (10.13)

The negative sign indicates the fact that with
an increase in pressure, a decrease in volume
occurs. That is, if p is positive, V is negative.
Thus for a system in equilibrium, the value of
bulk modulus B is always positive. SI unit of bulk
modulus is the same as that of pressure i.e., N
m–2 or Pa. The bulk moduli of a few common
materials are given in Table 10.3.

The reciprocal of the bulk modulus is called
compressibility and is denoted by k. It is defined
as the fractional change in volume per unit
increase in pressure.

k = (1/B) = – (1/p)  (V/V)      (10.14)

It can be seen from the data given in Table 10.3
that the bulk moduli for solids are much larger
than for liquids, which are again much larger
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10.18 A rod of length 1.05 m having negligible mass is supported at its ends by two wires of
steel (wire A) and aluminium (wire B) of equal lengths as shown in
Fig. 10.15. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2,
respectively. At what point along the rod should a mass m be suspended in order to
produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.

Fig. 10.15

10.19 A mild steel wire of length 1.0 m and cross-sectional area 0.50  10-2 cm2 is stretched,
well within its elastic limit, horizontally between two pillars. A mass of 100 g is suspended
from the mid-point of the wire. Calculate the depression at the mid-point.

10.20 Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0
mm. What is the maximum tension that can be exerted by the riveted strip if the shearing
stress on the rivet is not to exceed 6.9  107 Pa? Assume that each rivet is to carry one
quarter of the load.

10.21 The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven
km beneath the surface of water. The water pressure at the bottom of the trench is
about 1.1  108 Pa. A steel ball of initial volume 0.32 m3 is dropped into the ocean and
falls to the bottom of the trench. What is the change in the volume of the ball when it
reaches to the bottom?
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CHAPTER ELEVEN

MECHANICAL PROPERTIES OF FLUIDS

11.1 INTRODUCTION

In this chapter, we shall study  some common
physical properties of liquids and gases. Liquids and gases
can  flow and are therefore, called  fluids.  It is this property
that distinguishes liquids and gases from solids in a basic
way.

Fluids are everywhere around us. Earth has an envelope
of air and two-thirds of its surface is covered with water.
Water is not only necessary for our existence; every
mammalian body consists mostly of water. All the  processes
occurring in living beings including plants are mediated by
fluids. Thus understanding the behaviour and properties of
fluids is important.

How are fluids different from solids? What is common in
liquids and gases? Unlike  a solid, a fluid has no definite
shape of its own. Solids and liquids have a fixed volume,
whereas a gas fills the entire volume of its container. We
have learnt in the previous chapter that the volume of solids
can be changed by stress. The volume of solid, liquid or gas
depends on the stress or pressure acting on it. When we
talk about fixed volume of solid or liquid, we mean its volume
under atmospheric pressure. The difference between gases
and solids or liquids is that for solids or liquids the change
in volume due to  change of external pressure is rather small.
In other words solids and liquids have much lower
compressibility as compared to gases.

Shear stress can change the shape of a solid keeping its
volume fixed. The key property of fluids is that they offer very
little resistance to shear stress; their shape changes by
application of very small shear stress. The shearing stress of
fluids is about million times smaller than that of solids for
the same change.

11.2  PRESSURE
A sharp needle when pressed against our skin pierces it. Our
skin, however, remains intact when a blunt object with a
wider contact area (say the back of a spoon) is pressed against
it with the same force. If an elephant were to step on a man’s
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11.6 Reynolds number
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Example 11.1   The two thigh bones
(femurs), each of cross-sectional area10 cm2

support the upper part of a human body of
mass 40 kg. Estimate the average pressure
sustained by the femurs.

Answer   Total cross-sectional area of the
femurs is A = 2  10 cm2 = 20  10–4 m2. The
force acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s–2). This force is acting
vertically down and hence, normally on the
femurs. Thus, the average pressure is

25 m N 10  2    
A

F
Pav                             

11.2.1 Pascal’s Law

The French scientist Blaise Pascal observed that
the pressure in a fluid at rest is the same at
all points if they are at the same height. This
fact  may be demonstrated in a simple way.

Fig. 11.2 shows an element in the interior of
a fluid at rest. This element ABC-DEF is in the
form of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be considered at the same depth
from the liquid surface and therefore, the effect
of the gravity is the same at all these points.
But, for clarity, we have enlarged this element.
The forces on this element are those exerted by
the rest of the fluid and they must be normal to
the surfaces of the element as discussed above.
Thus, the fluid exerts pressures Pa, Pb and Pc on

this element of area corresponding to the normal
forces Fa, Fb and Fc as shown in Fig. 11.2 on the
faces BEFC, ADFC and ADEB denoted by Aa, Ab

and Ac respectively. Then
Fb sin = Fc, Fb cos = Fa (by equilibrium)
Ab sin = Ac, Ab cos = Aa (by geometry)

Thus,

;b c a
b c a

b c a

F F F
P P P

A A A
    (11.4)

Hence, pressure exerted is same in all
directions in a fluid at rest. It again reminds us
that like other types of stress, pressure is not a
vector quantity. No direction can be assigned
to it.  The force against any area within (or
bounding) a fluid at rest and under pressure is
normal to the area, regardless of the orientation
of the area.

Now consider a fluid element in the form of a
horizontal bar of uniform cross-section. The bar
is in equilibrium. The horizontal forces exerted
at its two ends  must be balanced or the
pressure at the two ends should be equal. This
proves that for a liquid in equilibrium the
pressure is same at all points in a horizontal
plane. Suppose the pressure were not equal in
different parts of the fluid, then there would be
a flow as the  fluid will have some net force
acting on it. Hence in the absence of flow the
pressure in the fluid must be same everywhere.
Wind is flow of air due to pressure differences.

11.2.2 Variation of Pressure with Depth

Consider a fluid at rest in a container. In
Fig. 11.3 point 1 is at height h above a point 2.
The pressures at points 1 and 2 are P1 and P2

respectively. Consider a cylindrical element of
fluid having area of base A and height h. As the
fluid is at rest the resultant horizontal forces
should be zero and the resultant vertical forces
should balance the weight of the element. The
forces acting in the vertical direction are due to
the fluid pressure at the top (P1A) acting
downward, at the bottom (P2A) acting upward.
If mg is weight of the fluid in the cylinder, we
have

(P2  P1) A = mg (11.5)
Now, if  is the mass density of the fluid, we

have the mass of fluid to be m = V=hA so that
P2  P1= gh (11.6)

Fig. 11.2 Proof of Pascal’s law. ABC-DEF is an
element of the interior of a fluid at rest.
This element is in the form of a right-
angled prism. The element is small so that
the effect of gravity can be ignored, but it
has been enlarged for the sake of clarity.
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Pa = gh  = pressure at A (11.8)
where  is the density of mercury and h is the
height of the mercury column in the tube.

In the experiment it is found that the mercury
column in the barometer has a height of about
76 cm at sea level equivalent to one atmosphere
(1 atm). This can also be obtained using the
value of  in Eq. (11.8). A common way of stating
pressure is in terms of cm or mm of mercury
(Hg). A pressure equivalent of 1 mm is called a
torr (after Torricelli).

1 torr = 133 Pa.
The mm of Hg and torr are used in medicine

and physiology. In meteorology, a common unit
is the bar and millibar.

1 bar = 105 Pa
An open-tube manometer is a useful

instrument for measuring pressure differences.
It consists of a U-tube containing a suitable
liquid i.e. a low density liquid (such as oil) for
measuring small pressure differences and a
high density liquid (such as mercury) for large
pressure differences. One end of the tube is open
to the atmosphere and other end is connected
to the system whose pressure we want to
measure [see Fig. 11.5 (b)]. The pressure P at A
is equal to pressure at point B.  What we

normally measure is the gauge pressure, which
is P  Pa, where Pa is given by Eq. (11.8) and is
proportional to manometer height h.

Pressure is same at the same level on both
sides of the U-tube containing a fluid.  For
liquids the density varies very little over wide
ranges in pressure and temperature and we can
treat it safely as a constant for our present
purposes. Gases on the other hand, exhibit large
variations of densities with changes in pressure
and temperature. Unlike gases, liquids are
therefore, largely treated as incompressible.

Example 11.3 The density of the
atmosphere at sea level is 1.29 kg/m3.
Assume that it does not change with
altitude. Then how high would the
atmosphere extend?

Answer We use Eq. (11.7a)

gh  =  1.29 kg m–3  9.8 m s2  h  m = 1.01  105 Pa

 h = 7989 m  8 km

In reality the density of air decreases with
height. So does the value of g. The atmospheric
cover extends with decreasing pressure over
100 km. We should also note that the sea level
atmospheric pressure is not always 760 mm of
Hg. A drop in the Hg level by 10 mm or more is
a sign of an approaching storm. 

Example 11.4 At a depth of 1000 m in an
ocean (a) what is the absolute pressure?
(b) What is the gauge pressure? (c) Find
the force acting on the window of area
20 cm  20 cm of a submarine at this depth,(a) The mercury barometer.

(b) the open tube manometer

Fig 11.5  Two pressure measuring devices.
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combustion. Filter pumps or aspirators, Bunsen
burner, atomisers and sprayers [See Fig. 11.12]
used for perfumes or to spray insecticides work
on the same principle.

Example 11.7 Blood velocity: The flow of
blood in a large artery of an anesthetised
dog is diverted through a Venturi meter. The
wider part of the meter has a cross-
sectional area equal to that of the artery.
A = 8 mm2. The narrower part has an area
a = 4 mm2. The pressure drop in the artery
is 24 Pa. What is the speed of the blood in
the artery?

Answer  We take the density of blood from Table
11.1 to be 1.06  103 kg m-3. The ratio of the areas

is 







a
A

 = 2. Using Eq. (11.17) we obtain

 
1

23
1 sm125.0

12mkg1060

242 









Pa 

11.4.3 Blood Flow and Heart Attack

Bernoulli’s principle helps in explaining blood
flow in artery. The artery may get constricted
due to the accumulation of plaque on its inner
walls. In order to drive the blood through this
constriction a greater demand is placed on the
activity of the heart. The speed of the flow of the
blood in this region is raised which lowers the
pressure inside and the artery may collapse due
to the external pressure. The heart exerts
further pressure to open this artery and forces
the blood through. As the blood rushes through
the opening, the internal pressure once again

drops due to same reasons leading to a repeat
collapse. This may result in heart attack.

11.4.4 Dynamic Lift

Dynamic lift is the force that acts on a body,
such as airplane wing, a hydrofoil or a spinning
ball, by virtue of its motion through a fluid. In
many games such as cricket, tennis, baseball,
or golf, we notice that a spinning ball deviates
from its parabolic trajectory as it moves through
air. This deviation can be partly explained on
the basis of Bernoulli’s principle.
(i) Ball moving without spin: Fig. 11.13(a)

shows the streamlines around a non-
spinning ball  moving relative to a fluid.
From the symmetry of streamlines it is clear
that the velocity of fluid (air) above and below
the ball at corresponding points is the same
resulting in zero pressure difference. The
air therefore, exerts no upward or downward
force on the ball.

(ii) Ball moving with spin: A ball which is
spinning drags air along with it. If the surface
is rough more air will be dragged. Fig 11.13(b)
shows  the streamlines of air for a ball which
is moving(with velocity v to the right) and
spinning(with vr clockwise)  at the same time.
The ball is moving forward and relative to it,
the air is moving backwards. Therefore, the
velocity of air above the ball relative to it is
larger(v + vr) and below it is smaller(v-vr). The
stream lines thus get crowded above and
rarified below.

This difference in the velocities of air results
in the pressure difference between the lower and
upper faces and there is a net upward force on

(a) (b) (c)

Fig 11.13 (a) Fluid streaming past a static sphere. (b) Streamlines for a fluid around a sphere spinning  clockwise.
(c) Air flowing past an aerofoil.
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bulk, i.e., the one fully inside. Approximately it
is half of the latter. Thus, molecules on a liquid
surface have some extra energy in comparison
to molecules in the interior.  A liquid thus tends
to have the least surface area which external
conditions permit. Increasing surface area
requires energy. Most surface phenomenon can
be understood in terms of this fact. What is the
energy required for having a molecule at the
surface? As mentioned above, roughly it is half
the energy required to remove it entirely from
the liquid i.e., half the heat of evaporation.

Finally, what is a surface? Since a liquid
consists of molecules moving about, there cannot
be a perfectly sharp surface. The density of the
liquid molecules drops rapidly to zero around
z = 0 as we move along the direction indicated
Fig 11.16 (c) in a distance of the order of a few
molecular sizes(10 10 m).

11.7.2 Surface Energy and Surface Tension

As we have discussed that an extra energy is
associated with surface of liquids, the creation
of more surface (spreading of surface) keeping
other things like volume fixed requires
additional energy. To appreciate this, consider
a horizontal liquid film ending in bar free to
slide over parallel guides Fig (11.17).

Fig. 11.17 Stretching a film. (a) A film in equilibrium;
(b) The film stretched to an extra distance.

Suppose that we move the bar by a small
distance d as shown. Since the area of the
surface increases, the system now has more
energy, this means that some work has been
done against an internal force. Let this internal
force be F, the work done by the applied force is
F.d = Fd. From conservation of energy, this is
stored as additional energy in the film. If the
surface energy of the film is S per unit area, the
extra area is 2dl. A film has two sides and the
liquid in between, so there are two surfaces and
the extra energy is

S (2dl) = Fd (11.23)
Or, S=Fd/2dl = F/2l (11.24)
This quantity S is the magnitude of surface

tension. It is equal to the surface energy per
unit area of the liquid interface and is also
equal to the force per unit length exerted by
the fluid on the movable bar.

