SYNOPSIS

- Natural forests, botanical gardens, shrub jungles etc., we observe large number of plants exhibiting variability in their size as well as in their vegetative and reproductive morphological characters.
- It is not easy to study, understand and record all such heterogeneous group of plants individually, but yet possible using specific approach. This approach is taxonomy
- The term Taxonomy was coined by A.P.de Candolle in 1813
- Taxonomy purely based on the description of morphological characteristics, is called 'Alpha Taxonomy
- Omega Taxonomy' in which information from other sources, viz., Embryology, Cytology, Palynology, Phytochemistru, Serology etc.
- Taxonomy includes four basic components viz., characterization, identification, nomenclature and classification.

8.1.SYTEM, TYPES OF CLASSIFICATION

- Classification of plants refers to grouping plants based on their structural similarities and inter relationships.
- The earlier classifications of plants were based on their economic uses. e.g. Cereals, medicinal plants, fibre- yielding plants, oil-yielding plants etc., or on gross structural resemblances, e.g., herbs, shrubs, trees, climbers etc.
- different systems or classifications have developed gradually over the period and in tune with the advances that have taken place in other branches of Botany as well as in allied sciences
- Artificial system is the earliest system of plant classification based only on gross superficial morphological characters such as habit, colour, number and shape of leaves etc.
- closely related plants were often placed in different groups, while unrelated plants were placed in the same group because of the presence or absence of a particular character. This system did not indicate the natural relationship that exists

among the individuals forming a group. Never theless identification of an unknown plant was rendered easier by this system

- Theophrastus (370 to 285 BC) classified plants into 3 groups based on their habit as (i) herbs (ii) shrubs and (iii) trees in his book 'Historia Plantarum'
- Linnaeus (1754) classified plants into 24 groups on the basis of number, length and union of stamens and of carpels (sexual characters) in his book "Species Plantarum", these are examples of artificial systems of classification.
- They gave equal importance to vegetative and sexual characteristics. This is not acceptable since we know now that often the vegetative characters are not stable as they get affected more easily by environment.
- In Natural System of classification, all the important, mostly morphological, characters were taken into consideration and plants were classified accordingly
- plants were first classified into few big groups. These were further divided and subdivided into smaller and smaller groups until the smallest division/taxon species) is reached
- the floral characters were given greater importance since they are more conserved and do not change due to the effect of environment.
- Natural System still provides an easy means of the identification of plants.
- Bentham & Hooker's (1862-1893) system of classification of plants as proposed in their book "Genera Plantarum" is a Natural System of Classification)
- Bentham and Hooker divided the flowering plants into three classes namely Dicotyledonae, Gymnospermae and Monocotyledonae
- Gamopetalae was divided into three series viz. Inferae (with 3 cohorts), Heteromerae (with 3 cohorts) and Bicarpellatae (with 4 cohorts)
- Monochlamydae was divided into eight series (not divided into cohorts)
- The flowering plants into 202 natural orders now called as families) (Of these 165 natural orders belong to Dicotyledonae
- The classifications of post-Darwinian period considered evolutionary trends in plants and so they

are considered as phylogenetic systems) In a phylogenetic system, primitive and advanced characters are recognized.) 'Evolution may be progressive or retrogressive

- The status of a taxon, a comprehensive picture of all the characters is taken in to account
- The system proposed by Engler and Prantl in their book "Die Naturlichen Planzenfamilien
- J.Hutchinson (1954) in his book "Families of Flowering Plants" are examples for phylogenetic system
- The latest phylogenetic classification is APG Angiospermic Phylogenetic Group) system

OTHER TYPES

Numerical Taxonomy

- Mathematical methods to evaluate observable differences and similarities between taxonomic groups
- This process, number and codes are assigned to all the characters and the data are then processed. Each character is given equal importance and at the same time hundreds of characters can be considered

Cytotaxonomy

Branch of taxonomy that uses the cytological characters like ,chromosome number,structure in solving taxonomic problems

Chemotaxonomy

branch of taxonomy that uses the phytochemical data to solve the problems of taxonomy.

8.2.SEMI TECHNICAL DISCRIPTION OF A TYPICAL FLOWERING PLANT

- The plant is described beginning with its habit, habitat, vegetative characters (roots,stem and leaves) and then floral characters(inflorescence, flower and its parts) followed by fruit
- The floral formula is represented by some symbols of floral parts
- > Br stands for bracteate, Ebr for ebracteate

>
$$\int_{1}^{1}$$
 for male, \bigvee_{1}^{2} for female, \bigvee_{1}^{2} for bisexual

flower

- K stands for calyx, C for corolla, P for perianth, A for androecium and G for Gynoeciuim.
- $\blacktriangleright \quad \underline{G} \text{ stands for superior ovary and } a_{\overline{A}} \text{ for inferior} \\ \text{ovary } \overline{G}$
- Floral formula corresponding whorl as subscript of the respective symbol
- It also shows cohesion (union among similar members) and adhesion (union be teen dissimilar members
- A floral diagram provides information about the number of parts of a flower their arrangement and the relation they have with one another (Figure 8.1). The mother axis represents the posterior side of the flower and is indicated as a dot or a circle at the top of the floral diagram
- Calyx, corolla, androecium and gynoecium are drawn in successive whorls, calyx being the outer most and the gynoecium being it the centre represented by a diagram of T.S. of ovary
- The bract represents the anterion side of(the flower and is indicated at the bottom of the floral diagram. The floral: diagram and floral formula shown in Figure 8.1 represent those of the mustard plant (Family: Brassicaceae)

8.3.DESCRIPTION OF SOME IMPORTANT FAMILIES

8.3.1.Fabaceae

- This family was earlier called as Papilionoideae, a sub-family of Leguminosae in Bentham and Hooker's system of classification
- It comprises about 8500 species under 450 genera.
- Some important plants among these include: Arachis hypogaea (groundnut), Cajanus cajan (Red gram, pigeon pea). Cicer artitetinum (Bengal gram, chickpea), Crotalaria juncea (Sun hemp), Dolichos lablab (Bean), Dalbergia latifolia (Indian rosewood), Glycine max (Soy-

bean), Derris indica (Kanuga, Petro plant), Phaseolus mungo (Black gram), Phaseolus aureus (Green gram), Pisum sativum (Garden pea), Lathyrus sativus (Wild pea), Pterocarpus santalinus (Red sander), Trigonella foenum graecum (Fenugreek).

Floral formula: Br Brl % $K_{(5)}C_{1+2+(2)}A_{(9)+1}G_1^{-1}$

8.3.2.Solanaceae

- It is commonly called as the 'potato family' and includes about 2200 species belonging to 85 genera
- Atropa belladonna (Belladona), Capsicum fruitescens (Chilli), Cestrur-nocturnum (Night queen). Datura metel (Thorn apple),Lycopersicon esculentum-(Tomato), Nicotiana tabacum (Tobacco). Petunia alba (Petunia). Solanum melongena: (Brinjal), Solanum tuberosum (Potato), Withania somnifera (Aswagandha)
- Solanum nigrum (Maku.. kamanchi) plant.
- Floral formula: Br EBrl \oplus K₍₅₎ C₍₅₎ A₅ $\underline{G}_{(2)}$

8.3.3.Liliaceae

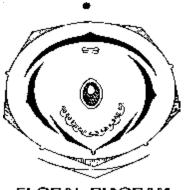
- > This family is commonly called the 'Lily family
- Includes about 254 genera with 4075 species
- Allium cepa (Onion), Allium sativum (Garlic), Aloe vera (Aloe), Asparagus racemosus (Asparagus).
 Colchicum autumnale (Medow saffron), Dracaena aungustifolia (Red dragon), Gloriosa superba (Glory lily), Lilium candidum (Lily), Smilax zeylanica (Sarasaparilla), Yucca gloriosa (Spanish dagger)
- Floral formula: Br EBrl $P_{(3+3)}A_{3+3}\underline{G}_{(3)}$

DESCRIPTION OF SOME IMPORTANT FAMILIES

1. FAMILY PAPILIONACEAE (FABACEAE)

Plants may be herbs, shrubs, climbers and even trees; leaves generally compound, usually trifoliate, modified partly or wholly into tendril with pulvinus leaf base. Inflorescence is raceme rarely solitary axillary.

Distinguishing features :


(1) Flower perigynous, zygomorphic.

- (2) Odd sepal anterior.
- (3) Papilionaceous corolla.

(4) Androecium diadelphous (9+1)

(5) Monocarpellary, unilocular, superior ovary with marginal placentation.

- (6) Fruit legume
- (7) Seed exalbuminous
- (8) Odd petal is posterior

FLORAL DIAGRAM

Economic importance:

Many plants belonging to this family are sources of pulses (gram, arhar, sem, moong, soyabean; edible oil (soyabean, groundnut); blue dye (indigofera); fibres (sunhemp); fodder (Sesbania, Crotalaria, Phaseolus), ornamentals (lupin, sweet pea); medicine (Muliathi, Derris).

Sun-hemp yields fibres, Indian rose-wood yields a dye. Some plants like *Butea monosperma* and *Astragalus gummifer* also produce medicinally useful gum. Soybean and gram are good for the patients of diabetes.

2. FAMILY SOLANACEAE

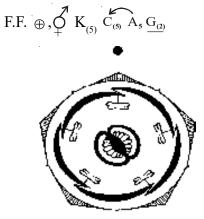
It is a large family, commonly called **'potato family'** with 85 genera, and 2000 species including 60 from India. Plants mostly herbs, rarely shrubs and trees. Leaves cauline or ramal, simple, exstipulate, petiolate or sessile, arranged alternately, rarely opposite, pinnatedisect in tomato (*Lycopersicom esculentum*).