So far we have talked about the surface of
one liquid. More generally, we need to consider
fluid surface ‘in contact’ with other fluids or solid
surfaces. The surface energy in that case
depends on the materials on both sides of the
surface. For example, if the molecules of the
materials attract each other, surface energy is
reduced, while if they repel each other, the
surface energy is increased. Thus, more
appropriately, the surface energy is the energy
of the interface between ‘two materials’ and
depends on both of them.

We make the following observations from
above:
(i) Surface tension is a force per unit length(or

surface energy per unit area) acting in the
plane of the interface between the plane of

Fig. 11.16 Schematic picture of molecules in a liquid, at the surface and balance of forces. (a) Molecule inside
a liquid. Forces on a molecule due to others are shown. Direction of arrows indicates attraction or
repulsion. (b) Same, for a molecule at a surface. (c) Balance of attractive (A) and repulsive (R) forces.
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the liquid and any other substance; it also
is the extra energy that the molecules at
the interface have as compared to molecules
in the interior.

(ii) At any point on the interface, besides the
boundary, we can draw a line and imagine
equal and opposite surface tension forces S
per unit length of the line acting
perpendicular to the line, in the plane of
the interface. The line is in equilibrium. To
be more specific, imagine a line of atoms or
molecules at the surface. The atoms to the
left pull the line towards them; those to the
right pull it towards them! This line of atoms
is in equilibrium under tension. If the line
really marks the end of the interface, as in
Figure 11.16 (a) and (b) there is only the force
S per unit length acting inwards.

Table 11.3 gives the surface tension of various
liquids. The value of surface tension depends
on temperature. Like viscosity, the surface
tension of a liquid usually falls with
temperature.

Table 11.3 Surface tension of some liquids at the
temperatures indicated with the
heats of the vaporisation

Liquid Temp (oC) Surface Heat of
Tension vaporisation
 (N/m)  (kJ/mol)

Helium –270 0.000239 0.115
Oxygen –183 0.0132 7.1
Ethanol 20 0.0227 40.6
Water 20 0.0727 44.16
Mercury 20 0.4355 63.2

A fluid will stick to a solid surface if the
surface energy between fluid and the solid is
smaller than the sum of surface energies
between solid-air, and fluid-air. Now there is
cohesion between the solid surface and the
liquid.

It can be directly measured experimentally as
schematically shown in Fig. 11.18. A flat vertical
glass plate, below which a vessel of some liquid
is kept, forms one arm of the balance. The plate
is balanced by weights on the other side, with
its horizontal edge just over water. The vessel is
raised slightly till the liquid just touches the
glass plate and pulls it down a little because of
surface tension. Weights are added till the plate

just clears water.
Suppose the additional weight required is W.

Then from Eq. 11.24 and the discussion given
there, the surface tension of the liquid-air
interface is

Fig. 11.18 Measuring Surface Tension.

Sla = (W/2l) = (mg/2l) (11.25)
where m is the extra mass and l is the length of
the plate edge. The subscript (la) emphasises
the fact that the liquid-air interface tension is
involved.

11.7.3 Angle of Contact

The surface of liquid near the plane of contact,
with another medium is in general curved. The
angle between tangent to the liquid surface at
the point of contact and solid surface inside the
liquid is termed as angle of contact. It is
denoted by . It is different at interfaces of
different pairs of liquids and solids. The value
of  determines whether a liquid will spread on
the surface of a solid or it will form droplets on
it. For example, water forms droplets on lotus
leaf as shown in Fig. 11.19 (a) while spreads over
a clean plastic plate as shown in Fig. 11.19(b).

(a)

(b)

Fig. 11.19 Different shapes of water drops with
interfacial tensions (a) on a lotus leaf (b) on a clean
plastic plate.
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CHAPTER TWELVE

THERMAL PROPERTIES OF MATTER

12.1  INTRODUCTION

We all have common-sense notions of heat and temperature.
Temperature is a measure of ‘hotness’ of a body. A kettle with
boiling water is hotter than a box containing ice. In physics,
we need to define the notion of heat, temperature, etc., more
carefully. In this chapter, you will learn what heat is and how
it is measured, and study the various proceses by which heat
flows from one body to another. Along the way, you will find
out why blacksmiths heat the iron ring before fitting on the
rim of a wooden wheel of a bullock cart and why the wind at
the beach often reverses direction after the Sun goes down.
You will also learn what happens when water boils or freezes,
and its temperature does not change during these processes
even though a great deal of heat is flowing into or out of it.

12.2  TEMPERATURE AND HEAT

We can begin studying thermal properties of matter with
definitions of temperature and heat. Temperature is a relative
measure, or indication of hotness or coldness. A hot utensil
is said to be at a high temperature, and ice cube to be at a low
temperature. An object that has a higher temperature than
another object is said to be hotter. Note that hot and cold are
relative terms, like tall and short. We can perceive temperature
by touch. However, this temperature sense is somewhat
unreliable and its range is too limited to be useful for scientific
purposes.

We know from experience that a glass of ice-cold water left
on a table on a hot summer day eventually warms up whereas
a cup of hot tea on the same table cools down. It means that
when the temperature of body, ice-cold water or hot tea in
this case, and its surrounding medium are different, heat
transfer takes place between the system and the surrounding
medium, until the body and the surrounding medium are at
the same temperature. We also know that in the case of glass
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temperature

12.4 Ideal-gas equation and
absolute temperature

12.5 Thermal expansion

12.6 Specific heat capacity

12.7 Calorimetry
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12.9 Heat transfer
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Summary
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tumbler of ice cold water, heat flows from the
environment to the glass tumbler, whereas in
the case of hot tea, it flows from the cup of hot
tea to the environment. So, we can say that heat
is the form of energy transferred between two
(or more) systems or a system and its
surroundings by virtue of temperature
difference. The SI unit of heat energy
transferred is expressed in joule (J) while SI unit
of temperature is kelvin (K), and °C is a commonly
used unit of temperature. When an object is
heated, many changes may take place. Its
temperature may rise, it may expand or change
state. We will study the effect of heat on different
bodies in later sections.

12.3  MEASUREMENT OF TEMPERATURE

A measure of temperature is obtained using a
thermometer. Many physical properties of
materials change sufficiently with temperature
to be used as the basis for constructing
thermometers. The commonly used property is
variation of the volume of a liquid with
temperature. For example, a common
thermometer (the liquid-in-glass type) with which
you are familiar. Mercury and alcohol are the
liquids used in most liquid-in-glass
thermometers.

Thermometers are calibrated so that a
numerical value may be assigned to a given
temperature. For the definition of any standard
scale, two fixed reference points are needed.
Since all substances change dimensions with
temperature, an absolute reference for expansion
is not available. However, the necessary fixed
points may be correlated to physical phenomena
that always occur at the same temperature. The
ice point and the steam point of water are two
convenient fixed points and are known as the
freezing and boiling points. These two points are
the temperatures at which pure water freezes
and boils under standard pressure. The two
familiar temperature scales are the Fahrenheit
temperature scale and the Celsius temperature
scale. The ice and steam point have values 32
°F and 212 °F respectively, on the Fahrenheit
scale and 0 °C and 100 °C on the Celsius scale.
On the Fahrenheit scale, there are 180 equal
intervals between two reference points, and on
the Celsius scale, there are 100.

Fig. 12.1 A plot of Fahrenheit temperature (tF) versus
Celsius temperature (tc).

 A relationship for converting temperature
from one scale to the other may be obtained from
a graph of Fahrenheit temperature (tF) versus
celsius temperature (tC) in a straight line (Fig.
12.1), whose equation is

t tF C– 32
180 100

= (12.1)

12.4  IDEAL-GAS EQUATION AND ABSOLUTE
TEMPERATURE

Liquid-in-glass thermometers show different
readings for temperatures other than the fixed
points because of differing expansion properties.
A thermometer that uses a gas, however, gives
the same readings regardless of which gas is
used. Experiments show that all gases at low
densities exhibit same expansion behaviour. The
variables that describe the behaviour of a given
quantity (mass) of gas are pressure, volume, and
temperature (P, V, and T )(where T = t + 273.15; t
is the temperature in °C). When temperature is
held constant, the pressure and volume of a
quantity of gas are related as  PV = constant.
This relationship is known as Boyle’s law, after
Robert Boyle (1627-1691) the English Chemist
who discovered it. When the pressure is held
constant, the volume of a quantity of the gas is
related to the temperature as V/T = constant.
This relationship is known as Charles’ law, after
the French scientist Jacques Charles (1747-
1823). Low density gases obey these laws, which
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may be combined into a single relationship.
Notice that since PV = constant  and V/T =
constant for a given quantity of gas, then PV/T
should also be a constant. This relationship is
known as ideal gas law. It can be written in a
more general form that applies not just to a given
quantity of a single gas but to any quantity of
any dilute gas and is known as ideal-gas
equation:

PV
R

T


or PV = RT (12.2)
where,  is the number of moles in the sample of
gas and R is called universal gas constant:

R = 8.31 J mol–1 K–1

In Eq. 12.2, we have learnt that the pressure
and volume are directly proportional to
temperature : PV  T. This relationship allows a
gas to be used to measure temperature in a
constant volume gas thermometer. Holding the
volume of a gas constant, it gives P T. Thus,
with a constant-volume gas thermometer,
temperature is read in terms of pressure. A plot
of pressure versus temperature gives a straight
line in this case, as shown in Fig. 12.2.

However, measurements on real gases deviate
from the values predicted by the ideal gas law at
low temperature. But the relationship is linear
over a large temperature range, and it looks as
though the pressure might reach zero with
decreasing temperature if the gas continued to
be a gas. The absolute minimum temperature
for an ideal gas, therefore,is inferred by
extrapolating the straight line to the axis, as in
Fig. 12.3.  This temperature is found to be
– 273.15 °C and is designated as absolute zero.
Absolute zero is the foundation of the Kelvin

temperature scale or absolute scale
temperature named after the British scientist
Lord Kelvin. On this scale, – 273.15 °C is taken
as the zero point, that is 0 K (Fig. 12.4).

The size of the unit for Kelvin temperature is
the same celsius degree, so temperature on these
scales are related by

T = tC + 273.15 (12.3)

12.5  THERMAL EXPANSION

You may have observed that sometimes sealed
bottles with metallic lids are so tightly screwed
that one has to put the lid in hot water for
sometime to open the lid. This would allow the
metallic cover to expand, thereby loosening it to
unscrew easily. In case of liquids, you may have
observed that mercury in a thermometer rises,
when the thermometer is put in a slightly warm

Fig. 12.2 Pressure versus temperature of a low
density gas kept at constant volume.

Fig. 12.3 A plot of pressure versus temperature and
extrapolation of lines for low density gases
indicates the same absolute zero
temperature.

Fig. 12.4 Comparision of the Kelvin, Celsius and
Fahrenheit temperature scales.
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water. If we take out the thermometer from the
warm water the level of mercury falls again.
Similarly, in the case of gases, a balloon partially
inflated in a cool room may expand to full size
when placed in warm water. On the other hand,
a fully inflated balloon when immersed in cold
water would start shrinking due to contraction
of the air inside.

It is our common experience that most
substances expand on heating and contract on
cooling. A change in the temperature of a body
causes change in its dimensions. The increase
in the dimensions of a body due to the increase
in its temperature is called thermal expansion.
The expansion in length is called linear
expansion. The expansion in area is called areal
expansion. The expansion in volume is called
volume expansion (Fig. 12.5).

Fig. 12.5  Thermal Expansion.

If the substance is in the form of a long rod,
then for small change in temperature, T, the
fractional change in length, l/l, is directly
proportional to T.

Δ Δl
l

T=1 (12.4)

where 1 is known as the coefficient of linear
expansion and is characteristic of the material
of the rod. In Table 12.1 are given typical average
values of the coefficient of linear expansion for
some materials in the temperature range 0 °C to
100 °C. From this Table, compare the value of l

for glass and copper. We find that copper expands
about five times more than glass for the same
rise in temperature. Normally, metals expand
more and have relatively high values
of l.

Table 12.1 Values of coefficient of linear
expansion for some materials

Materials  l (10–5 K–1)

Aluminium 2.5
Brass 1.8
Iron 1.2
Copper 1.7
Silver 1.9
Gold 1.4
Glass (pyrex) 0.32
Lead 0.29

Similarly, we consider the fractional change

in volume, 
ΔV
V

, of a substance for temperature

change T and define the coefficient of volume

expansion,   V  as

  V = ⎛
⎝⎜

⎞
⎠⎟

Δ
Δ

V
V T

1
(12.5)

Here V is also a characteristic of the
substance but is not strictly a constant. It
depends in general on temperature (Fig 12.6). It
is seen that V becomes constant only at a high
temperature.

Fig. 12.6 Coefficient of volume expansion of copper
as a function of temperature.