Inflorescence : Solitary axillary.

Umbellate or scorpioid cyme (Solanum)

(1) Sepals five, gamosepalous, persistent, green or coloured, hairy

(2) Petals five, gamopetalous tubular or infundibuliform (Funnel shaped)


(3) Stamens five, epipetalous.

(4) Bicarpellary, syncarpous, ovary superior, bilocular with axile placentation.

(5) Ovary obliquely placed, placenta swollen, many ovules in each locule.

(6) Fruit is berry or capsule.

(7) Endospermic seed.

FLORAL DIAGRAM

ECONOMIC IMPORTANCE

Belladona (*Atropa belladonna*) contains atropine alkaloid and used in eye testing and plaster. Nicotine obtained from tobacco is used as an insecticide. The seeds of *Datura*, henbane (*Hyoscyamus niger*), bittersweet, kateli (*Solanum xanthocarpum*) and roots of ashwagandh (*Withania somnifera*) are used medicinally. Tobacco used in bidi, cigarettes, and for chewing is obtained from *Nicotina tobacum*.

3. FAMILY LILIACEAE

Commonly called the 'lily family' is a characteristic representative of monocotyledonous plants. It includes about 254 genera, and 4075 species, distributed worldwide. About 200 species are available in India.

Vegetative characters: Plants mostly herbs with perennating rhizome or bulb, a few climbers (*Asparagus* and *Smilax*) *Yucca* and *Aloe* are xerophytic; roots are fibrous, tuberous in

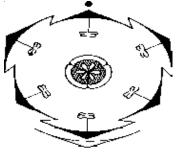
Asparagus; leaves, radical or cauline. In *Asparagus*, the leaves are reduced to minute scales.

Distinguishing features :

(1) Inflorescence : Solitary axillary, scapiferous cyme or cymose umbel.

(2) Flowers hypogynous and trimerous. Bisexual or unisexual (*Smilax* and *Ruscus*)

(3) Perianth 6, in two alternate whorls polyphyllous or gamophyllous.


(4) Androecium 6, often epiphyllous, versatile or basifixed anthers.

(5) Tricarpellary, syncarpous, superior, trilocular ovary with axile placentation, stigma trilobed.

(6) Fruit is capsule or berry.

(7) Endospermic seed.

F.F. Br.
$$\oplus \bigoplus_{+}^{7} \stackrel{}{\stackrel{}{\mathsf{P}_{3+3 \text{ or } (3+3)}}} A_{3+3} G_{\underline{3}}$$

FLORAL DIAGRAM

Economic Importance

Smilax, Aloe, Gloriosa, Colchicum and Scilla yields useful drugs. Aloin, a purgative is obtained from Aloe vera, rat poison from Urginea and Scilla, tonic from Asparagus (shatavar). Yucca gloriosa and Phormium tenax produce fibres, Dracaena and Xanthorrhoea yield resin, used for preparing sealing wax.

MODEL TEST-I

- 1. Taxonomy based on morphological characters only 2) Alpha taxonomy 1) Omega taxonomy 3) Both 1 & 2 4) chemotaxonomy 2. Classification proposed by Theophrastus is 2) Natural 1)Artificial 3) Phylogenetic 4) Multidisciplinary 3. Book written by Theophrastus 2) Historia plantarum 1) Species plantarum 3) Genera plantarum 4)All Sexual system of classification was proposed by 4. 2) Leewenhoek 1) Theophrastus 3) Bentham & Hooker 4) Linnaeus Sexual system of classification is an example. 5. 1)Artificial 2) Natural 3) Phylogenetic 4) Multidisciplinary 6. Smallest taxon is 1) Family 2) Genus 3) Order 4) Species 7. Type of classification followed in Genera plantarum 1) Natural 2) Artificial 3) Phylogenetic 4)All Number of classes in Genera plantarum 8. 1)1 2) 2 3)3 4)49. Number of cohorts in Thalamiflorae 1)4 2) 5 3)6 4) 3 10. A branch of taxonomy that uses the cytological characters 1) Numerical Taxonomy 2) Chemotaxonomy 3) Cytotaxonomy 4)All 11. A branch of taxonomy tht uses the phytochemical data 1) Cytotaxonomy 2) Chemotaxonomy 3) Numerial taxonomy 4) None **MODEL TEST - II**
- 12. Correct representation of 3rd whorl of a Brassica flower is

1) A_6 2) A_{3+3} 3) $A_{(2+4)}$ 4) A_{2+4}

- 13. Symbol for bracteate flower1) Ebr 2) Brl 3) Br 4) Ebrl
- 14. Zygomorphic flower is represented as
 - 1) % 2) \oplus 3) $\stackrel{\bigcirc}{\rightarrow}$ 4) $\stackrel{\checkmark}{\frown}$

- 15. In a floral diagram mother axis represents
 - 1) Posterior side 2) Anterior side
 - 3) Lateral side 4) 1 or 2
- 16. Mustard belongs to the family
 - 1) Fabaceae2) Solanaceae
 - 3) Brassicaecae 4) Liliaceae
- 17. Aestivation seen in 2nd whorl of Brassica flower1) Twisted2) Valvate3) Quincuncial4) Imbricate
- 18. Representation for Inferior ovary

1)
$$\underline{G}$$
 2) G - 3) \overline{G} 4) G

- 19. C A This condition represents
 - 1) Episepalous 2) Epiphyllous
 - 3) Epitepalous 4) Epipetalous
- 20. Number of carpels in Brassica flower1) 22) 13) 34) 4
- 21. Placentation seen in the ovary of a Brassica flower1) Axile 2) Marginal 3) Parietal 4) Basal

MODEL TEST - III

- 22. Fabaceae belongs to the order 1)Asterales 2) Rosales 4) Polimoniales 3) Malvales 23. Most of the Fabaceae members are 1) Mesophytes 2) Xerophytes 3) Hydrophytes 4) None 24. Number of species included under Fabaceae 1) 270 2) 8500 3) 4075 4) 2200 25. A bacterium that forms root nodules with Fabaceae members 1) Rhizobium 2) Clostridium 3) Azotobacter 4) Chlorobium 26. Type of inflorescence in Fabaceae members 1) Raceme 2) Cyme 3) Verticellaster 4) Hypenthodium 27. Number of stamens found in a flower of Pisum 1)9 4) 5 2) 10 3)6 28. Number of carpels in a flower of Fabaceae member 1)1 4)4 2) 2 3) 3 29. Seeds of Fabaceae members are 1) Non - endospermic 2) Endospermic
 - 3) Monocotyledons 4) Both 1 & 3

		CH: 8 - TAXONOM Y OF	ANG	IOSPERMS	
30.	Soyabean oil is ob	tained from	43.	Solanaceae membe	er with Protogynous flowers
	1)Arachis	2) Glycine		1) Datura	2) Nicotiana
	3) Crotalaria	4) Derris		3) Cestrum	4) Solanum
31.	Blue dye is obtained	ed from	44.	Fruit of Lycopersic	/
	1) Indigofera	2) Sesbania		1) Berry	2) Pome
	3) Tephrosia	4) Butea		3) Pepo	4) Hesperidium
32.	Ornamental Fabac	,	45.	Medicinal plant of	· ·
	1) Sesbenia	2) Trifolium			2) Aswagandha only
	3) Tephrosia	,		3) Kamanchi only	
33.	/ 1	Unilocular, Half-superior ovary	46.		from Tobacco plant is
	flowers are found i		-	1) Capsanthin	2)Atropin
	1) Fabaceae	2) Solanaceae		3) Nicotin	4)All
	3) Liliaceae	,	47.	Ornamental plant of	/
34.	Characteristic frui	t of Fabaceae members is		1) Petunia	2) Solanum
	1) Sliliqua	2) Loculicidal capsule		3) Withania	4) Capsicum
	3) Schizocarp	· -		-)	.) T
	, <u>-</u>	, -		MODE	L TEST - V
	MODE	L TEST - IV	48.	Xerophytic membe	
35.	Number of genera	in Solanaceae family		1) Asparagus only	
	1) 80 2) 85	3) 2200 4) 4500		3) Aloe only	4) 1, 2 & 3
36.	Common name of	Withania somnifera is	49.		er with fasciculated tuberou
	1)Belladona	2) Kamanchi		roots	
	3)Aswagandha	4) Night queen		1) Dahlia 2) Ruell	lia 3)Asparagus 4)Smilax
37.	Type of vascular	bundles seen in the stem of	50.	Radical leaves are	
	Solanaceae memb	ers		1) Smilax	2) Gloriosa
	1) Conjoint, collate	eral		3)Allium	4) Dracaena
	2) Radial (or) Sep	arate	51.	Flowers of Liliacea	ae members are
	3) Bicollateral			1) Trimerous, hypo	gynous
38.	Phyllotaxy in Solar	naceae members		2) Tetramerous, hy	pogynous
	1)Alternate	,		3) Trimerous, epigy	/nous
	3) opposite	4)All		4) Tetramerous, ep	igynous
39.	Flowers of Solana		52.	Number of Tepals	n a flower of Smilax
	1) Hypogynous	2) Perigynous		/ /	3) 5 4) 4
	3) Epigynous	4) 1 & 2	53.	Find the plant with T	Fricarpellary ovary in the flower
40.	Type of inflorescen			1) Brassica	2) Solanum
	1)Axillary solitary	-		3) Smilax	4) Lupine
	2) Scorpioid cyme		54.		with protogynous flowers
	· ·	y cyme 4) Panicle		1)Asparagus	2)Allium
41.	•	e belongs to the series		3)Colchicum	4) Solanum
	1) Inferae	2) Heteromerae	55.	Fruit in Asparagus	
4.0	3) Bicarpellatae	4) Calicyflorae		1) Berry	2) Loculicidal capsule
42.		in the flowers of Solanaceae		3) Gloriosa	4) Pome
	members	\sim + 1	56.	Polyembryony is s	
	1) Marginal	2)Axile		1)Allium	2) Solanum
	3) Perietal	4) Basal		3)Trifolium	4) Trigonella