Table 12.2 gives the values of co-efficient of
volume expansion of some common substances
in the temperature range 0 –100 °C. You can see
that thermal expansion of these substances
(solids and liquids) is rather small, with
materials like pyrex glass and invar (a special

l

l
a T

l

 
  l2

A
a T

A

 
  l3

V
a T

V

 
  

(a) Linear expansion (b) Areal expansion (c) Volume expansion
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iron-nickel alloy) having particularly low values
of V. From this Table we find that the value of v

for alcohol (ethyl) is more than mercury and it
expands more than mercury for the same rise in
temperature.

Table 12.2 Values of coefficient of volume
expansion for some solids and liquids

Materials v (
 K–1)

Aluminium 7 × 10–5

Brass 6 × 10–5

Iron 3.55 × 10–5

Paraffin 58.8 × 10–5

Glass (ordinary) 2.5 × 10–5

Glass (pyrex) 1 × 10–5

Hard rubber 2.4 × 10–4

Invar 2 × 10–6

Mercurry 18.2 × 10–5

Water 20.7 × 10–5

Alcohol (ethyl) 110 × 10–5

Water exhibits an anomalous behavour; it
contracts on heating between 0 °C and 4 °C. The
volume of a given amount of water decreases as
it is cooled from room temperature, until its
temperature reaches 4 °C, [Fig. 12.7(a)]. Below 4
°C, the volume increases, and therefore the
density decreases [Fig. 12.7(b)].

This means that water has a maximum
density at 4 °C. This property has an important
environmental effect: Bodies of water, such as
lakes and ponds, freeze at the top first. As a lake

cools toward 4 °C, water near the surface loses
heat energy to the atmosphere, becomes denser,
and sinks; the warmer, less dense water near
the bottom rises. However, once the colder water
on top reaches temperature below 4 °C, it
becomes less dense and remains at the surface,
where it freezes. If water did not have this
property, lakes and ponds would freeze from the
bottom up, which would destroy much of their
animal and plant life.

Gases at ordinary temperature expand more
than solids and liquids. For liquids, the
coefficient of volume expansion is relatively
independent of the temperature. However, for
gases it is dependent on temperature. For an
ideal gas, the coefficient of volume expansion at
constant pressure can be found from the ideal
gas equation :

PV = RT
At constant pressure
PV = R T

Δ ΔV
V

T
T

=

i.e. αv T
= 1

 for ideal gas (12.6)

At 0 °C, v = 3.7 × 10–3 K–1, which is much
larger than that for solids and liquids.
Equation (12.6) shows the temperature
dependence of v; it decreases with increasing
temperature. For a gas at room temperature and
constant pressure v is about 3300 × 10–6 K–1, as

Temperature (°C) Temperature (°C)
(a) (b)

Fig. 12.7 Thermal expansion of water.
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much as order(s) of magnitude larger than the
coefficient of volume expansion of typical liquids.

There is a simple relation between the
coefficient of volume expansion (v) and
coefficient of linear expansion (l). Imagine a
cube of length, l, that expands equally in all
directions, when its temperature increases by
T. We have

l = l l T
so, V = (l+l)3 – l3   3l2 l (12.7)
In equation (12.7), terms in (l)2 and (l)3 have

been neglected since l is small compared to l.
So

Δ Δ ΔV
V l
l

V Tl= =3
3 α (12.8)

which gives

v = 3l (12.9)

What happens by preventing the thermal
expansion of a rod by fixing its ends rigidly?
Clearly, the rod acquires a compressive strain
due to the external forces provided by the rigid
support at the ends. The corresponding stress
set up in the rod is called thermal stress. For
example, consider a steel rail of length 5 m and
area of cross section 40 cm2 that is prevented
from expanding while the temperature rises by
10 °C. The coefficient of linear expansion of steel
is l(steel) = 1.2 × 10–5  K–1. Thus, the compressive

strain is 
Δl

l
= l(steel) T = 1.2 × 10–5 × 10=1.2 × 10–4.

Young’s modulus of steel is Y (steel) = 2 × 1011 N m–2.
Therefore, the thermal stress developed is

Δ ΔF

A
Y

l

lsteel= ⎛
⎝⎜

⎞
⎠⎟

= 2.4 × 107 N m–2, which

corresponds to an external force of

F = AYsteel 
Δl

l
⎛
⎝⎜

⎞
⎠⎟
 =  2.4 × 107 × 40 × 10–4 j 105N.

If two such steel rails, fixed at their outer ends,
are in contact at their inner ends, a force of this
magnitude can easily bend the rails.

Example 12.1 Show that the coefficient of
areal expansions, (A/A)/T, of a
rectangular sheet of the solid is twice its
linear expansivity, l.

Answer

Fig. 12.8

Consider a rectangular sheet of the solid
material of length a and breadth b (Fig. 12.8 ).
When the temperature increases by T, a
increases by  a = l aT and b increases by b
= lb T. From Fig. 12.8,  the increase in area

A = A1 +A2 + A3

A = a b + b a + (a)  (b)
= a lb T + b l a T + (l)

2 ab (T)2

= l ab T (2 + l T) = l A T (2 + l T)
Since l  10–5 K–1, from Table 12.1, the

product l T for fractional temperature is small
in comparision with 2 and may be neglected.
Hence,

Δ
Δ

A

A T
⎛
⎝⎜

⎞
⎠⎟

1
12 

Example 12.2 A blacksmith fixes iron ring
on the rim of the wooden wheel of a bullock
cart. The diameter of the rim and the iron
ring are 5.243 m and 5.231 m respectively
at 27 °C. To what temperature should the
ring be heated so as to fit the rim of the
wheel?

Answer

Given, T1 = 27 °C

LT1 = 5.231 m

LT2 = 5.243 m
So,

LT2 =LT1 [1+l (T2–T1)]

5.243 m = 5.231 m [1 + 1.20×10–5  K–1 (T2–27 °C)]

or T2 = 218 °C.

A3 = (a) (b)

Al = a (b)

A2 = b (a)

a

b

b

a
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12.6  SPECIFIC HEAT CAPACITY

Take some water in a vessel and start heating it
on a burner. Soon you will notice that bubbles
begin to move upward. As the temperature is
raised the motion of water particles increases
till it becomes turbulent as water starts boiling.
What are the factors on which the quantity of
heat required to raise the temperature of a
substance depend? In order to answer this
question in the first step, heat a given quantity
of water to raise its temperature by, say 20 °C
and note the time taken. Again take the same
amount of water and raise its temperature by
40 °C using the same source of heat. Note the
time taken by using a stopwatch. You will find it
takes about twice the time and therefore, double
the quantity of heat required raising twice the
temperature of same amount of water.

In the second step, now suppose you take
double the amount of water and heat it, using
the same heating arrangement, to raise the
temperature by 20 °C, you will find the time taken
is again twice that required in the first step.

In the third step, in place of water, now heat
the same quantity of some oil, say mustard oil,
and raise the temperature again by 20 °C. Now
note the time by the same stopwatch. You will
find the time taken will be shorter and therefore,
the quantity of heat required would be less than
that required by the same amount of water for
the same rise in temperature.

The above observations show that the
quantity of heat required to warm a given
substance depends on its mass, m, the change
in temperature, T and the nature of
substance. The change in temperature of a
substance, when a given quantity of heat is
absorbed or rejected by it, is characterised by a
quantity called the heat capacity of that
substance. We define heat capacity, S of a
substance as

Q
S

T





(12.10)

where Q is the amount of heat supplied to
the substance to change its temperature from T
to T + T.

You have observed that if equal amount of heat
is added to equal masses of different substances,
the resulting temperature changes will not be
the same. It implies that every substance has
a unique value for the amount of heat

absorbed or rejected to change the
temperature of unit mass of it by one unit.
This quantity is referred to as the specific heat
capacity of the substance.

If Q stands for the amount of heat absorbed
or rejected by a substance of mass m when it
undergoes a temperature change T, then the
specific heat capacity, of that substance, is given
by

1S Q
s

m m T


 

 (12.11)

The specific heat capacity is the property of
the substance which determines the change in
the temperature of the substance (undergoing
no phase change) when a given quantity of heat
is absorbed (or rejected) by it. It is defined as the
amount of heat per unit mass absorbed or
rejected by the substance to change its
temperature by one unit. It depends on the
nature of the substance and its temperature. The
SI unit of specific heat capacity is J kg–1 K–1.

If the amount of substance is specified in
terms of moles , instead of mass m in kg, we
can define heat capacity per mole of the
substance by

C
S Q

T
= =
 

1 Δ
Δ (12.12)

where C is known as molar specific heat
capacity of the substance. Like S, C also depends
on the nature of the substance and its
temperature. The SI unit of molar specific heat
capacity is J mol–1 K–1.

However, in connection with specific heat
capacity of gases, additional conditions may be
needed to define C. In this case, heat transfer
can be achieved by keeping either pressure or
volume constant. If the gas is held under
constant pressure during the heat transfer, then
it is called the molar specific heat capacity at
constant pressure and is denoted by Cp. On the
other hand, if the volume of the gas is maintained
during the heat transfer, then the corresponding
molar specific heat capacity is called molar
specific heat capacity at constant volume and
is denoted by Cv. For details see Chapter 13. Table
12.3 lists measured specific heat capacity of some
substances at atmospheric pressure and
ordinary temperature while Table 12.4 lists molar
specific heat capacities of some gases. From
Table 12.3 you can note that water has the
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highest specific heat capacity compared to other
substances. For this reason water is used as a
coolant in automobile radiators as well as a
heater in hot water bags. Owing to its high
specific heat capacity, the water warms up much
more slowly than the land during summer and
consequently wind from the sea has a cooling
effect. Now, you can tell why in desert areas, the
earth surface warms up quickly during the day
and cools quickly at night.

Table 12.4 Molar specific heat capacities of
some gases

Gas Cp (J mol–1K–1)  Cv(J mol–1K–1)

He 20.8 12.5

H2 28.8 20.4

N2 29.1 20.8

O2 29.4 21.1

CO2 37.0 28.5

12.7  CALORIMETRY

A system is said to be isolated if no exchange or
transfer of heat occurs between the system and
its surroundings. When different parts of an
isolated system are at different temperature, a
quantity of heat is transfered from the part at
higher temperature to the part at lower
temperature. The heat lost by the part at higher
temperature is equal to the heat gained by the
part at lower temperature.

Calorimetry means measurement of heat.
When a body at higher temperature is brought
in contact with another body at lower
temperature, the heat lost by the hot body is

equal to the heat gained by the colder body,
provided no heat is allowed to escape to the
surroundings. A device in which heat
measurement can be made is called a
calorimeter. It consists a metallic vessel and
stirrer of the same material like copper or
alumiunium. The vessel is kept inside a wooden
jacket which contains heat insulating materials
like glass wool etc. The outer jacket acts as a
heat shield and reduces the heat loss from the
inner vessel. There is an opening in the outer
jacket through which a mercury thermometer
can be inserted into the calorimeter. The
following example provides a method by which
the specific heat capacity of a given solid can be
determinated by using the principle, heat gained
is equal to the heat lost.

Example 12.3 A sphere of aluminium of
0.047 kg is placed for sufficient time in a
vessel containing boiling water, so that the
sphere is at 100 °C. It is then immediately
transfered to 0.14 kg copper calorimeter
containing 0.25 kg of water at 20 °C. The
temperature of water rises and attains a
steady state at 23 °C. Calculate the specific
heat capacity of aluminium.

Answer  In solving this example we shall use
the fact that at a steady  state, heat given by an
aluminium sphere will be equal to the heat
absorbed by the water and calorimeter.

Mass of aluminium sphere (m1) = 0.047 kg
Initial temp. of aluminium sphere = 100 °C
Final temp. = 23 °C
Change in temp (T ) = (100 °C - 23 °C) = 77 °C
Let specific heat capacity of aluminium be sAl.

Table 12.3 Specific heat capacity of some substances at room temperature and atmospheric
pressure

Substance Specific heat capacity Substance Specific heat capacity
 (J kg–1 K–1) (J kg–1 K–1)

Aluminium 900.0 Ice 2060
Carbon 506.5 Glass 840
Copper 386.4 Iron 450
Lead 127.7 Kerosene 2118
Silver 236.1 Edible oil 1965
Tungesten 134.4 Mercury 140
Water 4186.0
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The amount of heat lost by the aluminium
sphere =      1 0.047kg 77 CAl Alm s T s    (i)

Mass of water (m2) = 0.25 kg

Mass of calorimeter (m3) = 0.14 kg
Initial temp. of water and calorimeter = 20 °C

Final temp. of the mixture = 23 °C

Change in temp. (T2) = 23 °C – 20 °C = 3 °C

Specific heat capacity of water (sw)from Table
   12.3 = 4.18 × 103 J kg–1  K–1

Specific heat capacity of copper calorimeter

= 0.386 × 103 J kg–1  K–1

The amount of heat gained by water and
calorimeter = m2 sw T2 + m3scuT2

= (m2sw + m3scu) (T2)
= 0.25 kg ×4.18 × 103 J kg–1  K–1 + 0.14 kg ×

0.386 × 103 J kg–1  K–1) (23 °C – 20 °C)     (ii)

In the steady state heat lost by the aluminium
sphere = heat gained by water + heat gained by
calorimeter. So, from (i) and (ii)

 0.047 kg × sAl × 77 °C

= (0.25 kg × 4.18 × 103 J kg–1  K–1+ 0.14 kg ×

0.386 × 103 J kg–1  K–1)(3 °C)

sAl = 0.911 kJ kg –1 K–1 

12.8  CHANGE OF STATE

Matter can be classified into three states: solid,
liquid, and gas. A transition from one of these
states to another is called a change of state.
Two common changes of states are solid to liquid
and liquid to gas (and vice versa). These changes
can occur when the exchange of heat takes place
between the substance and its surroundings. To
study the change of state on heating or cooling,
let us perform the following activity.