184

	CII. 0 - IAAOINC		IOSPERMS
57.	Colchicine is an alkaloid obtained from	67.	Linnaeus system of plant classification is
	1) Seeds of Allium 2) Corm of co	chicum	1)Artificial 2)Natural
	3) Seeds of colchicum 4) Seeds of G	loriosa	3) Phylogenetic 4) None
58.	Stem modification in Gloriosa	68.	The book 'Genera Plantarum' was written by
	1) Rhizome 2) Corm		1) Bessey 2) Hutchinson
	3) Stem tuber 4) Bulb		3) Engler & Prantl 4) Bentham & Hooker
59.	Bulb is seen in	69.	The system of Bentham & Hooker includes the
	1)Allium only 2)Lilium only		following number of families
	3) Scilla only 4) 1, 2 & 3		1) 202 2) 186 3) 196 4) 206
60.	Liliaceae member with cylindrical cladoph	nylls 70.	Bentham & Hooker differentiate series in
	1) Asparagus 2) Ruscus		Monochlamydeaenumbering
	3)Allium 4) 1 & 2		1) Five 2) Seven 3) Eight 4) Ten
61.	A Liliaceae member that shows symbiot	ic cross 71 .	According to Bentham & Hooker's system the
	pollination is		family Solanaceae be placed under the order
	1) Asparagus 2) Ruscus		1) Gentianales 2) Polemoniales
	3) Yucca 4) Solanum		3) Campanales 4) Solanales
62	Ornamental plant of Liliaceae	72.	Which of the following plants produces edible
02.	1) Gloriosa 2) Ruscus		roots?
	3)Allium 4)Colchicun		1) Raphanus sativus 2) Brassica campestris
			3) Brassica oleracea 4) Eruca sativa
	QUESTION BANK	73.	The flower of <i>Brassica</i> is
	TYPE - I		1) Tetracyclic 2) Pentacyclic
	1166 - 1		3) Tricyclic 4) Polycyclic
(2)		74.	The anthers of Malvaceae are
63.	Who proposed the natural syst	-	The anthers of Malvaceae are 1) Dithecous, introrse
63.	Who proposed the natural syst classification?	-	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse
63.	Who proposed the natural syst classification? 1) Carolus Linnaeus	-	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse
63.	Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson	em of	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse 4) Dithecous, extrorse
63.	Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker	-	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse 4) Dithecous, extrorse The whorl and position of short stamens in
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo 	em of 75.	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse 4) Dithecous, extrorse The whorl and position of short stamens in Cruciferae
63. 64.	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop 	em of 75.	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse 4) Dithecous, extrorse The whorl and position of short stamens in Cruciferae 1) Outer, lateral 2) Outer, antero-posterior
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 	em of 75. osed by	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse 4) Dithecous, extrorse The whorl and position of short stamens in Cruciferae 1) Outer, lateral 2) Outer, antero-posterior 3) Inner, lateral 4) Inner, antero-posterior
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic 	em of 75. osed by	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse 4) Dithecous, extrorse The whorl and position of short stamens in Cruciferae 1) Outer, lateral 2) Outer, antero-posterior 3) Inner, lateral 4) Inner, antero-posterior Which of the following is an ornamental climber
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 	em of 75. osed by al facts 76.	The anthers of Malvaceae are 1) Dithecous, introrse 2) Monothecous, extrorse 3) Monothecous, introrse 4) Dithecous, extrorse The whorl and position of short stamens in Cruciferae 1) Outer, lateral 2) Outer, antero-posterior 3) Inner, lateral 4) Inner, antero-posterior Which of the following is an ornamental climber of Papilionaceae?
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation 	em of 75. osed by al facts 76.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Inner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation plants 	em of 75. osed by al facts 76. nship of	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Inner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) Dalbergia
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiological along with the morphological characters 2) It was based on evolutionary relation plants 3) It is based on similarities and differences 	em of 75. osed by al facts 76. nship of	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Inner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation plants 3) It is based on similarities and differences & other morphological characters only 	em of 75. osed by al facts 76. nship of	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Dinner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo
64.	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation plants 3) It is based on similarities and differences & other morphological characters only 4) None of the above 	em of 75. osed by al facts 76. nship of in floral 77.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo3) Cyamopsis mungo4) Vigna mungo
	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation plants 3) It is based on similarities and differences & other morphological characters only 4) None of the above The first artificial system of plant classification 	em of 75. osed by al facts 76. aship of in floral 77.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Inner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo3) Cyamopsis mungo4) Vigna mungoThe botanical name of pigeon pea is
64.	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation plants 3) It is based on similarities and differences & other morphological characters only 4) None of the above The first artificial system of plant classification proposed by 	em of 75. osed by al facts 76. in floral 77. tion was 78.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Diner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo3) Cyamopsis mungo4) Vigna mungoThe botanical name of pigeon pea is1) Cajanus2) Cyamopsis
64.	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation plants 3) It is based on similarities and differences & other morphological characters only 4) None of the above The first artificial system of plant classification proposed by 1) Bauhin 2) Caesalpino 	em of 75. 75. osed by al facts 76. aship of in floral 77. tion was 78.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral2) Outer, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo3) Cyamopsis mungo4) Vigna mungoThe botanical name of pigeon pea is1) Cajanus2) Cyamopsis3) Cicer4) Vicia
64. 65.	Who proposed the natural syst classification?1) Carolus Linnaeus2) John Hutchinson3) Bentham & Hooker4) Oswald TippoThe system of plant classification prop Carolus Linnaeus was artificial because1) It took into account the physiologic along with the morphological characters2) It was based on evolutionary relation plants3) It is based on similarities and differences & other morphological characters only4) None of the aboveThe first artificial system of plant classificat proposed by1) Bauhin2) Caesalpind3) Theophrastus4) Aristotle	em of 75. 75. osed by al facts 76. aship of in floral 77. tion was 78. 79.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Dinner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo3) Cyamopsis mungo4) Vigna mungoThe botanical name of pigeon pea is1) Cajanus2) Cyamopsis3) Cicer4) ViciaThe 10th stamen in the flower of Pisum is placed
64.	 Who proposed the natural syst classification? 1) Carolus Linnaeus 2) John Hutchinson 3) Bentham & Hooker 4) Oswald Tippo The system of plant classification prop Carolus Linnaeus was artificial because 1) It took into account the physiologic along with the morphological characters 2) It was based on evolutionary relation plants 3) It is based on similarities and differences & other morphological characters only 4) None of the above The first artificial system of plant classification proposed by 1) Bauhin 2) Caesalpine 3) Theophrastus 4) Aristotle In which century, Linnaeus proposed the 	em of 75. 75. osed by al facts 76. aship of in floral 77. tion was 78. 79.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral2) Outer, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo3) Cyamopsis mungo4) Vigna mungoThe botanical name of pigeon pea is1) Cajanus2) Cyamopsis3) Cicer4) ViciaThe 10th stamen in the flower of Pisum is placed1) Anteriorly2) Antero-laterally
64. 65.	Who proposed the natural syst classification?1) Carolus Linnaeus2) John Hutchinson3) Bentham & Hooker4) Oswald TippoThe system of plant classification prop Carolus Linnaeus was artificial because1) It took into account the physiologic along with the morphological characters2) It was based on evolutionary relation plants3) It is based on similarities and differences & other morphological characters only4) None of the aboveThe first artificial system of plant classificat proposed by1) Bauhin2) Caesalpind3) Theophrastus4) Aristotle	em of 75. 75. osed by 75. al facts 76. aship of 77. tion was 78. 79.	The anthers of Malvaceae are1) Dithecous, introrse2) Monothecous, extrorse3) Monothecous, introrse4) Dithecous, extrorseThe whorl and position of short stamens in Cruciferae1) Outer, lateral2) Outer, antero-posterior3) Inner, lateral4) Dinner, antero-posterior3) Inner, lateral4) Inner, antero-posteriorWhich of the following is an ornamental climber of Papilionaceae?1) Erythrnia2) Lupinus3) Clitoria4) DalbergiaThe botanical name of black gram is1) Cicer mungo2) Vicia mungo3) Cyamopsis mungo4) Vigna mungoThe botanical name of pigeon pea is1) Cajanus2) Cyamopsis3) Cicer4) ViciaThe 10th stamen in the flower of Pisum is placed

185

80.	A blue coloured dye	is obtained from a	90.	The floral formula of P	<i>etunia alba</i> is :
	papilionaceous plant	2) Emethating		$1) \bigoplus \phi^{T} K_{(5)} \stackrel{\bullet}{C_{(5)}} A_{5} \underbrace{G_{(2)}}_{I}$	
	 1) Indigofera 3) Pterocarpus 4) Pso 	2) Erythrina			
81.	Which of the following is			$2) \bigoplus \oint^{2} K_{(5)} C_{(5)} A_{(5)} G_{(5)}$	
01.	1) Pongamia	2) Trigonella			
	3) Dalbergia	4) Sesbania		$3) + \oint_{-1}^{-1} K_{(5)} C_{(5)} A_{(5)} G_{(5)}$	(5)
82.	The floral formula of Pap	· · · · · · · · · · · · · · · · · · ·			<u>()</u>
	1) $\oplus \mathbf{\Phi}^{\mathbf{T}} \mathbf{K}_{(5)} \mathbf{C}_{(5)} \mathbf{A}_{10} \underline{G}_{1}$			4)All of these	
			91.		droecium is found in one
	2) % $\mathcal{Q}^{1}K_{(5)}C_{1+2}A_{(9)+1}G_{1}$			of the families :	A D 11
	3) % $\oint^{4} K_{5}C_{1+2+(2)}A_{(9)+1}C_{1+2}C_{1+2+(2)}A_{(9)+1}C_{1+2}C_{1+2+(2)}A_{(9)+1}C_{1+2+(2)}A_{(9)+1}C_{1+2}C_{1+2+(2)}A_{(9)+1}C_{1+2}C_{1+2+(2)}A_{(9)+1}C_{1+2}C_{1+2+(2)}A_{(9)+1}C_{1+2}C_{1+2+(2)}A_{(9)+1}C_{1+2$	7 F		1)Caesalpiniaceae	· -
		1		3)Malvaceae	4) Rutaceae
	4) % $\not \subset K_{(5)}C_{(5)}A_{(9)+1}\underline{G_1}$			TYPE	- TT
83.	The plants of <i>Gloriosa</i> cl	•		1112	- 11
	1) Leaflet tendrils	2) Stem tendrils	92.	Which of the following st	tatements regarding family
0.4	3) Stipular tendrils)2.	Brassicaceae is correct	
84.	<i>Pronuba</i> pollinates the fl 1) <i>Yucca</i> 2) <i>Tulipa</i> 3)			1)Flowers bisexual, cru	
85.	The type of inflorescene	/		2) Stamens usually 6, tet	
05.	precisely			· · ·	•
	1) Cyme	2) Umbel		raceme	y racemose or corymbose
	3) Umbellate cyme	4) Spikate cyme		4)All of these	
86.	The gynoecium in Liliace	ae is usually	93.	Axile placentation occur	
	1) Tricarpellary, syncarpo	ous	95.	1) Asteraceae and Faba	
	2) Tricarpellary, apocarp			2) Brassicaceae and Sol	
	3) Tetracarpellary, syncar			3) Solanaceae and Liliad	
07	4) Tetracarpellary, apoca	-		4) All of these	
87.	A distinct monocot charac of Liliaceae is	ter shown by the flowers	94.	<i>,</i>	entification of fabaceous
	1) Hypogynous	2) Actinomorphic		flower is	
	3) Trimerous	4)Bisexual		1) Tetradynamous andro	pecium
00	,	,		2) Inferior ovary	
88.	Stamens in Solanaceae at			3) Cruciform corolla	
	1)Epiphyllous	2) Synandrous		4) Vexillary aestivation	
	3)Syngenesious	4)Epipetalous	95.	Which of the following i	• 1
89.	Thefloral formula of Alla	•		1) Fabaceae : Legume fa 2) Solanaceae : Potato fa	-
				3) Liliaceae : Sunflower	•
	$1) \bigoplus \bigoplus_{i=1}^{n} P_{3+3 \text{ or } (3+3)} A_{3+3} \underline{G}_{(3)}$			4) Brassicaceae : Mustar	•
	NAZPAG		96.	Flower of Fabaceae is	la falling
	1) $\bigoplus \phi^{*} P_{3+3 \text{ or } (3+3)} A_{3+3} \underline{G}_{(3)}$ 2) $\bigoplus \phi^{*} P_{3+3} A_{3+3} \underline{G}_{(2)}$ 3) $\bigoplus \phi^{*} K_{5} C_{5} A_{4} \underline{G}_{(9)}$		- 0.	1) Complete, zygomorph	hic, pentamerous
	$3) \oplus O K C A G$	4) None of the above		2) Complete, actinomor	-
		.,		3) Incomplete, zygomor	
				4) Incomplete, actinomo	-
			I		_

- 97. Familiar examples of family Liliaceae are
 - 1) Allium cepa, Aloe vera and Tamarindus indica
 - 2) Saraco indica, Allium cepa and Aloe vera

3) Tamarindus indica, Allium cepa and Allium sativum

4) Tamarindus indica, Allium cepa and Allium sativum

98. Bicarpellary, syncarpous, unilocular ovary with basal placentation occurs in

1) Liliaceae 2) Solanaceae

3) Asteraceae 4) Fabaceae

99. Which of the following is correct with reference to flowers of family solanaceae

1) Pentamerous, actinomorphic, unisexual, hypogynous

- 2) Pentamerous, zygomorphic, bisexual, epigynous
- 3) Pentamerous, bisexual, actionomorphic, hypogynous
- 4) Trimerous, actinomorphic, bisexual, hypogynous
- 100. Which of the following represents the floral characters of Liliaceae

1) Six, tepals, zygomorphic, six stamens, bilocular ovary, axile placentation

2) Tetramerous, actinomorphic, polyphyllous, unilocular ovary, axile placentation

3) Trimerous, actinomorphic, polyandrous, superior ovary, axile placentation

4) Unisexual, actinomorphic, trilocular, inferior ovary, axile placentation

101. Consider the following four statements A, B, C and D and select the right option for two correct statements

A) In vexillary aestivation, the large posterior petal is called - standard, two lateral ones are wings and two small anterior petals are termed keelB) The floral formula for Liliaceae is

 $\oplus \stackrel{\alpha}{+} P_{3+3}A_{3+3}+G_3$

- C) In pea flower the stamens are monadelphous
- D) The final formula for Solanaceae is

 $\oplus \stackrel{\alpha}{+} K_{(3)}C_{(3)}A_{(4)}+G_{(2)}$

The correct statements are

- 1) A and C 2) A and B
- 3) B and C 4) C and D

- 102. Which of the character does not become apparent in floral formula
 - 1) Placentation and aestivation
 - 2) Number of floral parts
 - 3) Whorls of floral parts
 - 4) Position of ovary
- 103. The family containing mustard and its main characters are

1) Brassicaceae-Tetramerous flowers six stamens, bicarpellary gynoecium, siliqua type fruit

 Brassicaceae-Pentamerous flowers, many stamens, pentacarpellary gynoecium, capsule type fruit
 Solanaceae - Pentamerous flowers, five

stamens, bicarpellary gynoecium, berry type fruit 4) Poaceae-Trimerous flowers, three stamens

monocarpellary gynoecium, caryopsis type of fruit.

104. Which of the following are not characteristic features of Fabaceae

1) Tap root system, compound, leaves and raceme inflorescence

2) Flowers actinomorphic, twisted aestivation and gamopetalous

- 3) Stamens 10, introrse, basifixed, dithecous
- 4) Monocarpellary, ovary superior and bent stigma5) Fruit is legume
- 105. Which of the following is not a characteristic feature of Fabaceae

1) Descendingly imbricate, ten stamens, diadelphous ovary half superior

2) Monocarpellary ovary, superior, style long, slightly bent at the apes

3) Zygomorphic flowers, diadelphous stamens, many ovules

4) Corolla five petals, polypetalous, anterior one large and outermost

- 106. Papilionaceous flower with large vexillum covering two wings and the wings covering the level has corolla aestivation of
 - 1) Descending imbricate
 - 2) Ascending imbricate
 - 3) Twisted 4) Valvate

187

		ТҮР	CH: 8 - E - III	TAXONOMY OF	ANG 110.		List - II
107. Match the List - I with List - II and find the correct combination				and find the correct		A) Bicollateral vascular bundles	I) Fabaceae
A)	List - I Theophr		List I) Di	- II e Naturulichen		B) Half inferior ovary II) Asterace	II) Asteraceae III) Malvaceae
C) D) 1) 2)	Engler & A II I	n & Hool 2 Prantl B III III	II) Gena ker III) Sp IV) His C I IV	zenfamilien era plantarum becies plantarum storia plantarum D IV III	111.	D) Inferior ovary 1) A - IV, B - I, C - II 2) A - I, B - III, C - I 3) A - II, B - I, C - I 4) A -IV, B-II, C - I List - I	IV) Solanaceae I, D - II I, D - IV III, D - IV I, D - III List - II
3) 4)		III II	II III	I I		A) Belladona B) Aswagandha	I) Atropa II) Solanum nigrum
B) C)	List - Ground I Red gran Sun hen Wild pe A II	nut n 1p	II) C III) Ara	- II athyrus sativus ajanus cajan chis hypogea otalaria juncea D I	112.	 C) Kamanchi D) Thorn apple 1) A - I, B - III, C - II 2) A - III, B - II, C - I 3) A - I, B - IV, C - II 4) A - II, B - III, C - I List - I 	, D- IV , D - III
2) 3) 4)	III III II	II IV III	IV II I	I I IV		A) Ornamental plant B) Medicinal plant C) Vegetable	I) Asparagus II) Smilax III) Gloriosa
II) III) IV)	List - Red gram Ground r Indigofe) Green n I	nut era nanure II	B) E C) P D) B III	esbania dible oil ulse ilue dye IV		 D) Spice 1) A - III, B - I, C - 2) A - II, B - I, C - 3) A - III, B - II, C - 4) A - I, B - II, C 	III, D - IV - I D - IV
2) 3)) B) B) C) C	C A D B	A D B D	D C A A			