Take some cubes of ice in a beaker. Note the
temperature of ice (0 °C). Start heating it slowly
on a constant heat source.Some of the ice
changes to water. Note the temperature after
every  minute.  Continuously stir the mixture of
water and ice. Draw a graph between
temperature and time (Fig. 12.9). You will observe
no change in the temperature so long as there
is ice in the beaker. In the above process, the
temperature of the system does not change even
though heat is being continuously supplied. The
heat supplied  is being utilised in changing the

state from solid (ice) to liquid (water).

Fig. 12.9 A plot of temperature versus time showing
the changes in the state of ice on heating
(not to scale).

The change of state from solid to liquid is called
melting and from liquid to solid is called fusion.
It is observed that the temperature remains
constant until the entire amount of the solid
substance melts. That is, both the solid and
liquid states of the substance coexist in
thermal equilibrium during the change of
states from solid to liquid. The temperature at
which the solid and the liquid states of the
substance, in thermal equilibrium with each
other, is called its melting point. It is
characteristic of the substance. It also depends
on pressure. The melting point of a substance
at standard atomspheric pressure is called its
normal melting point.

After the whole of ice gets converted into water
and as we continue further heating, we shall see
that temperature begins to rise. The temperature
keeps on rising till it reaches nearly 100 °C when
it again becomes steady. The heat supplied is
now being utilised to change water from liquid
state to vapour or  gaseous state. The change of
state from liquid to vapour (or gas) is called
vaporisation. It is observed that the
temperature remains constant until the entire
amount of the liquid is converted into vapour.
That is, both the liquid and vapour states of the
substance coexist in thermal equilibrium, during
the change of state from liquid to vapour. The
temperature at which the liquid and the vapour
states of the substance coexist is called  its
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boiling point. Let us do the following activity to
understand the process of boiling of water.

Take a round-bottom flask(F), more than half
filled with water. Keep it over a burner and fix a
thermometer(T) and steam outlet(O) through the
cork of the flask (Fig. 12.10). As water gets heated
in the flask, note first that the air, which was
dissolved in the water, will come out as small
bubbles. Later, bubbles of steam will form at the
bottom but as they rise to the cooler water near
the top, they condense and disappear. Finally,
as the temperature of the entire mass of the
water reaches 100 °C, bubbles of steam reach
the surface and boiling is said to occur. The steam
in the flask may not be visible but as it comes
out of the flask, it condenses as tiny droplets of
water, giving a foggy appearance.

Triple Point

The temperature of a substance remains constant during its change of state (phase change). A
graph between the temperature T and the Pressure P of the substance is called a phase diagram
or P – T diagram. The following figure shows the phase diagram of water and CO2. Such a phase
diagram divides the P – T plane into a solid-region, the vapour-region and the liquid-region.
The regions are separated by the curves such as sublimation curve (BO), fusion curve (AO)
and vaporisation curve (CO). The points on sublimation curve represent states in which
solid and vapour phases coexist. The point on the sublimation curve BO represent states in
which the solid and vapour phases co-exist. Points on the fusion curve AO represent states in
which solid and liquid phase coexist. Points on the vapourisation curve CO represent states in
which the liquid and vapour phases coexist. The temperature and pressure at which the fusion
curve, the vaporisation curve and the sublimation curve meet and all the three phases of  a
substance coexist is called the triple point(O) of the substance. For example the triple point of
water is represented by the temperature 273.16 K and pressure 6.11×10–3 atm.

(a) (b)

Pressure-temperature phase diagrams for (a) water and (b) CO2 (not to the scale).
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Fig. 12.10 Boiling process.
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If now the steam outlet is closed for a few
seconds to increase the pressure in the flask,
you will notice that boiling stops. More heat would
be required to raise the temperature (depending
on the increase in pressure) before boiling begins
again. Thus boiling point increases with
increase in pressure.

Let us now remove the burner. Allow water to
cool to about 80 °C. Remove the thermometer and
steam outlet. Close the flask with the airtight
cork. Keep the f lask turned upside down on the
stand. Pour ice-cold water on the flask. Water
vapours in the flask condense reducing the
pressure on the water surface inside the flask.
Water begins to boil again, now at a lower
temperature. Thus boiling point decreases with
decrease in pressure.

This explains why cooking is difficult on hills.
At high altitudes, atmospheric pressure is lower,
reducing the boiling point of water as compared
to that at sea level. On the other hand, boiling
point is increased inside a pressure cooker by
increasing the pressure. Hence cooking is faster.
The boiling point of a substance at standard
atmospheric pressure is called its normal boiling
point.

However, all substances do not pass through
the three states: solid-liquid-gas. There are
certain substances which normally pass from
the solid to the vapour state directly and vice
versa. The change from solid state to vapour
state without passing through the liquid state
is called sublimation, and the substance is said
to sublime. Dry ice (solid CO2) sublimes, so also
iodine. During the sublimation process both the
solid and vapour states of a substance coexist
in thermal equilibrium.

Regelation
Let us do the following activity to understand

the process of melting of ice.
Take a slab of ice. Take a metallic wire and fix

two blocks, say 5 kg each, at its ends. Put the
wire over the slab as shown in Fig. 12.11. You
will observe that the wire passes through the
ice slab. This happens due to the fact that just
below the wire, ice melts at lower temperature
due to increase in pressure. When the wire has
passed, water above the wire freezes again. Thus
the wire passes through the slab and the slab

does not split. This phenomenon of refreezing is
called regelation. Skating is possible on snow
due to the formation of water below the skates.
Water is formed due to the increase of pressure
and it acts as a lubricant.

Fig. 12.11

12.8.1  Latent Heat

In Section 12.8, we have learnt that certain
amount of heat energy is transferred between a
substance and its surroundings when it
undergoes a change of state. The amount of heat
per unit mass transferred during change of state
of the substance is called latent heat of the
substance for the process. For example, if heat
is added to a given quantity of ice at –10 °C, the
temperature of ice increases until it reaches its
melting point (0 °C). At this temperature, the
addition of more heat does not increase the
temperature but causes the ice to melt, or
changes its state. Once the entire ice melts,
adding more heat will cause the temperature of
the water to rise. A similar situation
occurs during liquid gas change of state at the
boiling point. Adding more heat to boiling water
causes vaporisation, without increase in
temperature.

The heat required during a change of state
depends upon the heat of transformation and
the mass of the substance undergoing a change
of state. Thus, if mass m of a substance
undergoes a change from one state to the other,
then the quantity of heat required is given by

Q = m L
or L = Q/m (12.13)

where L is known as latent heat and is a
characteristic of the substance. Its SI unit is
J kg–1. The value of L also depends on the
pressure. Its value is usually quoted at standard
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atmospheric pressure. The latent heat for a solid-
liquid state change is called the latent heat of
fusion (Lf), and that for a liquid-gas state change
is called the latent heat of vaporisation (Lv).
These are often referred to as the heat of fusion
and the heat of vaporisation. A plot of
temperature versus heat energy for a quantity
of water is shown in Fig. 12.12. The latent heats
of some substances, their freezing and boiling
points, are given in Table 12.5.

Fig. 12.12 Temperature versus heat for water at
1 atm pressure (not to scale).

Note that when heat is added (or removed)
during a change of state, the temperature
remains constant. Note in Fig. 12.12 that the
slopes of the phase lines are not all the same,
which indicates that specific heats of the various
states are not equal. For water, the latent heat of
fusion and vaporisation are Lf = 3.33 × 105 J kg–1

and Lv = 22.6 × 105 J kg–1 respectively. That is
3.33 × 105 J of heat are needed to melt 1 kg of ice
at 0 °C, and 22.6 × 105 J of heat are needed to
convert 1 kg of water to steam at 100 °C. So,
steam at 100 °C carries  22.6 × 105 J  kg–1 more

heat than water at 100 °C. This is why burns
from steam are usually more serious than those
from boiling water.

Example 12.4 When 0.15 kg of ice of 0 °C
mixed with 0.30 kg of water at 50 °C in a
container, the resulting temperature is
6.7 °C. Calculate the heat of fusion of ice.
(swater = 4186 J kg–1 K–1)

Answer
Heat lost by water = msw (f–i)w
= (0.30 kg) (4186 J kg–1 K–1) (50.0 °C – 6.7 °C)
= 54376.14 J
Heat required to melt ice = m2Lf = (0.15 kg) Lf

Heat required to raise temperature of ice
water to final temperature = mIsw (f–i)I

= (0.15 kg) (4186 J kg–1 K –1) (6.7 °C – 0 °C)
= 4206.93 J
Heat lost = heat gained
54376.14 J = (0.15 kg) Lf + 4206.93 J
Lf = 3.34×105 J kg–1. 

Example 12.5 Calculate the heat required
to convert 3 kg of ice at –12 °C kept in a
calorimeter to steam at 100 °C at
atmospheric pressure. Given specific heat
capacity of ice = 2100 J kg–1 K–1, specific
heat capacity of water = 4186 J kg– 1 K–1,
latent heat of fusion of ice = 3.35 × 105

J kg–1 and latent heat of steam = 2.256 ×106

J kg–1.

Table 12.5 Temperatures of the change of state and latent heats for various substances at
1 atm pressure

Substance Melting L f Boiling Lv

Point (°C) (105J kg–1) Point (°C) (105J kg–1)

Ethyl alcohol –114 1.0 78 8.5
Gold 1063 0.645 2660 15.8
Lead 328 0.25 1744 8.67
Mercury –39 0.12 357 2.7
Nitrogen –210 0.26 –196 2.0
Oxygen –219 0.14 –183 2.1
Water 0 3.33 100 22.6
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Answer  We have
Mass of the ice, m = 3 kg
specific heat capacity of ice, sice

= 2100 J kg–1  K–1

specific heat capacity of water, swater

= 4186 J kg–1  K–1

latent heat of fusion of ice, Lf ice

= 3.35 × 105 J kg–1

latent heat of steam, Lsteam

= 2.256 × 106 J kg–1

Now, Q = heat required to convert 3 kg of
ice at –12 °C to steam at 100 °C,

Q1 = heat required to convert ice at
–12 °C to ice at 0 °C.

= m sice T1 = (3 kg) (2100 J kg–1.

K–1) [0–(–12)]°C = 75600 J
Q2 = heat required to melt ice at

0 °C to water at 0 °C
= m Lf ice = (3 kg) (3.35 × 105 J kg–1)
=  1005000 J

Q3 = heat required to convert water
at 0 °C to water at 100 °C.

= msw T2 = (3kg) (4186J kg–1 K–1)
(100 °C)

= 1255800 J
Q4 = heat required to convert water

at 100 °C to steam at 100 °C.
= m Lsteam = (3 kg) (2.256×106 J kg–1)

= 6768000 J

So, Q = Q1 + Q2 + Q3 + Q4

= 75600J + 1005000 J
+ 1255800 J + 6768000 J

= 9.1×106 J 

12.9  HEAT TRANSFER

We have seen that heat is energy transfer from
one system to another or from one part of a system
to another part, arising due to temperature
difference. What are the different ways by which
this energy transfer takes place? There are three
distinct modes of heat transfer : conduction,
convection and radiation(Fig. 12.13).

Fig. 12.13 Heat transfer by conduction, convection
and radiation.

Heat related values / constants for various changes of states of water

State Temperature    Value/Constant with units

Ice <0oC(or < 273K) Specific Heat Capacity (Si)
(i) 0.5 cal/gm (ii) 2060 JKg-1K-1

Ice Water 0oC(273K) Heat content (1kg ) (Siw)
(at 1 atm. Pressure) 11.43 x 105 JKg-1K-1

Latent Heat of Fusion 0oC(273K) (i) 80 cal/gm
(at 1 atm. Pressure) (ii) Lf=3.33 x 105 JKg-1

(iii) Hf=5.99 kJ/mole

Boiling water 100oC(373K) Hb=15.61 JKg-1K-1

(at 1 atm. Pressure)

Latent Heat of Vapour 100oC(373K) (i) 540 cal/gm
(Steam) (at 1 atm. Pressure) (ii) Lv= 22.6 x 105JKg-1

(iii) Hv= 40 kJ/mole

Ordinary Water at any temperature Specific Heat Capacity (Si)
(i) 1 cal/gm (ii) 4186 JKg-1K-1
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12.9.1  Conduction

Conduction is the mechanism of transfer of heat
between two adjacent parts of a body because of
their temperature difference. Suppose one end
of a metallic rod is put in a flame, the other end
of the rod will soon be so hot that you cannot
hold it by your bare hands. Here heat transfer
takes place by conduction from the hot end of
the rod through its different parts to the other
end.  Gases are poor thermal conductors while
liquids have conductivities intermediate between
solids and gases.

Heat conduction may be described
quantitatively as the time rate of heat flow
in a material for a given temperature
difference. Consider a metallic bar of length L
and uniform cross section A with its two ends
maintained at different temperatures. This can
be done, for example, by putting the ends in
thermal contact with large reservoirs at
temperatures, say, TC and TD respectively (Fig.
12.14). Let us assume the ideal condition that
the sides of the bar are fully insulated so that
no heat is exchanged between the sides and
the surroundings.