EX	ERCISE ·	- IV				
113. Plant	Fruit	Family				
	Pod	Fabaceae				
II) Nicotiana		Liliaceae				
,	capsule					
III) Gloriosa	Septicidal	Liliaceae				
	capsule					
IV) Helianthus		Asteraceae				
Find the incorre	ect combination	is from the table given				
above						
1) II & III only		•				
3) Except II		•				
114. Plant	Fruit	Family				
I) Solanum	Axillary	Solanaceae				
TT) A 11'	scorpioid cyr					
II)Allium	Polyembryor					
III) Dolichos						
IV)Abutilon	absent	Malvaceae				
The correct co						
1) I only		z & II only				
3) I, II, III only	/	II, III, IV				
· · · · ·	onomically	Use				
	seful part					
A. Colchicum	-	nical mutagen				
B. Derris		e				
	maki	ng medicines				
C. Solanum	Fruits Edib	le with medical				
nigram	value	e				
D. Aloe	Leaves Cure	-				
	rect combinations are					
1)ABCD	2)Ac	•				
3) A & B only		B,C only				
116. Plant		Character-2				
I) Hibiscus		s Petals fused				
	anthers	with staminal				
		tube at the				
II) Crotalaria	Doriginous	base				
II) Crotalaria	Perigynous Flower	Superior ovary				
III) Nicotiana		Self				
ing i vicotiaila		pollination				
IV)Aloe	Gamophyllou	-				
	perianth	mose				
	-	inflorescence				

The correct combination are				
	1) I only	2) I & I	I only	
	3) I, II, III only	4) I, II,	III, IV	
117.	Family	Scientific	Common	
		name of	name	
		plant		
A)	Brassicaceae	Brassica nigra	mustard	
B)	Fabaceae	Derris indica	kanuga	
C)	Solanaceae	Solanum	Potato	
		tuberosum		
D)	Liliaceae	Yucca gloriosa	Spanish	
			dagger	
E)	Malvaceae	Althea rosea	Ganga ravi	
	The incorrect co	ombination is		
	1) D & E	2) E onl	y	
	3)A,B,C,D,E	4) A,B,	С	

EXERCISE - V

118. The correct floral formu	lla of chilly is:
	[CBSE Pre 2011]

- 1) $\oplus \notin K_{(5)} C_{(5)} A_{(5)} G_2$
- 2) $\oplus \notin K_5 \stackrel{\frown}{C_5 A_{(5)}} G_2$
- 3) $\oplus \mathfrak{P} K_{(5)} C_5 A_5 G_{(2)}$
- 4) $\oplus \mathfrak{C}^{*}K_{(5)} \stackrel{\frown}{C}_{(5)} \stackrel{\frown}{A_5} G_{(2)}$
- 119. Flowers are Zygomorphic in:

[CBSE Pre 2011]

1) Tomato 2) Datura 3) Mustard 4) Gulmohur

120. The correct floral formula of soyabean is

[CBSE 2010]

- 1) % $\oint_{-} K_{(5)}C_{1+2+(2)}A_{(9)+1}G_{\underline{1}}$ 2) % $\oint_{-} K_{(5)}C_{1+2+(2)}A_{1+(9)}G_{\underline{1}}$ 3) % $\oint_{-} K_{(5)}C_{1+(2)+(2)}A_{(9)+1}G_{\overline{1}}$ 4) % $\oint_{-} K_{5}C_{1+(2)+2}A_{(9)+1}G_{\underline{1}}$

CH: 8 - TAXONOMY OF	ANGIOSPERMS
121. Keel is characteristic of the flowers of:	131. Where would you place a plant having bicollateral
[CBSE-Pre 2010]	vascular bundles, a climbing stem & unisexual
1) <i>Calotropis</i> 2) Bean	flowers? (CPMT-UP 1991)
3) Gulmohur 4) Cassia.	1) Papilionaceae 2) Compositae
122. Pentamerous, actinomorphic flowers, bicarpellary	3) Cucurbitaceae 4) Liliaceae
ovary with oblique septa, and fruit a capsule or	132. Pulses yielding main family of plants is
berry, are characteristic features of	(CBSE 1993, JIMPER 94, PMT-MP 98) 1) Poaceae 2) Cucurbitaceae
	3) Liliaceae 4) Papilionaceae
[CBSE 2006]	133. The following aspect of the flower can be depicted
1) Liliaceae 2) Asteraceae	in the floral formula but not in floral diagram
3) Brassicaceae 4) Solanaceae	(AMU 1997)
123. The 'Species Plantarum' was written by	1) Symmetry of the flower
(BHU 1990)	2) Aestivation or sepals & petals
1) Joseph Hokker 2) John Ray	3) Cohesion of floral part
3) Charles Darwin 4) Carolus Linnaeus	4) Position of the ovary
124. Bentham & Hooker divided plants into the	134. In Fabaceae, the type of placentation is
following groups (AFMC 1993)	(PMT-Raj. 2000)
1) Dicots, Gymnospermae & Monocots 2) Angiospermae & Gymnospermae	1) Perietal 2) Marginal
3) Cryptogams & Phanerogams	3)Axile 4)All of the above
4) Cellulare & Vasculare	135. The floral formula, Ebr $\oplus QK_5C_{(5)}A_0\overline{G_{(3)}}$ belongs
125. Phylogenetic classification is based on	to family (CPMT-UP 2001)
(CBSE 2001)	1) Solanaceae 2) Gramineae
1) Habits of plants 2) Utilitarian system	3) Cucurbitaceae 4) Liliaceae
3) Overall similarities	136. The floral formula of Solanaceae is
4) Common evolutionary descent	(CBSE 1991, 92; DPMT 97; PMT-Raj. 97; AFMC 98;
126. Who proposed 'Five Kingdom Classification' of	BHU 98)
organisms? (PMT-MP2000)	1) $\otimes \overset{\circ}{\mathbf{P}}^{\mathbf{I}}\mathbf{K}_{5}G_{(2)}$ 2) $\oplus \overset{\circ}{\mathbf{P}}^{\mathbf{I}}\mathbf{K}_{(5)} \overline{G_{(2)}}$
1) Whittaker 2) Bentham	
3) Linnaeus 4) Magnus 127. Who is the father of Botany? (PMT-Raj.2001)	3) + $\mathcal{A}^{4}\mathbf{K}_{(5)}$ $G_{(2)}$ 4) $\oplus \mathcal{A}^{4}\mathbf{K}_{5} \subset \mathcal{A}_{5}$ $G_{(2)}$
1) Mendel 2) Theophrastus	$3) + \mathcal{Q} \mathbf{K}_{(5)} \underline{G}_{(2)} 4) \oplus \mathcal{Q} \mathbf{K}_5 \subset 5 \mathbf{H}_5 \underline{G}_{(2)}$
3) Robert Hooke 4) Louis Pasteur	137. The carpels are obliquely placed in
128. An example for the artificial system of classification	(AFMC 1994)
(PMT-Kerala 2004)	1) Brassicaceae 2) Solanaceae
1) Bentham & Hooker 2) Linnaeus system	3) Liliaceae 4) Asteraceae
3) Engler & Prantl 4) Bessey	138. Datura belongs to family (AFMC 1996)
129.Phylogenetic system of classification was	1) Compositae 2) Cruciferae
proposed by (PMT-Pun.2004)	3) Liliaceae 4) Solanaceae
1) Linnaeus 2) Bentham	139. The correct botanical name of tomato is
3) Hutchinson4) Theophrastus130. Which one of the following yields valuable timber?	(AFMC 1997) 1) Solanum nigrum 2) Lycopersicon esculentum
(CPMT-UP 1991)	3) Solanum melongena 4) Solanum eculentum
1) Acacia arabica 2) Dalbergia sisso	5) Solanum melongena 4) Solanum eculentum
3) Mangifera indica 4) Prosopis specigera	

CH: 8 - TAXONOMY OF	ANGIO	SPERMS	S			
140. Epipetalous stamen, obliquely placed septum,						
swollen placenta and berry or capsule fruit are		N	IODEL	/ TEST	- III	
diagnostic features of family (PMT - 2001)	22) 2	23) 1	24) 2	25) 1	26) 1	27) 2
1) Cruciferae 2) Solanaceae	28) 1	29) 1	30) 2	31) 1	32) 2	33) 1
3) Malvaceae 4) Labiatae	34) 4					
		N	IODEL	, TEST	- IV	
141. Which of the following statements is correct with	35) 2	36) 3	37) 3	38) 1	39) 1	40) 3
reference to the flowers of family Solanaceae?	41) 3	42) 2	43) 4	44) 1	45) 4	46) 3
(CET - 2003)	47) 1					
1) Penatamerous, bisexual, actionomorphic,				l tesi		
hypogynous	48) 4	49) 3	50) 3	/	52) 2	53) 3
2) Trimerous, actinomorphic, bisexual, hypogynous	54) 3	55) 1	,	57) 3	58) 1	59) 4
3) Pentamerous, actinomorphic, unisexual,	60) 1	61) 3	62) 1			
hypogynous			_			
4) Pentamerous, Zygomorphic, bisexual, epigynous			•	STION	BANK	
			TY	(PE - I		
142. $\oplus O_{+}^{\uparrow} P_{3+3} A_{3+3} \underline{G}_{(3)}$ is the floral formula of						
142. $\bigcirc \bigcirc 13+3 + 3+3 - (3)$ is the horal formula of	63) 3	64) 3	65) 3		67) 1	68) 4
(PMT- 1992)	69) 1	70) 3	71) 2		73) 2	74) 2
1) Brassicaceae 2) Liliaceae	75) 1	76) 3	77) 4		79) 4	80) 1
3) Poaceae 4) Musaceae	81) 4	82) 3	83) 4		85) 3	86) 1
143. The correct floral formula of Liliaceae is	87) 3	88) 4	89) 1	90) 1	91) 2	
(BHU 1995, 2000)			FVFE	RCISE -	TT	
1				PE - II		
1) $\oplus \bigoplus_{+} P_{3+3} A_6 \underline{G_{(3)}}$	92) 4	93) 3	94) 4		96) 1	97) 3
	98) 3	99) 3	/	101) 2	102)1	103) 1
2) $\oplus OP_{3+3} A_{3+3} G_{(3)}$		105) 4	100) 3		102)1	105)1
1) $\oplus \bigoplus_{+}^{\bullet} P_{3+3} A_6 \underline{G_{(3)}}$ 2) $\oplus \bigoplus_{+}^{\bullet} P_{3+3} A_{3+3} \underline{G_{(3)}}$ 3) $\% \bigoplus_{+}^{\bullet} P_{3+3} A_{3+3} \underline{G_{(3)}}$		105)4	100)1			
			ТҮ	PE - III	ſ	
3) $V_0 \bigcirc P_{3+3} A_{3+3} \bigcirc G_{(3)}$					-	
	107) 3	108) 2	109) 4	110) 1	111) 1	112) 3
4) $\% \stackrel{\bullet}{\frown} P_{3+3} A_{3+3} \frac{G_{(6)}}{G_{(6)}}$,		,	,	,
			TY	PE - IV	,	
144. Liliaceae flowers are (PMT - 2002)						
1) Trimerous2) Tetramerous1) Trimerous1) Tetramerous	113) 4	114) 4	115) 1	116) 3	117) 2	
3) Pentamerous 4) Zygomorphic						
12737						
KEY MODEL TEST - I			TY	'PE - V		
$\begin{array}{c} \textbf{MODEL TEST - 1} \\ 1) 2 & 2) 1 & 3) 2 & 4) 4 & 5) 1 & 6) 4 \end{array}$						
7)1 8)3 9)3 10)3 11)2		119) 4		/	122) 4	123) 4
7)1 8)5 9)5 10)5 11)2		125) 4				129) 3
MODEL TEST - II	· · · · ·	131) 2	,	· · · ·	,	135) 3
$\begin{array}{c} 12) 4 13) 3 14) 1 15) 1 16) 3 17) 2 \end{array}$		137) 2			140) 2	141) 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	142)2	143) 2	144) 1			
-,,,-						
						-
						(191

191

.SYNOPSIS

What is Cell?

- ➢ All organisms are composed of cells.
- Some organisms are made up of a single cell and these are called Unicellular organisms.
- Some organisms composed by many cells are called Multicellular organsims.
- Unicellular organisms are capable of
 - i) independent existence
 - ii) performing the essential functions of life
- Cell is the fundamental structural and functional unit of all living organisms.

CELL THEORY

- Cell theory was put forward by Schleiden and Schwann which states that "the bodies of all living beings are formed of cells and their products and that the cells are structural and functional units of living being".
- M.J.Schleiden was a German Botanist published his findings in 1838.
 - i) All types of plant tissues are made of one or other type of cells.
 - ii) Cells are structural units of all plant tissues.
 - iii) Each cell has a boundary namely cell wall and nuclear core surrounding by jelly.
- Theodore Schwann was a German Zoologist who found that animal tissues were made of cells and that animal cells differ from plant cells in lacking cell wall. He therefore defined cell as membrane enclosed, nucleus containing structure.
- This theory however didnot explain as to how new cells were formed.
- Rudolf Virchow first explained that cells divide and new cells are formed from pre-existing cells(Omnis Cellula-e-Cellula).
- He modified the hypothesis of Schleiden and Schwann to give the cell theory a final shape.
- Two basic aspects of cell theory are
 - i) Body of all living organisms made of cells and their products.
 - ii) Cells develop from pre-existing cells.

AN OVERVIEW OF CELL

- The Onion cell which is a typical plant cell has a distinct cell wall.
- The cells of the human cheek have an outer membrane as the delimiting structure of the cell.
- Cells that have membrane bound nuclei are called Eukaryotes, where as cells that lack a membrane bound nucleus are called Prokaryotes.
- In both the cells cytoplasm occupies the volume of the cell. It is a semifluid matrix.
- In plants and animal cells cytoplasm is the main site of cellular activities.
- Various chemical reactions occur in cytoplasm and keep the cell in the 'living state'.
- Eukaryotic cells have membrane bound organelles like endoplasmic reticulum, golgi complex, lysosomes, mitochondria, plastids(in plants), microbodies and vacuoles.
- In Prokaryotic cells membrane bound organelles are absent.
- Ribosomes are non-membrane bound organelles found in both eukaryotic as well as prokaryotic.
- These ribosomes not only present in cytoplasm but also found in chloroplast(in plants), mitochondria and on rough ER.
- Prokaryotes contain 70s types of ribosome, where as in eukaryotes 80s (in cytoplasm, ER) 70s(in chloroplast and mitochondria).
- Animal cells contain another non-membrane bound organelle called centriole which help in cell division.

PROKARYOTIC CELLS

- These are represented by bacteria, blue-green algae, mycoplasma(PPLO).
- They are generally smaller and multiply more rapidly than the eukaryotic cells.
- > They may vary greatly in shape and size.

Cell Size:

Cells are generally small. They cannot be observed with the naked eye. Microscopes are used to observe them.

Organism	Size	Cell	wall.
Mycoplasma	0.3µm in length	\succ	The fluid matrix filling the cell is cytoplasm.
(or) PPLO		\succ	Well defined nucleus is absent. Genetic material
Bacteria	3 to 5µm		is naked, circular called nucleoid.
Human RBC	7.0µm in diameter	\succ	Many bacteria have small circular DNA outside
Unicellular	10 to 20µm		the genomic DNA. These are called plasmids . They create resistance to antibiotics.
eukaryotes Nerve cells are	90cm in human		Plasmid DNA is used to monitor bacterial transformation with foreign DNA.
longest			1 1
Egg of Ostrich	17.5x15.0cm		envelope and its modifications:
(largest isolated sing	le cell)		Bacterial cells, have a chemically complex cell envelope.
Shapes of Cells			
Shape	Examples		layered structure.
Round and biconca Amoeboid	ve Red blood cells White blood cells		The outermost glycocalyx followed by the cell wall and then plasma membrane.
Long and narrow	Epithelial cells		Each layer of the envelope performs distinct function, they act together as a single protective unit.
Branched and long	Nerve cell	\succ	Staining procedure developed by Gram.
Elongated	Tracheid of xylem	\triangleright	Based on this he classified bacteria into two
Round and Oval	Mesophyll cells		groups. Those are Gram positive and Gram negative.
Bacteria appear in th Cocci : They are spl	ne following shapes nerical shaped. They appear		Glycocalyx differs in composition and thickness among different bacteria.
	(single), diplococcus		Loose sheath of glycocalyx is called slime layer .
· / -	(long chain), tetra coccus		Thick and tough nature of glycocalyx is called
	t arranged like a cube) and ny in irregular shape)		capsule.
	rod shaped and appear as	≻	Cell wall determines the shape of the cell and
mono, diplo and stre	ptobacillus		provides support to prevent the bacterium from bursting or collapsing.
•	comma shaped bacteria	≻	Plasma membrane is semi-permeable in nature.
	piral shaped bacteria		It is structurally similar to that of the eukaryotes.
cell membrane.	e a cell wall surrounding the		Extensions of plasma membrane into cytoplasm are called mesosomes . These extensions are in the form of vesicles, tubules and lamellae.
Plasmalemma Cell wall		Fund	ctions of mesosomes:
Capsule	3		(i) They help in cell wall formation.
Cytoplasm			(ii) Help in DNA replication and its distribution
Flagellum	Ribosomes		to daughter cells.
A	Nucleoid Mesosome		 (iii) They help in respiration, secretion processes, to increase the surface area of the plasma membrane.
' Y			(iv) Help in absorption of nutrients and enzymatic
			(1) The masser from of matteries and enzymatic

(iv) Help in absorption of nutrients and enzymatic content.

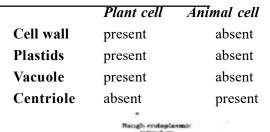
(JR BOTANY

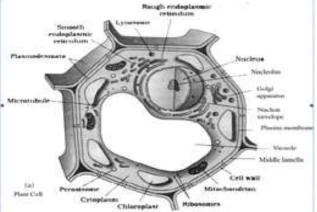
- > In Cyanobacteria chromatophores are present.
- ➢ Flagella may be present or absent.
- Flagella composed by 3 parts (i) filament
 (ii) hook
 (iii) basal body
- Flagella made up of a protein called flagellin. They help in movement
- Pili & Fimbriae are help to attach the bacteria to rocks in streams and also to the host tissues.

RIBOSOMES AND INCLUSION BODIES

- These are submicroscopic, naked ribonucleoprotein granular organelles.
- They are about 15nm by 20nm in size.
- Type of ribosome is 70s, subunits are 50s and 30s. Both these subunits are attached by Mg²⁺ ion.
- Ribosomes are the sites of protein synthesis. Those are called protein factories.
- Several ribosomes may attach to a single mRNA and form a chain called **polysomes** or **polyribosome**.
- > Palade studied ribosomes in animal cells.
- Ribosomes are also called palade particles.
- In prokaryotes ribosomes are synthesised in the cytoplasm.
- Ribosome proteins are formed over ribosomes with the help of mRNAs which are **polycistronic**.

INCLUSION BODIES:


- Reserve materials are stored in the cytoplasm in the form of inclusion bodies.
- These are not bounded by any membrane system and lie free in the cytoplasm.