After sometime, a steady state is reached;
the temperature of the bar decreases uniformly
with distance from TC to TD; (TC>TD). The
reservoir at C supplies heat at a constant rate,
which transfers through the bar and is given
out at the same rate to the reservoir at D. It is

found experimentally that in this steady state,
the rate of flow of heat (or heat current) H
is proportional to the temperature difference
(TC – TD) and the area of cross section A and is
inversely proportional to the length L :

H = KA 
–C DT T

L
(12.14)

The constant of proportionality K is called
the thermal conductivity of the material. The
greater the value of K for a material, the more
rapidly will it conduct heat. The SI unit of K is
J S–1 m–1 K–1 or W m–1 K–1.  The thermal
conductivities of various substances are listed
in Table 12.6. These values vary slightly with
temperature, but can be considered to be
constant over a normal temperature range.

Compare the relatively large thermal
conductivities of the good thermal conductors,
the metals, with the relatively small thermal
conductivit ies of some good thermal
insulators, such as wood and glass wool. You
may have noticed that some cooking vessels
have copper coating on the bottom. Being a
good conductor of heat, copper promotes the
distribution of heat over the bottom of a vessel
for uniform cooking. Plastic foams, on the other
hand, are good insulators, mainly because
they contain pockets of air. Recall that gases
are poor conductors, and note the low thermal
conductivity of air in the Table 12.6. Heat
retention and transfer are important in many
other applications. Houses made of concrete
roofs get very hot during summer days,
because thermal conductivity of concrete
(though much smaller than that of a metal) is
still not small enough. Therefore, people
usually prefer to give a layer of earth or foam
insulation on the ceiling so that heat transfer
is prohibited and keeps the room cooler. In
some situations, heat transfer is critical. In a
nuclear reactor, for example, elaborate heat
transfer systems need to be installed so that
the enormous energy produced by nuclear
fission in the core transits out sufficiently fast,
thus preventing the core from overheating.

Fig. 12.14 Steady state heat flow by conduction in
a bar with its two ends maintained at
temperatures TC and TD; (TC > TD).
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Answer  The insulating material around the
rods reduces heat loss from the sides of the
rods. Therefore, heat flows only along the length
of the rods. Consider any cross section of the
rod. In the steady state, heat flowing into the
element must equal the heat flowing out of
it; otherwise there would be a net gain or loss of
heat by the element and its temperature would
not be steady. Thus in the steady state, rate of
heat flowing across a cross section of the rod is
the same at every point along the length of the
combined steel-copper rod. Let T be the
temperature of the steel-copper junction in the
steady state. Then,

    1 1 2 2

1 2

300 0K  A T K  A T –
= 

L L

 

where 1 and 2 refer to the steel and copper rod
respectively.  For A1 = 2 A2, L1 = 15.0 cm,
L2 = 10.0 cm, K1 = 50.2 J s–1 m–1 K –1, K2 = 385 J s–

1 m–1 K –1, we have

 50.2  2 300 385

15 10

T T
= 

 

which gives T = 44.4 °C 

Example 12.7 An iron bar (L1 = 0.1 m, A1 =
0.02 m2, K1 = 79 W m–1 K–1) and a
brass bar (L2 = 0.1 m, A2 = 0.02 m2,
K2 = 109 W m–1K–1) are soldered end to end
as shown in  Fig. 12.16.   The free ends of
the iron bar and brass bar are maintained
at 373 K and 273 K respectively. Obtain
expressions for and hence compute (i) the
temperature of the junction of the two bars,
(ii) the equivalent thermal conductivity of
the compound bar, and (iii) the heat
current through the compound bar.

Answer

Fig 12.16
Given, L1 = L2= L = 0.1 m, A1 = A2= A= 0.02 m2

K1 = 79 W m–1 K–1, K2 = 109 W m–1 K–1,
T1 = 373 K, and T2 = 273 K.

Under steady state condition, the heat current
(H1) through iron bar is equal to the heat current



Table 12.6 Thermal conductivities of some
      materials

Materials Thermal conductivity
(J s–1 m–1 K–1 )

Metals

Silver 406
Copper 385
Aluminium 205
Brass 109
Steel 50.2
Lead 34.7
Mercury 8.3

Non-metals

Insulating brick 0.15
Concrete 0.8
Body fat 0.20
Felt 0.04
Glass 0.8
Ice 1.6
Glass wool 0.04
Wood 0.12
Water 0.8

Gases

Air 0.024
Argon 0.016
Hydrogen 0.14

Example 12.6 What is the temperature of
the steel-copper junction in the steady state
of the system shown in Fig. 12.15. Length
of the steel rod = 15.0 cm, length of the
copper rod = 10.0 cm, temperature of the
furnace = 300 °C, temperature of the other
end = 0 °C. The area of cross section of the
steel rod is twice that of the copper rod.
(Thermal conductivity of steel
= 50.2 J s–1 m–1K–1; and of copper
= 385 J s–1m–1K–1).

Fig. 12.15
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convection current would be set up, with the
air at the equatorial surface rising and moving
out towards the poles, descending and
streaming in towards the equator. The rotation
of the earth, however, modifies this convection
current. Because of this, air close to the equator
has an eastward speed of 1600 km/h, while it
is zero close to the poles. As a result, the air
descends not at the poles but at 30° N (North)
latitude and returns to the equator. This is called
trade wind.

12.9.3  Radiation

Conduction and convection require some
material as a transport medium. These modes
of heat transfer cannot operate between bodies
separated by a distance in vacuum. But the
earth does receive heat from the Sun across a
huge distance and we quickly feel the warmth
of the fire nearby even though air conducts
poorly and before convection can set in. The
third mechanism for heat transfer needs no
medium; it is called radiation and the energy
so radiated by electromagnetic waves is
called radiant energy.  In an electromagnetic
wave electric and magnetic fields oscillate in
space and time. Like any wave, electromagnetic
waves can have different wavelengths and can
travel in vacuum with the same speed, namely
the speed of light i.e., 3 × 108 m s–1 . You will
learn these matters in more details later, but
you now know why heat transfer by radiation
does not need any medium and why it is so fast.
This is how heat is transfered to the earth from

the Sun through empty space. All bodies emit
radiant energy, whether they are solid, liquid
or gases.  The electromagnetic radiation emitted
by a body by virtue of its temperature like the
radiation by a red hot iron or light from a
filament lamp is called thermal radiation.

When this thermal radiation falls on other
bodies, it is partly reflected and partly absorbed.
The amount of heat that a body can absorb by
radiation depends on the colour of the body.

We find that black bodies absorb and emit
radiant energy better than  bodies of lighter
colours. This fact finds many applications in our
daily life. We wear white or light coloured clothes
in summer so that they absorb the least heat
from the sun. However, during winter, we use
dark coloured clothes which absorb heat from
the Sun and keep our body warm. The bottoms
of the utensils for cooking food are blackened so
that they absorb maximum heat from the fire
and give it to the vegetables to be cooked.

Similarly, a Dewar flask or thermos bottle is
a device to minimise heat transfer between the
contents of the bottle and outside. It consists of
a double-walled glass vessel with the inner and
outer walls coated with silver. Radiation from
the inner wall is reflected back into the contents
of the bottle. The outer wall similarly reflects
back any incoming radiation. The space between
the walls is evacuted to reduce conduction and
convection losses and the flask is supported on
an insulator like cork. The device is, therefore,
useful for preventing hot contents (like milk)
from getting cold, or alternatively to store cold
contents (like ice).



Fig. 12.17 Convection cycles.
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12.9.4 Blackbody Radiation

We have so far not mentioned the wavelength
content of thermal radiation. The important
thing about thermal radiation at any
temperature is that it is not of one (or a few)
wavelength(s) but has a continuous spectrum
from the small to the long wavelengths. The
energy content of radiation, however, varies for
different wavelengths. Figure A1 gives the
experimental curves for radiation energy per unit
area per unit wavelength emitted by a blackbody
versus wavelength for different temperatures.

Fig. A1: Energy emitted versus wavelength for a
blackbody at different temperatures

Notice that the wavelength 
m
 for which energy

is maximum decreases with increasing
temperature. The relation between 

m
 and T is

given by what is known as Wien’s Displacement
Law:


m
 T  =  constant (A1)

The value of the constant (Wien’s constant)
is 2.9  10–3 m K. This law explains why the
colour of a piece of iron heated in a hot flame
first becomes dull red, then reddish yellow and
finally white hot. Wien’s law is useful for
estimating the surface temperatures of celestial
bodies like the moon, Sun and other stars. Light
from the moon is found to have a maximum
intensity near the wavelength 14 m. By Wien’s
law, the surface of the moon is estimated to have
a temperature of 200 K. Solar radiation has a
maximum at 

m
 = 4753 Å. This corresponds to

T = 6060 K. Remember, this is the temperature
of the surface of the Sun, not its interior.

The most significant feature of the
blackbody radiation curves in Fig. A1 is that
they are universal. They depend only on the
temperature and not on the size, shape or
material of the blackbody. Attempts to explain
blackbody radiation theoretically, at the
beginning of the twentieth century, spurred the
quantum revolution in physics, as you will
learn in later courses.

Energy can be transferred by radiation over
large distances, without a medium (i.e., in
vacuum). The total electromagnetic energy
radiated by a body at absolute temperature T
is proportional to its size, its ability to radiate
(called emissivity)  and most importantly to
its temperature. For a body which is a perfect
radiator, the energy emitted per unit time (H)
is given by

H = AT 4 (A2)

where A  is the area and T is the absolute
temperature of the body.  This relation obtained
experimentally by Stefan and later proved
theoretically by Boltzmann is known as Stefan-
Boltzmann law and the constant  is called
Stefan-Boltzmann constant. Its value in SI units
is 5.67  10–8 W m–2 K–4. Most bodies emit only a
fraction of the rate given by Eq. (A2). A substance
like lamp black comes close to the limit. One,
therefore, defines a dimensionless fraction e
called emissivity and writes,

H = AeT 4 (A3)

Here e = 1 for a perfect radiator. For a tungsten
lamp, for example, e is about 0.4. Thus, a tungsten
lamp at a temperature of 3000 K and a surface
area of 0.3 cm2 radiates at the rate  H = 0.3 
10–4  0.4  5.67  10–8 (3000)4 = 60 W.

A body at temperature T, with surroundings
at temperatures Ts, emits as well as receives
energy. For a perfect radiator, the net rate of
loss of radiant energy is

H = A (T 4 – Ts
4)

For a body with emissivity e, the relation
modifies to

H = e A (T4 – T
s
4) (A4)

m
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As an example, let us estimate the heat
radiated by our bodies. Suppose the surface
area of a person’s body is about 1.9 m2 and the
room temperature is 22°C. The internal body
temperature, as we know, is about 37 °C.  The
skin temperature may be 28°C (say). The
emissivity of the skin is about 0.97 for the
relevant region of electromagnetic radiation. The
rate of heat loss is (from Eq. A4).

H =  5.67  10–8  1.9  0.97 {(301)4 – (295)4}

    =  66.4 W

which is more than half the rate of energy
production by the human body at rest (120 W).
To prevent this heat loss effectively (better than
ordinary clothing), modern arctic clothing has
an additional thin shiny metallic layer next to
the skin, which reflects the body’s radiation.

12.9.5 Greenhouse Effect

The earth’s surface  is a source of  thermal
radiation as it absorbs energy received from Sun.
The wavelength of this radiation lies in the long
wavelength (infrared) region.  But a large portion
of this radiation is absorbed by greenhouse
gases, namely,  carbon dioxide (CO2); methane
(CH4); nitrous oxide (N2O); chlorofluorocarbon
(CFxClx); and tropospheric ozone  (O3). This heats
up the atmosphere which, in turn, gives more
energy to earth   resulting in warmer surface.
This increases the intensity of radiation from
the surface. The cycle of processes described
above is repeated until no radiation is available
for absorption.   The net result is heating up of
earth’s surface and atmosphere. This is known
as Greenhouse effect. Without the Greenhouse
effect, the  temperature of the earth would have
been –18°C.

Concentration of greenhouse gases has
enhanced due to human activities, making the
Earth warmer. According to an estimate, average
temperature of Earth has increased by 0.3 to
0.6°C, since the beginning of this century,
because of this enhancement. By the middle of
the next century, the earth’s global temperature
may be 1 to 3°C higher than today. This global
warming may cause problem for human life,
plants and animals. Because of global warming,
ice caps are melting faster, sea level is rising,

and weather pattern is changing. Many coastal
cities are at the risk of getting submerged. The
enhanced Greenhouse effect may also result in
expansion of deserts. All over the world, efforts
are being made to minimise the effect of global
warming.

12.10  NEWTON’S LAW OF COOLING

We all know that hot water or milk when left in
a container on a table begins to cool gradually.
Ultimately it attains the temperature of the
surroundings. To study how a given body can
cool on exchanging heat with its surroundings,
let us perform the following activity.

Take some water, say 300 ml, in a
calorimeter with a stirrer and cover it with two
holed lid. Fix a thermometer through a hole in
the lid and make sure that the bulb of
thermometer is immersed in the water. Note
the reading of the thermometer. This reading
T1 is the temperature of the surroundings.
Heat the water kept in the calorimeter till it
attains a temperature, say, 40 °C above room
temperature ( i .e. ,  temperature of the
surroundings). Then stop heating the water
by removing the heat source. Start the stop-
watch and note the reading of the thermometer
after some fixed intervals of time(t), say, after
every one minute; of stirring gently with the
stirrer. Continue to note the temperature (T2)
of water till it attains a temperature about 5
°C above that of the surroundings. Then plot
a graph by taking each value of temperature
T = T2 – T1 along y axis and the coresponding
value of  t along x-axis (Fig. 12.18).