Eg: Phosphate granules, cyanophycean granules and glycogen granules.

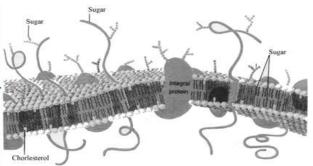
Gas vacuoles are found in blue green, purple and green photosynthetic bacteria.

EUKARYOTIC CELLS

- Protists, Plants, Animals and Fungi are includes under eukaryotes.
- Membrane bound organelles, nucleus with nuclear envelop, variety of complex locomotory and cytoskeletal structures are present in cytoplasm.
- ➢ Genetic material is organised into chromosomes.
- > All eukaryotic cells are not identical.

Cell Membrane:

- Detailed structure of the membrane was studied by using electron microscope.
- Intracellular biomembranes are found in eukaryotic cells around most cell organelles as well as inside some cell organelles.


Eg: Tonoplast around vacuole.

- Double membrane covering is present around nucleus, mitochondria and plastids.
- Single membrane covering is present around ER, GC, Lysosomes, Peroxisomes & Glyoxysomes.
- Cell membrane is composed of lipids that are arranged in a bilayer.
- Lipids are arranged within the membrane with the polar(hydrophilic) head towards the outer sides and the hydrophobic tails towards the inner part.
- Lipid component of the membrane mainly consists of phosphoglycerides.
- Cell membrane also possess protein and carbohydrates.
- The ratio of protein and lipid varies considerably in different cell types.
- ➢ In human beings, the membrane of the erythrocyte has approximately 52% of protein and 40% lipids.
- Membrane proteins can be classified as integral and peripheral.

Peripheral proteins lie on the surface of membrane while the integral proteins are partially or totally burried in the membrane.

- Different models of molecular structure of plasma membrane have been proposed by different scientists.
- Highly acceptable model of cell membrane was proposed by Singer & Nicolson widely accepted as fluid mosaic model.
- According to this quasi-fluid nature of lipid enables lateral movement of proteins with the overall bilayer.
- Fluid nature of the membrane is also important for cellular functions like
 - * Cell growth
 - * Formation of intercellular junctions
 - * Secretion
 - * Endocytosis
 - * Cell division
- Important function of the plasma membrane is the transport of the molecules into and out of the cells.
- The membrane is selectively permeable to some molecules present on either side of it.
- Many molecules can move briefly across the membrane without any utilization of energy is called the passive transport.
 - Eg: 1) Solutes may move across the membrane by simple diffusion along the concentration gradient(from higher concentration to the lower).
 - 2) Movement of water by diffusion across the membrane is called **osmosis**.
- Few ions or molecules are transported across the membrane through its carrier proteins against their concentration gradient(from lower to the higher concentration).

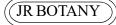
Such transport is an energy dependent process, in which ATP is utilised and is called active transport.

Eg: Na^+/K^+ pump.

FUNCTIONS OF PLASMA MEMBRANE

- 1. The cell membrane maintains the individuality and form of the cell and its organelles
- A cell remains dynamic as long as the plasma membrane is able to determine which material should enter or leave the cell. Cell membrane helps in regulating the flow of materials and energy into and out of the cell through the processes of diffusion, osmosis (passive) and active transport. (Na⁺ - K⁺ pump).

CELL WALL:


- It is a rigid, semi-elastic, semi-transparent supportive and protective covering of cell in Plants, Fungi, Prokaryotes and some Protists.
- It was first observed by Robert Hooke in cork tissue of oak tree.
- ➢ In Mature cell, cell wall contain three layers.
 - 1) Middle lamellum
 - 2) Primary wall
 - 3) Secondary wall
- Algae have cell wall made of cellulose, galactans,mannans and minerals like calcium carbonate
- Cell wall of most of the plants consists of cellulose, hemicellulose, pectins and protiens
- ➢ Fungal cell wall made up of chitin

MIDDLE LAMELLUM:

- It is thin amorphous intercellular matrix between two adjacent plant cells that functions as a cement between them.
- It is the first structure that is formed from cell plate between the newly formed daughter cells at the time of cytokinesis.
- It is made up of pectins,(calcium pectate, and magnesium pectate).

PRIMARY WALL:

- ➢ It is laid inner to the middle lamellum.
- ▶ It is thin & elastic and capable of growth.

- Growth occurs due to incorporation of materials into inside of primary wall such growth is called intussusception.
- Primary wall consists of microfibrils and gellike matrix.
- It is the only wall in meristematic and soft parenchymatous tissue like mesophyll, cortex, pith, fruit etc
- The cell wall and middle lamellae may be traversed by plasodesmata which connect the cytoplasm of neighbouring cells
- Plasmodesmata helps in inter cellular transport between cells

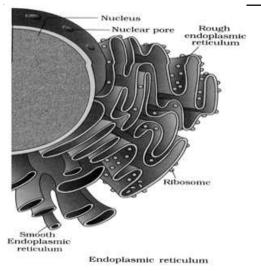
SECONDARY WALL:

- ➢ It is found in mature plant cells
- ▶ It is laid inner to the primary wall.
- It is formed by external deposition of new materials over the existing structure. Such growth is called **accretion**.(Apposition)
- New wall materials like lignin, suberin, pectin and cutin deposited into cellulose interfibrillar spaces.
- Secondary wall is laid in layers. Usually 3 layers, namely S₁, S₂, and S₃.
- The thickening is of purely cellulose in Collenchyma cells, Cotton Fibres and flax fibres.
- Suberin is deposited in the walls of cork cells.
- The impregnation is of lignin in the wood(xylem) elements like vessels, tracheids and sclerenchyma, fibres.
- In Xylem, the secondary wall exhibits unthickened areas called **pits** to support intercellular transport.
- Function of cell Wall : The Cell wall performs the following important functions :
 - i) It provides a definite shape, protection and mechanical support to the cell.
 - ii) It functions as apoplast.
 - iii) It forms a skeletal framework of plants and provide mechanical support
 - iv) Its depositions like cutin, and suberin reduce transpiration
 - v) It is involved in the movements of metabolites in and out of the cell through plasmodesmata

vi) It counteracts the turgor pressure.

ENDOMEMBRANE SYSTEM:

- The functioning of certain membrane bound cytoplasmic organelles is well coordinated.
- They exchange materials among themselves by means of vesicles.
- > The Endomembrane system includes
 - Endoplasmic reticulum
 - Golgi complex
 - Lysosomes and
 - Vacuoles
- Functioning of Mitochondria, Chloroplast and Peroxisomes are not coordinated. These are not considered as part of the endomembrane system.


ENDOPLASMIC RETICULUM (ER):

- > The term ER is coined by **K.R.Porter**.
- It is found in all eukaryotic cells except mature erythrocytes.
- It is a complex membrane lined network of flattened sacs, tubules and vesicles that runs throughout the cytoplasm of eukaryotic cells from plasma membrane to nuclear envelope.
- Prokaryotic cells do not possess E.R.
- Endoplasmic reticulum constitutes 30-60% of the total endomembrane system.
- It divides the intercellular space into compartments, luminal and extra luminal

Types of ER:

- > It is of two main types
 - 1) Smooth ER/Agranular ER
 - 2) Rough ER/Granular ER
- 1) Smooth Endoplasmic Reticulum(SER):
- Its membranes are smooth. They are devoid of ribosomes.
- It is more abundant near the plasmalemma with which it may be attached.
- SER is believed to be formed from RER.
- It contains few cisternae, concentration of tubules and vesicles is higher.
- **SER is the major** site for **synthesis of lipid**.
- In animal cells, lipid like steroidal hormones are synthesized in SER.

2) Rough Endoplasmic Reticulum(RER):

- > Their surface contain large number of ribosomes.
- RER has more of cisternae and fewer number of tubules and vesicles.
- It is more abundant near the nucleus where it is connected with its outer membrane.
- It is specialised to synthesise and transport proteins. Therefore it occurs in cells engaged in active metabolism, secretion of proteins and enzymes.

GOLGI APPARATUS:

- Camillo Golgi first observed densely stained reticular structures near the nucleus.
- > These are later named as **Golgi bodies**.
- They consists of many flat, disc-shaped sacs or cisternae of 0.5µm to 1.0µm diameter.
- \blacktriangleright These are stacked (6-8) parallel to each other.
- Independent subunits are called dictysomes.
- Curvature gives a polarity to cisternae.
- Cisternae are generally arranged concentrically near the nucleus. There is a proximal convex formative cisface and a distal concave maturation trans-face.
- The concave maturation face is towards the plasmalemma.
- The number of cisternae is counted from the forming face.
- Membrane of the cisternae thickness increases from forming face to maturation face.

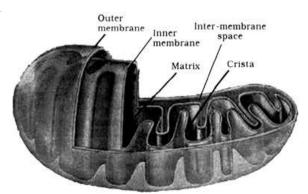
soft apparatus

FUNCTIONS OF GOLGI APPARATUS

- i) The main function of Golgi apparatus is to process, package, transport and release of secretory proteins
- ii) Golgi apparatus is in close association with E.R
- iii) Materials to be packaged in the form of vesicles from the E.R, fuse with the cis face of golgi apparatus and moves towards the maturing face.
- iv) They cause glycosidation of lipids and glycosidation of proteins to form glycolipids and glycoproteins
- v) Most of the proteins synthesised at ER are modified in Golgi bodies

LYSOSOMES

- These are single membrane bound vesicular structures formed by the process of packaging in the golgi apparatus.
- The isolated lysosomal vesicles are rich in hydrolytic enzymes.
- Christian De Duve named lysosomes.
- They are cytoplasmic organelles of eukaryotic cells.
- They have also been reported in fungi, seeds, root tips, etc.
- Lysosomes are very rich in hydrolytic enzymes (hydrolases) capable of digesting carbohydrates (carbohydrases), proteins(proteases), lipids (lipases) and nucleic acids(nucleases)
- Digestive enzymes present in lysosomes are called acid hydrolases as they function at acidic p^H...
- Under starvation conditions, lysosomes digest cellular contents by realeasing hydrolyzing enzymes and cause death of cell. This is called autolysis.