Fig. 12.18 Curve showing cooling of hot water
with time.

From the graph you will infer how the cooling
of hot water depends on the difference of its
temperature from that of the surroundings. You
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will also notice that initially the rate of cooling is
higher and decreases as the temperature of the
body falls.

The above activity shows that a hot body loses
heat to its surroundings in the form of heat
radiation. The rate of loss of heat depends on
the difference in temperature between the body
and its surroundings. Newton was the first to
study, in a systematic manner, the relation
between the heat lost by a body in a given
enclosure and its temperature.

According to Newton’s law of cooling, the
rate of loss of heat, – dQ/dt of the body is
directly proportional to the difference of
temperature T = (T2–T1) of the body and the
surroundings.

 The law holds good only for small difference of
temperature. Also, the loss of  heat by radiation
depends upon the nature of the surface of the
body and the area of the exposed surface. We
can write

– 
dQ
dt

k T T= ( )2 1   (sign indicates loss)(12.15)

where k is a positive constant depending upon
the area and nature of the surface of the body.
Suppose a body of mass m and specific heat
capacity s is at temperature T2. Let T1 be the
temperature of the surroundings. If the
temperature falls by a small amount dT2 in time
dt, then the amount of heat lost is

dQ = ms dT2

 Rate of loss of heat is given by

dQ
dt

ms
dT
dt

= 2 (12.16)

From Eqs. (12.15) and (12.16) we have

– ( – )m s
dT
dt

k T T2
2 1=

dT
T T

k
ms

dt K dt2

2 1–
– –= = (12.17)

where K = k/m s

On integrating,

loge (T2 – T1) = – K t + c (12.18)

(T2 – T1) = e–Kt+c

or T2 = T1 + C e–Kt; where C = ec (12.19)

Equation (12.19) enables you to calculate the
time of cooling of a body through a particular
range of temperature.



For small temperature differences, the rate
of cooling, due to conduction, convection, and
radiation combined, is proportional to the
difference in temperature. It is a valid
approximation in the transfer of heat from a
radiator to a room, the loss of heat through the
wall of a room, or the cooling of a cup of tea on
the table.

Fig. 12.19 Verification of Newton’s Law of cooling.

Experimental Verification

Newton’s law of cooling can be verified with
the help of the experimental set-up shown in
Fig. 12.19(a). The set-up consists of a double
walled vessel (V) containing water(CW) in
between the two walls. A copper calorimeter (C)
containing hot water is placed inside the double
walled vessel. Two thermometers through the
corks are used to note the temperatures T2 of
hot water in calorimeter and T1 of   water in
between the double walls respectively.
Temperature of hot water in the calorimeter is
noted after equal intervals of time. A graph is
plotted between loge (T2–T1) and time (t). The
nature of the graph is observed to be a straight
line having a negative slope as shown in Fig.
12.19(b). This is in support of Eq. (12.18).

Example 12.8  A pan filled with hot food
cools from 94 °C to 86 °C in 2 minutes when
the room temperature is at 20 °C. How long
will it take to cool from 71 °C to 69 °C?

Answer  The average temperature of 94 °C and
86 °C is 90 °C, which is 70 °C above the room
temperature. Under these conditions the pan
cools 8 °C in 2 minutes.

W
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s
m

Q

T


1 


where m is the mass of the substance and Q is the heat required to change its
temperature by T.  The molar specific heat capacity of a substance is defined by

1 Q
C

T 
 

 
 

where  is the number  of moles of the substance.

8. The latent heat of fusion (Lf) is the heat per unit mass required to change a substance
from solid into liquid at the same temperature and pressure. The latent heat of
vaporisation (Lv) is the heat per unit mass required to change a substance from the
liquid to the vapour state without change in the temperature and pressure.

9. The three modes of heat transfer are conduction, convection and radiation.

10. In conduction, heat is transferred between neighbouring parts of a body through
molecular collisions, without any flow of matter.  For a bar of length L and uniform
cross section A with its ends maintained at temperatures T

C
 and T

D 
 (T

C
 > T

D 
),the rate of

flow of heat H is :

 C D 
T T

H = K A
L



where K is the thermal conductivity of the material of the bar.

11. Newton’s Law of Cooling says that the rate of cooling of a body is proportional to the
excess temperature of the body over the surroundings :

2 1

d
( )

d
Q

 = – k T  – T    
t

Where T1 is the temperature of the surrounding medium and T2 is the temperature of
the body.
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POINTS TO PONDER
1. The relation connecting Kelvin temperature (T ) and the Celsius temperature tc

T  =  tc + 273.15

and the assignment T = 273.16 K for the triple point of water are exact relations (by
choice). With this choice, the Celsius temperature of the melting point of water and
boiling point of water (both at 1 atm pressure) are very close to, but not exactly equal to
0 °C and 100 °C respectively.  In the original Celsius scale, these latter fixed points were
exactly at 0 °C and 100 °C (by choice), but now the triple point of water is the preferred
choice for the fixed point, because it has a unique temperature.

2. A liquid in equilibrium with vapour has the same pressure and temperature throughout
the system; the two phases in equilibrium differ in their molar volume (i.e. density).
This is true for a system with any number of phases in equilibrium.

3. Heat transfer always involves temperature difference between two systems or two parts
of the same system. Any energy transfer that does not involve temperature difference in
some way is not heat.

4. Convection involves flow of matter within a fluid due to unequal temperatures of its
parts. A hot bar placed under a running tap loses heat by conduction between the
surface of the bar and water and not by convection within water.

EXERCISES

Very Short Answer Questions (2 Marks)

1. Distinguish between heat and temperature.

2. What are the lower and upper fixing points in Celsius and Fahrenheit scales?

3. Do the values of coefficients of expansion differ, when the temperatures are measured
on Centigrade scale or on Fahrenheit scale?

4. Can a substance contract on heating? Give an example.

5. Why gaps are left between rails on a railway track?

6. Why do liquids have no linear and areal expansions?

7. What is latent heat of fusion?

8. What is latent heat of vapourisation?

9. Why utensils are coated black ? Why the bottom of the utensils are made of copper?

10. State Weins displacement law?

11. Ventilators are provided in rooms just below the roof. Why?

12. Does a body radiate heat at 0 K? Does it radiate heat at O°C?

13. State the different modes of transmission of heat. Which of these modes require
medium?

14. Define coefficient of thermal conductivity and temperature gradient.

15. Define emissivity.

16. What is greenhouse effect? Explain global warming.

17. Define absorptive power of a body. What is the absorptive power of a perfect black
body.

18. State Newton’s law of cooling.

19. State the conditions under which Newton’s law of cooling is applicable.

20. The roof of buildings are often painted white during summer. Why?
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Short Answer Questions (4 Marks)

1. Explain Celsius and Fahrenheit scales of temperature.  Obtain the relation between
Celsius and Fahrenheit scales of temperature.

2. Two identical rectangular strips, one of copper and the other of steel, are riveted

together to form a compound bar. What will happen on heating?

3. Pendulum clocks generally go fast in winter and slow in summer. Why?

4. In what way is the anomalous behaviour of water advantageous to aquatic animals?

5. Explain conduction, convection and radiation with examples.

Long Answer Questions (8 Marks)

1. Explain thermal conductivity and coefficient of thermal conductivity. A copper bar

of thermal conductivity 401 W/(mK) has one end at 104°C and the other end at

24°C. The length of the bar is 0.l0 m and the cross- sectional area is 1.0x 10-6 m-2.

What is the rate of heat conduction, along the bar?

2. State and explain Newton’s law of cooling. State the conditions under which

Newton’s law of cooling is applicable. A body cools down from 60°C to 50°C in 5

minutes and to 40°C in another 8 minutes. Find the temperature of the

surroundings.

Problems

1. What is the temperature for which  the readings  on Kelvin  and  Fahrenheit scales

are same?     (Ans: F.6.574 o )

2. Find the increase in temperature of aluminium rod if its length is to be increased

by 1 %. (a for aluminium = 25 x 10-6 /0 C )        (Ans : 4000C)

3. How much steam at 100°C is to be passed into water of mass 100 g at 20°C to raise

its temperature by 5°C? (Latent heat of steam is 540 cal/g and specific heat of

water is 1 cal/gOC)     (Ans :0.813 g.)

4. 2 kg of air is heated at constant volume. The temperature of air is increased from

293 K to 313 K. If the specific heat of air at constant volume is 0.718 kJ/kg K, find

the amount of heat absorbed in kJ and kcaI. (J = 4.2 kJ/kcal)

(Ans :28.72kJ, 6.838 kcal.)

5. A clock, with a brass pendulum, keeps correct time at 20°C, but loses 8.212 s per

day, when the temperature rises to 30°C. Calculate the coefficient of linear expansion

of brass. (Ans: 19x l0-6/oC)

6. A body cools from 60°C to 40°C in 7 minutes. What will be its temperature after

next 7 minutes if the temperature of its surroundings is 10°C?           (Ans: 28°C)

7. If the maximum intensity of radiation for a black body is found at 2.65   m what

is the temperature of the radiating body? (Wien’s constant = 2.9 x 10-3

 

mK)

(Ans: 1094K)
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Additional Problems

12.1 The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively.
Express these temperatures on the Celsius and Fahrenheit scales.

12.2 Two absolute scales A and B have triple points of water defined to be 200 A and    350
B. What is the relation between TA and TB ?

12.3 The electrical resistance in ohms of a certain thermometer varies with temperature
according to the approximate law :

R = Ro [1 +  (T – To )]

The resistance is 101.6  at the triple-point of water 273.16 K, and 165.5  at the
normal melting point of lead (600.5 K). What is the temperature when the resistance
is 123.4 ?

12.4 Answer the following :

(a) The triple-point of water is a standard fixed point in modern thermometry.
Why ? What is wrong in taking the melting point of ice and the boiling point
of water as standard fixed points (as was originally done in the Celsius scale) ?

(b) There were two fixed points in the original Celsius scale as mentioned above
which were assigned the number 0 °C and 100 °C respectively. On the absolute
scale, one of the fixed points is the triple-point of water, which on the Kelvin
absolute scale is assigned the number 273.16 K. What is the other fixed point
on this (Kelvin) scale ?

(c) The absolute temperature (Kelvin scale) T is related to the temperature tc on
the Celsius scale by

tc = T – 273.15

Why do we have 273.15 in this relation, and not 273.16 ?

(d) What is the temperature of the triple-point of water on an absolute scale
whose unit interval size is equal to that of the Fahrenheit scale ?

12.5 Two ideal gas thermometers A and B use oxygen and hydrogen respectively.  The
following observations are made :

Temperature Pressure Pressure
thermometer A thermometer B

Triple-point of water 1.250 × 105 Pa 0.200 × 105 Pa

Normal melting point 1.797 × 105 Pa 0.287 × 105 Pa
of sulphur

(a) What is the absolute temperature of normal melting point of sulphur as read
by thermometers A and B ?

(b) What do you think is the reason behind the slight difference in answers of
thermometers A and B ? (The thermometers are not faulty). What further
procedure is needed in the experiment to reduce  the discrepancy between the
two readings ?

12.6 A steel tape 1m long is correctly calibrated for a temperature of 27.0 °C.  The length
of a steel rod measured by this tape is found to be 63.0 cm on a hot day when the
temperature is 45.0 °C. What is the actual length of the steel rod on that day ?
What is the length of the same steel rod on a day when the temperature is 27.0 °C

?  Coefficient of linear expansion of steel = 1.20 × 10–5 K–1 .

12.7 A large steel wheel is to be fitted on to a shaft of the same material. At 27 °C, the
outer diameter of the shaft is 8.70 cm and the diameter of the central hole in the
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wheel is 8.69 cm. The shaft is cooled using ‘dry ice’. At what temperature of the
shaft does the wheel slip on the shaft? Assume coefficient of linear expansion of

the steel to be constant over the required temperature range :
steel = 1.20 × 10–5 K–1.

12.8 A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at 27.0 °C.
What is the change in the diameter of the hole when the sheet is heated to 227
°C? Coefficient of linear expansion of copper = 1.70 × 10–5 K–1.

12.9 A brass wire 1.8 m long at 27 °C is held taut with little tension between two rigid
supports. If the wire is cooled to a temperature of –39 °C, what is the tension
developed in the  wire, if its diameter is 2.0 mm ?  Co-efficient of linear expansion
of  brass = 2.0 × 10–5 K–1; Young’s modulus of brass = 0.91 × 1011 Pa.

12.10 A brass rod of length 50 cm and diameter 3.0 mm is joined to a steel rod of the
same length and diameter. What is the change in length of the combined rod at
250 °C, if the original lengths are at 40.0 °C?  Is there a ‘thermal stress’ developed
at the junction ? The ends of the rod are free to expand (Co-efficient of linear
expansion of brass = 2.0 × 10–5 K–1, steel = 1.2 × 10–5 K–1 ).

12.11 The coefficient of volume expansion of glycerin is 49 × 10–5 K–1.  What is the
fractional change in its density for a 30 °C rise in temperature ?

12.12 A 10 kW drilling machine is used to drill a bore in a small aluminium block of
mass 8.0 kg.  How much is the rise in temperature of the block in 2.5 minutes,
assuming 50% of power is used up in heating the machine itself or lost to the
surroundings. Specific heat of aluminium = 0.91 J g–1 K–1.

12.13 A copper block of mass 2.5 kg is heated in a furnace to a temperature of 500 °C
and then placed on a large ice block.  What is the maximum amount of  ice that
can melt?  (Specific heat of copper = 0.39 J g–1 K–1; heat of fusion of water
= 335 J g–1 ).

12.14 In an experiment on the specific heat of a metal, a 0.20 kg block of the metal at
150 °C is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing
150 cm3 of water at 27 °C.  The final temperature is 40 °C. Compute the specific
heat of the metal. If heat losses to the surroundings are not negligible, is your
answer greater or smaller than the actual value for specific heat of the metal ?

12.15 Given below are observations on molar specific heats at room temperature of
some common gases.

Gas Molar specific heat (Cv )
(cal mo1–1 K–1)

Hydrogen 4.87
Nitrogen 4.97
Oxygen 5.02
Nitric oxide 4.99
Carbon monoxide 5.01
Chlorine 6.17

The measured molar specific heats of these gases are markedly different from those
for monatomic gases.  Typically, molar specific heat of a monatomic gas is 2.92 cal/
mol K.  Explain this difference.  What can you infer from the somewhat larger (than
the rest) value for  chlorine ?

12.16 Answer the following questions based on the P-T phase diagram of carbon dioxide:

(a) At what temperature and pressure can the solid, liquid and vapour phases of
CO2  co-exist in equilibrium ?

(b) What is the effect of decrease of pressure on the fusion and boiling point of
CO2 ?
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(c) What are the critical temperature and pressure for CO2 ? What is their
significance ?

(d) Is CO2 solid, liquid or gas at (a) –70 °C under 1 atm, (b) –60 °C under 10 atm,
(c) 15 °C under 56 atm ?

12.17 Answer the following questions based on the P – T phase diagram of CO2:
(a) CO2 at 1 atm pressure and temperature – 60 °C is compressed isothermally.

Does it go through a liquid phase ?

(b) What happens when CO2 at 4 atm pressure is cooled from room temperature at
constant pressure ?

(c) Describe qualitatively the changes in a given mass of solid CO2  at 10 atm
pressure and temperature –65 °C as it is heated up to room temperature at

constant pressure.

(d) CO2 is heated to a temperature 70 °C and compressed isothermally. What

changes in its properties do you expect to observe ?

12.18 A child running a temperature of 101°F is given an antipyrin (i.e. a medicine that

lowers fever) which causes an increase in the rate of evaporation of sweat from his
body. If the fever is brought down to 98 °F in 20 min, what is the average rate of
extra evaporation caused, by the drug. Assume the evaporation mechanism to be

the only way by which heat is lost.  The mass of the child is 30 kg.  The specific heat
of human body is approximately the same as that of water, and latent heat of
evaporation of water at that temperature is about 580 cal g–1.

12.19 A ‘thermacole’ icebox is a cheap and efficient method for storing small quantities of
cooked food in summer in particular.  A cubical icebox of side 30 cm has a thickness

of 5.0 cm. If 4.0 kg of ice is put in the box, estimate the amount of ice remaining
after 6 h. The outside temperature is 45 °C, and co-efficient of thermal conductivity
of thermacole is 0.01 J s–1 m–1 K–1. [Heat of fusion of water = 335 × 103 J kg–1]

12.20 A brass boiler has a base area of 0.15 m2 and thickness 1.0 cm.  It boils water at the
rate of 6.0 kg/min when placed on a gas stove.  Estimate the temperature of the part of

the flame in contact with the boiler.  Thermal conductivity of brass = 109 J s–1 m–1 K–1

;  Heat of vaporisation of water =  2256 × 103 J kg–1.

12.21 Explain why :
(a) a body with large reflectivity is a poor emitter
(b) a brass tumbler feels much colder than a wooden tray on a chilly day

(c) an optical pyrometer (for measuring high temperatures) calibrated for an ideal
black body radiation gives too low a value for the temperature of a red hot iron
piece in the open, but gives a correct value for the temperature when the same

piece is  in the furnace
(d)  the earth without its atmosphere would be inhospitably cold
(e) heating systems based on circulation of  steam are more efficient in warming a

building than those based on circulation of hot water

12.22 A body cools from 80 °C to 50 °C in 5 minutes. Calculate the time it takes to cool

from 60 °C to 30 °C. The temperature of the surroundings is 20 °C.



CHAPTER THIRTEEN

THERMODYNAMICS

13.1  INTRODUCTION
In previous chapter we have studied thermal properties of
matter. In this chapter we shall study laws that govern
thermal energy. We shall study the processes where work is
converted into heat and vice versa. In winter, when we rub
our palms together, we feel warmer; here work done in rubbing
produces the  ‘heat’.  Conversely, in a steam engine, the ‘heat’
of the steam is used to do useful work in moving the pistons,
which in turn rotate the wheels of the train.

In physics, we need to define the notions of heat,
temperature, work, etc. more carefully.  Historically, it took a
long time to arrive at the proper concept of ‘heat’. Before the
modern picture, heat was regarded as a fine invisible fluid
filling in the pores of a substance.  On contact between a hot
body and a cold body, the fluid  (called caloric) flowed from
the colder to the hotter body ! This is similar to what happens
when a horizontal pipe connects two tanks containing water
at two different levels or heights. The flow continues until
the levels of water in the two tanks are the same.  Likewise,
in the ‘caloric’ picture of heat, heat flows until the ‘caloric
levels’ (i.e., the temperatures) equalise.

In time, the picture of heat as a fluid was discarded in
favour of the modern concept of heat as a form of energy. An
important experiment in this connection was due to Benjamin
Thomson (also known as Count Rumford) in 1798. He
observed that boring of a brass cannon generated a lot of
heat, indeed enough to boil water. More significantly, the
amount of heat produced depended on the work done (by the
horses employed for turning the drill) but not on the
sharpness of the drill. In the caloric picture, a sharper drill
would scoop out more heat fluid from the pores; but this
was not observed. A most natural explanation of the
observations was that heat was a form of energy and the
experiment demonstrated conversion of energy from one form
to another–from work to heat.

13.1 Introduction

13.2 Thermal equilibrium

13.3 Zeroth law of
Thermodynamics

13.4 Heat, internal energy and
work

13.5 First law of
thermodynamics

13.6 Specific heat capacity

13.7 Thermodynamic state
variables and equation of
state

13.8 Thermodynamic processes

13.9 Heat engines

13.10 Refrigerators and heat
pumps

13.11 Second law of
thermodynamics

13.12 Reversible and irreversible
processes

13.13 Carnot engine
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system is 9.35 cal, how much is the net work done by the system in the latter case ?
(Take 1 cal = 4.19 J)

13.6 Two cylinders A and B of equal capacity are connected to each other via a stopcock.
A contains a gas at standard temperature and pressure. B is completely evacuated.

The entire system is thermally insulated. The stopcock is suddenly opened. Answer
the following :

(a) What is the final pressure of the gas in A and B ?

(b) What is the change in internal energy of the gas ?

(c) What is the change in the temperature of the gas ?

(d) Do the intermediate states of the system (before settling to the final equilibrium
state) lie on its P-V-T surface ?

13.7 A steam engine delivers 5.4×108J of work per minute and services 3.6 × 109J of heat
per minute from its boiler. What is the efficiency of the engine? How much heat is

wasted per minute?

13.8 An electric heater supplies heat to a system at a rate of 100W. If system performs
work at a rate of 75 joules per second. At what rate is the internal energy increasing?

13.9 A thermodynamic system is taken from an original state to an intermediate state by
the linear process shown in Fig. (13.13)

Fig. 13.13

Its volume is then reduced to the original value from E to F by an isobaric process.
Calculate the total work done by the gas from D to E to F

13.10 A refrigerator is to maintain eatables kept inside at 90C. If room temperature is 360C,
calculate the coefficient of performance.



CHAPTER FOURTEEN

KINETIC THEORY

14.1 INTRODUCTION

Boyle discovered the law named after him in 1661. Boyle,
Newton and several others tried to explain the behaviour of
gases by considering that gases are made up of tiny atomic
particles. The actual atomic theory got established more than
150 years later. Kinetic theory explains the behaviour of gases
based on the idea that the gas  consists of rapidly moving
atoms or molecules. This is possible as the inter-atomic forces,
which are short range forces that are important for solids
and liquids,  can be neglected for gases. The kinetic theory
was developed in the nineteenth century by Maxwell,
Boltzmann and others. It has been remarkably successful. It
gives a molecular interpretation of  pressure and temperature
of a gas, and is consistent with gas laws and Avogadro’s
hypothesis. It correctly explains specific heat capacities of
many gases. It also relates measurable properties of gases
such as viscosity, conduction and diffusion with molecular
parameters, yielding estimates of molecular sizes and masses.
This chapter gives an introduction to kinetic theory.

14.2  MOLECULAR NATURE OF MATTER

Richard Feynman, one of the great physicists of 20th century
considers the discovery that “Matter is made up of atoms” to
be a very significant one. Humanity may suffer annihilation
(due to nuclear catastrophe) or extinction (due to
environmental disasters) if we do not act wisely. If that
happens, and all of scientific knowledge were to be destroyed
then Feynman would like the ‘Atomic Hypothesis’ to be
communicated to the next generation of creatures in the
universe. Atomic Hypothesis: All things are made of atoms -
little particles that move in space perpetually in any matter,
attracting each other when they are a little distance apart,
but repelling when they come closer than a particular distance.

Speculation that matter may not be continuous, existed in
many places and cultures. Kanaada in India and Democritus

14.1 Introduction

14.2 Molecular nature of matter

14.3 Behaviour of gases

14.4 Kinetic theory of an ideal gas

14.5 Law of equipartition of energy

14.6 Specific heat capacity

14.7 Mean free path
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 APPENDICES

APPENDIX  A 1

THE GREEK ALPHABET

APPENDIX  A 2

COMMON SI PREFIXES AND SYMBOLS FOR MULTIPLES AND SUB-MULTIPLES
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A 6.2   SI Derived Units with special names

A 6.3   Some SI Derived Units expressed by means of SI Units with special names

pascal
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APPENDIX  A 7
GENERAL GUIDELINES FOR USING SYMBOLS FOR PHYSICAL QUANTITIES, CHEMICAL

ELEMENTS AND NUCLIDES

 Symbols for physical quantities are normally single letters and printed in italic (or sloping) type.
However, in case of the two letter symbols,  appearing as a factor in a product, some spacing is
necessary to separate this symbol from other symbols.

 Abbreviations, i.e., shortened forms of names or expressions, such as p.e. for potential energy,
are not used in physical equations.  These abbreviations in the text are written in ordinary
normal/roman (upright) type.

 Vectors are printed in bold and normal/roman (upright) type.  However, in class room situations,
vectors may be indicated by an arrow on the top of the symbol.

 Multiplication or product of two physical quantities is written with some spacing between them.
Division of one physical quantity by another may be indicated with a horizontal bar or with

Absorbed dose rate







For exam ple, a U -235 n u clide is expressed as 92
235 U
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Potential difference 
Current 

[AT]
[ML  T–3 A–1 ]2

   

46. Heat capacity, 

entropy 

Heat energy / temperature [ML2 T–2]/[K] [ML2T–2K–1] 

 

47. Specific heat capacity 
 

[ML2 T–2]/[M] [K] [M0L2 T–2 K–1] 

48. Latent heat Heat energy/mass [ML2 T–2]/[M] [M0L2 T–2] 

49. Thermal expansion 
coefficient or 
Thermal expansivity 

 

 

[L] /[L][K] [M0L0K–1] 

50. Thermal conductivity  [ML2 T–2][L] 
[L2] [K] [T] 

[MLT–3 K–1] 

 

51. Bulk modulus  
or (compressibility) 1  

 
 

[ML–1 T–2] 

 

52. Centripetal 
acceleration 

(Velocity)2 /radius [LT–1]2 /[L] [M0 LT–2] 

53. Stefan constant 
  

[ML2 T–2] 
[L2] [T] [K]4 

[ML0 T–3K–4] 

54. Wien constant Wavelength  temperature [L] [K] [M0 LT0K] 

55. Boltzmann constant Energy/temperature [ML2 T–2]/[K] [ML2 T–2 K–1] 

56. Universal gas 
constant  

[ML–1 T–2][L3] 
[mol]  [K] 

[ML2 T–2 K–1  

 mol–1] 

57. Charge Current  time [A] [T] [M0 L0TA] 

58. Current density Current /area [A] /[L2] [M0L–2 T0A] 

59. Voltage, electric 
potential, 
electromotive force 

Work/charge [ML2T–2]/[AT] [ML2 T–3 A–1] 

60. Resistance 
  

[ML2 T–3 A–1] 
         [A] 

[ML2 T–3  A–2] 

61. Capacitance Charge/potential difference 
 

[M–1L–2 T4 A2] 

62. Electrical  
resistivity 
or (electrical 
 conductivity)-1 

 
           

[ML2 T–3 A  –2 ]  
[L2]/[L] 

[ML3 T–3 A–2] 

 

63. Electric field Electrical force/charge [MLT–2]/[AT] [MLT–3 A–1] 

64. Electric flux Electric field  area [MLT–3A–1][L2] [ML3 T–3 A–1] 

Resistance  area
length
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Chapter   2

2.1 (a) 10–6 ;  (b) 1.5 × 104 ; (c) 5 ; (d) 11.3, 1.13 × 104.

2.2 (a) 107 ;   (b) 10–16  ; (c) 3.9 × 104 ; (d) 6.67 × 10–8.

2.5 500

2.6 (c)

2.7 0.035 mm

2.9 94.1

2.10 (a) 1 ; (b) 3 ; (c) 4 ; (d) 4 ; (e) 4 ; (f) 4.

2.11 8.72 m2; 0.0855 m3

2.12 (a) 2.3 kg ; (b) 0.02 g

2.13 13%; 3.8

2.14 (b) and (c) are wrong on dimensional grounds. Hint: The argument of a trigonometric
function must always be dimensionless.

2.15 The correct formula is m = m0 (1 – v2/c2)–½

2.16 3 × 10–7 m3

2.17  104; intermolecular separation in a gas is much larger than the size of a molecule.

2.18 Near objects make greater angle than distant (far off) objects at the eye of the observer.
When you are moving, the angular change is less for distant objects than nearer objects.
So, these distant objects seem to move along with you, but the nearer objects in opposite
direction.

2.19 3 × 1016 m; as a unit of length 1 parsec is defined to be equal to  3.084 × 1016 m.

2.20 1.32 parsec; 2.64 (second of arc)

2.23 1.4 × 103 kg m-3; the mass density of the Sun is in the range of densities of liquids /
solids and not gases. This high density arises due to inward gravitational attraction
on outer layers due to inner layers of the Sun.

2.24 1.429 × 105  km
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INTERMEDIATE FIRST YEAR

PHYSICS

(BOARD OF INTERMEDIATE EDUCATION)

SYLLABUS (with effect from, 2012-13)

Periods
C  H  A  P  T  E  R     1

PHYSICAL WORLD 4 Periods

1.1 What is Physics ?

1.2 Scope and excitement of Physics

1.3 Physics, technology and Society

1.4 Fundamental forces in nature, Gravitational Force, Electromagnetic Force, Strong
Nuclear Force, Weak Nuclear Force, Towards Unification of Forces

1.5 Nature of Physical Laws

C  H  A  P  T  E  R     2

UNITS AND MEASUREMENTS 9 Periods

2.1 Introduction

2.2 The International System of Units

2.3 Measurement of Length, Measurement of Large Distances, Estimation of Very Small
Distances: Size of a Molecule, Range of Lengths

2.4 Measurement of Mass, Range of  Masses

2.5 Measurement of Time

2.6 Accuracy, precision of instruments and errors in measurement, Systematic errors,
random errors, least count error, Absolute Error, Relative Error and Percentage Error,
Combination of Errors

2.7 Significant Figures, Rules for Arithmetic Operations with Significant Figures, Rounding
off the Uncertain Digits, Rules for Determining the Uncertainty in the Results of
Arithmatic Calculations

2.8 Dimensions of Physical Quantities

2.9 Dimensional Formulae and dimensional equations

2.10 Dimensional Analysis and Its Applications, Checking the Dimensional Consistency of
Equations, Deducing Relation among the Physical Quantities
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C  H  A  P  T  E  R     3

MOTION IN A STRAIGHT LINE 10 Periods

3.1 Introduction

3.2 Position, Path Length and Displacement

3.3 Average Velocity and Average Speed

3.4 Instantaneous Velocity and Speed

3.5 Acceleration

3.6 Kinematic equations for uniformly accelerated motion

3.7 Relative velocity

 Elements of Calculus

C  H  A  P  T  E  R     4

MOTION IN A PLANE 14 Periods

4.1 Introduction

4.2 Scalars and Vectors, Position and Displacement Vectors, Equality of Vectors

4.3 Multiplication of Vectors by real numbers

4.4 Addition and Subtraction of Vectors – graphical method

4.5 Resolution of Vectors

4.6 Vector addition – analytical method

4.7 Motion in a plane, Position Vector and Displacement, Velocity, Acceleration

4.8 Motion in a plane with constant acceleration

4.9 Relative velocity in two dimensions

4.10 Projectile Motion, Euqation of path of a projectile, Time of Maximum height,
Maximum height of a projectile, Horizontal range of projectile

4.11 Uniform circular motion

C  H  A  P  T  E  R     5

LAWS OF MOTION 16 Periods

5.1 Introduction

5.2 Aristotle’s fallacy

5.3 The law of inertia

5.4 Newton’s first law of Motion

5.5 Newton’s Second Law of Motion

5.6 Newton’s Third Law of Motion, Impulse

5.7 Conservation of momentum

5.8 Equilibrium of a particle

5.9 Common Forces in Mechanics, Friction

5.10 Circular Motion, Motion of a car on a level road, Motion of a car on a banked road

5.11 Solving problems in Mechanics
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C  H  A  P  T  E  R     6

WORK, ENERGY AND POWER 18 Periods

6.1 Introduction, The Scalar Product

6.2 Notions of Work and Kinetic Energy : The work-energy theorem

6.3 Work

6.4 Kinetic energy

6.5 Work done by a variable force

6.6 The work-energy theorem for a variable force

6.7 The concept of Potential Energy

6.8 The conservation of Mechanical Energy

6.9 The Potential Energy of a spring

6.10 Various forms of energy : the law of conservation of Energy, Heat, Chemical Energy,
Electrical Energy, The Equivalence of Mass and Energy, Nuclear Energy,  The Principle
of Conservation of Energy,

6.11 Power

6.12 Collisions, Elastic and  Inelastic Collisions, Collisions in one dimension, Coefficent
of Restitution and its determination, Collisions in Two Dimensions

 Power consumption in walking

C  H  A  P  T  E  R     7

SYSTEMS OF PARTICLES AND ROTATIONAL MOTION 19 Periods

7.1 Introduction, What kind of motion can a rigid body have?,

7.2 Centre of Mass, Centre of gravity,

7.3 Motion of Centre of Mass

7.4 Linear Momentum of a System of particles

7.5 Vector product of Two Vectors

7.6 Angular Velocity and its relation with linear velocity, Angular acceleration, Kinematics
of Rotational Motion about a fixed axis

7.7 Torque and Angular Momentum, Moment of force (Torque), Angular momentum of a
particle, Torque and angular momentum for a system of a particles, conservation of
angular momentum

7.8 Equilibrium of a Rigid Body, Principle of moments

7.9 Moment of Inertia

7.10 Theorems of perpendicular and parallel axes, Theorem of perpendicular axes, Theorem
of parallel axes

7.11 Dynamics of Rotational Motion about a Fixed Axis

7.12 Angular momentum in case of rotations about a fixed axis, Conservation of angular
momentum

7.13 Rolling Motion, Kinetic Energy of Rolling Motion
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C  H  A  P  T  E  R     8

OSCILLATIONS 12 Periods

8.1 Introduction

8.2 Periodic and Oscilatory Motions, Period and frequency, Displacement

8.3 Simple Harmonic Motion (SHM)

8.4 Simple Harmonic Motion and Uniform Circular Motion

8.5 Velocity and Acceleration in Simple Harmonic Motion

8.6 Force Law for Simple Harmonic Motion

8.7 Energy in Simple Harmonic Motion

8.8 Some systems executing Simple Harmonic Motion, Oscillations due to a Spring, The
Simple Pendulum

8.9 Damped Simple Harmonic Motion

8.10 Forced Oscillations and Resonance

C  H  A  P  T  E  R     9

GRAVITATION 12 Periods

9.1 Introduction

9.2 Kepler’s Laws

9.3 Universal Law of Gravitation

9.4 The Gravitational Constant

9.5 Acceleration due to Gravity of the Earth

9.6 Acceleration due to gravity below and above the surface of Earth

9.7 Gravitational Potential Energy

9.8 Escape Speed

9.9 Earth Satellite

9.10 Energy of an orbiting satellite

9.11 Geostationary and Polar satellites

9.12 Weightlessness

C  H  A  P  T  E  R     10

MECHANICAL PROPERTIES OF SOLIDS 10 Periods

10.1 Introduction

10.2 Elastic behaviour of Solids

10.3 Stress and Strain

10.4 Hooke’s law

10.5 Stress-strain curve

10.6 Elastic Moduli, Young’s Modulus, Determination of Young’s Modulus of the Material of
a Wire, Shear Modulus, Bulk Modulus, Poisson’s Ratio,

10.7 Applications of elastic behaviour of Materials
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C  H  A  P  T  E  R     11 12 Periods

MECHANICAL PROPERTIES OF FLUIDS

11.1 Introduction

11.2 Pressure, Pascal’s Law. Variation of Pressure with Depth, Atmospheric Pressure and
Gauge Pressure, Hydraulic Machines

11.3 Streamline flow

11.4 Bernoulli’s principle, Speed of Efflux: Torricelli’s Law, Venturi-meter, Blood Flow
and Heart Attack, Dynamic Lift

11.5 Viscosity, Variation of Viscosity of fluids with temperature, Stokes’ Law

11.6 Reynolds number

11.7 Surface Tension, Surface Energy, Surface Energy and Surface Tension, Angle of
Contact, Drops and Bubbles, Capillary Rise, Detergents and Surface Tension;

 What is blood pressure?

C  H  A  P  T  E  R     12 16 Periods

THERMAL PROPERTIES OF MATTER

12.1 Introduction

12.2 Temperature and Heat

12.3 Measurement of Temperature

12.4 Ideal-Gas Equation and Absolute Temperature

12.5 Thermal Expansion

12.6 Specific Heat Capacity

12.7 Calorimetry

12.8 Change of State, Regelation, Latent Heat

12.9 Heat transfer, Conduction, thermal conductivity, Convection, Radiation, Blackbody
Radiation, Greenhouse Effect

12.10 Newton’s Law of Cooling

C  H  A  P  T  E  R     13

THERMODYNAMICS 18 Periods

13.1 Introduction

13.2 Thermal Equilibrium

13.3 Zeroth Law of Thermodynamics

13.4 Heat, Internal Energy and Work

13.5 First Law of Thermodynamics

13.6 Specific Heat Capacity
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13.7 Thermodynamic State Variables and Equation of State

13.8 Thermodynamic Process, Quasi-static Isothermal Process, Adiabatic Process,
Irochoric Process, Cyclic Process

13.9 Heat Engines

13.10 Refrigerators and Heat Pumps

13.11 Second Law of Thermodynamics

13.12 Reversible and Irreversible Processes

13.13 Carnot Engine, Carnot’s theorem

C  H  A  P  T  E  R     14

KINETIC THEORY 10 Periods

14.1 Introduction

14.2 Molecular Nature of Matter

14.3 Behaviour of Gases, Boyle’s Law, Charles’ Law

14.4 Kinetic Theory of an Ideal Gas, Pressure of an Ideal Gas,

14.5 Law of equipartition of energy

14.6 Specific Heat Capacity, Monatomic Gases, Diatomic Gases, Polyatomic Gases,
Specific Heat Capacity of Solids, Specific Heat Capacity of Water,

14.7 Mean Free Path
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BOARD OF INTERMEDIATE EDUCATION

PHYSICS I YEAR MODEL QUESTION PAPER

(w.e.f. 2012-13)

                                                                               Time: 3 Hours.
                                                                                Max. Marks: 60

Section - A

Answer all questions.
Each carries two marks 10 x 2 = 20 Marks

1. What is the discovery of C.V.Raman?

2.  Write the dimensional formulae for the following quantities.
1. Gravitational constant 2. Surface Tension

3. A ball falls freely from a height 1m to the ground and rebounds to a height of
0.8m. Find the coefficient of restitution.

4. Distinguish between centre of mass and centre of gravity.

5. What are the theoretical and practical limits of Poisson’s ratio?

6. Find the excess pressure inside a liquid drop.

7. Hot liquids flow faster than cold liquids. Explain.

8. What is the specific heat of a gas in a) an isothermal change and b) an adiabatic
change?

9. State the conditions under which Newton’s law of cooling is applicable.

10. What is Greenhouse effect?
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Section – B

Answer any six questions.
Each carries four marks.              6 x 4 = 24 Marks

11. State the Parallelogram law of vectors and derive an expression for its
magnitude.

12. A stone is dropped from a height 300m and at the same time another stone
is projected vertically upwards with a velocity of 100 m/sec.  Find when and
where the two stones meet.

13. Show that two equal masses that undergo oblique elastic collision will move
at right angles to each other after collision.

14. Obtain an expression for the acceleration of a body down a rough inclined
plane.

15. State and prove parallel axes theorem.

16. What is escape velocity?  Obtain an expression for it.

17. Pendulum clocks generally go fast in winter and slow in summer. Why?

18. Describe the behaviour of a wire under gradually increasing load.

Section – C

Answer any two of the following.
Each question carries 8 marks.                                               8 x 2 = 16 Marks

19. Define Kinetic energy.  Deduce the expression for the Kinetic Energy of a
body.
If  V = 3i + 4j + 5k  is the instantaneous Velocity of a body of mass 1.50 kg,
Calculate its Kinetic energy.

20. Show that the motion of simple pendulum is simple harmonic and hence
derive an equation for its time period. What is Seconds pendulum?

21. State second law of thermodynamics. How is heat engine different from a
refrigerator?
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