VACUOLE:

- It is the membrane-bound space found in the cytoplasm.
- It contains sap tonoplasm mainly composed of water, metabolic bye products, excretions and other waste materials.
- In some plant cells, vacuolar sap also contains some pigments like anthocyanin which impart colour to the plant part.
- The vacuole is bound by a single membrane called tonoplast.
- In plant cells the vacuoles can occupy upto 90% of the volume of the cell and play important role in osmoregulation.
- In plants, the tonoplast facilitates the transport of a number of ions and other materials against concentration gradients into the vacuole.
- Hence their concentration is significantly higher in the vacuole than in the cytoplasm.
- In Meristematic cells many small vacuoles are present.
- In Mature cells a single large vacuole with peripheral cytoplasm. This condition is called **Primordial Utricle**.
- In Amoeba and algal cells the contractile vacuole is important for excretion and osmoregulation
- In many cells as in protists, food vacuoles are formed by engulfing the food particles. They contain digestive enzymes
- Gas vacuoles occur in prokaryotes.
- Gas vacuoles store metabolic gases, provide mechanical strength, regulate buoyancy and dilute the intensity of harmful radiations.

MITOCHONDRIA:

- In Greek language Mitos thread, Chondrion grain.
- The number of mitochondria per cell is variable depending on the physiological activity of the cells.
- Dormant and inactive cells possess fewer mitochondria.
- In animal cells, mitochondria are the second largest cell organelles.

- > In plant cells they have the third largest size.
- Commonly mitochondria are 0.2-1.0µm in diameter(average 0.5µm) and length 1.0-4.1µm.
- > Typically it is sausage shaped or cylindrical.
- > It is spherical in yeast.
- Each mitochondrion is covered by a double membrane envelope which encloses a highly involuted inner core or inner chamber.
- There is an outer and an inner membrane in the envelope.
- Inner membrane dividing its lumen distinctly into two aqueous compartments, i.e. the outer compartment (cytosol or C-face) the inner compartment (matrix or M-face).
- The outer membrane forms the continuous limiting boundary of the organelle.
- The inner membrane forms a number of infoldings called the cristae towards the matrix.
- The cristae increase the surface area of inner membrane.
- On cristae stalked particles called oxysomes, Racker's particles, F₀-F₁ particles or elementary particles are present.
- ➤ The matrix also possesses single circular DNA molecule,(with high G = C ratio) a few RNA molecules, (all 3 forms of RNA) 70s-ribosomes and the components required for the synthesis of proteins.
- During aerobic respiration they produce cellular energy in the form of ATP, hence they are called **Power houses of the cell**.
- > The mitochondria divide by **fission**

PLASTIDS:

- E. Haeckel (1865) gave the term plastid. Plastids are largest cell organelles.
- Plastids are double membrane covered cytoplasmic organelles that possess their own genetic machinery.
- They take part in storing or synthesising organic compounds.
- > They occur in plants and euglenoids.
- > Plastid precursors are called **Proplastids**.

★ Leucoplasts € Chloroplasts

Proplastids \rightarrow Chloroplasts \in Chromoplasts

★ Chromoplasts € Chloroplasts

PROPLASTIDS:

- They are colourless, rounded but amoeboid plastid precursors found in meristematic and newly formed plant cells.
- It has a double membrane envelope that surrounds a colourless matrix.
- The matrix contains DNA, Ribosomes and reserve food.
- A few vesicles and lamellae also occur in the matrix.
- > They develops from inner membrane.
- Based on the type of pigments plastids can be classified into leucoplast,chromoplast and chloroplasts.

LEUCOPLASTS:

- Leucoplasts are colourless plastids that occur in non green plant cells, commonly near the nucleus.
- They contain lamellae, some of which are found to be connected with inner membrane.
- Lamellae are not organised to form grana.
- > Photosynthetic pigments are absent.
- Many leucoplasts become specialised to store food materials.
- ➤ These are of 3 types.

(i) Amyloplasts:

Starch storing leucoplast is called **amyloplast**. Eg: tuber of potato, grain of rice and wheat.

(ii) Elaioplasts:

- -They store oils and fat.
- Eg: Endosperm of caster seed
- (iii) Aleuroplast:

-They are protein storing leucoplasts. Eg: Aleurone layer of Maize grain, cotyledons of Pulses

CHROMOPLAST:

- They are non-photosynthetic coloured plastids which synthesise and store carotenoid pigments.
- They contain fat soluble carotenoid pigments like carotene, xanthophylls.
- They, therefore appear orange red or yellow in colours.
- They develop from proplastids, leucoplasts and chloroplasts.
- Transformation from chloroplasts is observed during ripening of fruits due to loss of chlorophyll. Eg: Tomato, Chilly
- The most common carotenoid of these fruits is lycopene.
- > Tuberous roots of carrot contain **carotene**.
- Coloured flowers contain chromoplast. And such flowers attract pollinating insects.
- > The coloured fruits attract birds for dispersal.
- Certain carotenoids form Abscisic acid and later they closes stomata and induces dormancy.

CHLOROPLAST:

- They are green or chlorophyll containing plastids of plant cells and some protists(Euglena) which are specialised to perform photosynthesis or synthesis of organic food from inorganic raw materials with the help of energy obtained from solar radiations.
- Majority of the chloroplasts of the green plants are found in the mesophyll cells of the leaves.
- Chloroplasts of green plants are generally discshaped with circular (or) oval-elliptical outline.

Shape of	Plant Name		
Chloroplast			
Collar - like	Ulothrix		
Ribbon - shaped	Spirogyra		
Cup - shaped	Chlamydomonas		
Stellate	Zygnema		
Reticulate	Oedogonium		
	Inser membrane Granum Strom Iamel		

and 70s ribosomes.

- Photosynthetic pigments are present in the thylakoids.
- Thylakoid membranes possess chlorophylls (a and b in plant chloroplast), Carotenoids (carotenes and xanthophylls).
- The ribosomes of the chloroplasts are smaller (prokaryotic, 70s) than the cytoplasmic ribosomes (Eukaryotic, 80s).
- Functions : The chloroplasts perform various functions like;
 - i) Photosynthesis light reaction (in thylakoids), Dark reaction (in stroma)

The main function of chloroplast is photosynthesis, in which radiant energy of sun is converted into chemical form of energy, which is ultized by all living organisms to perform their life activities. Further, **chloroplasts** help in maintaining **balance** of O_2 and CO_2 in the atmosphere

2) Storage of Strach

These different types of plastids are interchangeable e.g., In tomato

Young ovary (colourless) \rightarrow Leucoplasts Young fruits (green) \rightarrow Chloroplasts

Mature fruits (red) \rightarrow Chromoplasts

In carrot root : Leucoplast \rightarrow Chromoplast In chilly : Chloroplast \rightarrow Chromoplast

SIMILARITIES BETWEEN MITOCHONDRIA & CHLOROPLASTS

- 1. **Origin.** Both are formed by division of pre-existing organelles.
- 2. Envelope. They are covered by a double membrane envelope.
- 3. **Outer Membrane.** It is smooth and permeable to many solutes as well as metabolites.
- 4. **Inner Membrane.** The membrane is selectively permeable in both.
- 5. **Infoldings.** Inner membrane develops involutions, cristae in mitochondria and lamellae in chloroplasts.
- 6. Autonomy. Both the organelles are semiautonomous.
- 7. Genetic Systems. They possess their own DNA, RNA and ribosomes.
- 8. **DNA.** DNA is circular and naked. **chloroplast DNA** is, however, bigger than **mitochondrial**

Sectional view of chloroplast

SECTIONAL VIEW OF CHLOROPLAST

- Chloroplasts are the second largest cell organelles of plant cells with a length of 5-10µm and width 2-4µm.
- Their number varies from plant to plant. Eg: -A single chloroplast is present in the cells of *Chlamydomonas.*
- A chlorenchyma cell of leaf possesses 20-40 chloroplasts in peripheral cytoplasm.
- Like mitochondria, chloroplasts are also double membrane bound.
- Of the two, the inner membrane of chloroplast is relatively less permeable.
- The space limited by the inner membrane of the chloroplast is called stroma.
- A number of organised flattened membranous sacs called **thylakoids**, are present in the stroma.
- Thylakoids are arranged in stacks like the piles of coins called grana or the intergranal thylakoids.
- In addition, there are flat membranous tubules called the stroma lamellae connecting the thylakoids of different grana.
- The membrane of the thylakoids enclosed a space called a lumen.
- The stroma of the chloroplast contains enzymes required for the synthesis of carbohydrates and proteins. It also contains a small, double-stranded, circular DNA molecules, mRNA, rRNA, tRNA

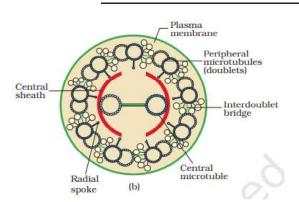
DNA.

- 9. **Ribosomes.** Ribosomes present in these organelles are 70s.
- 10. **Phosphorylation.** Both possess electron transport chains and take part in synthesis of ATP. (photo phosphorylation and oxidative phosphorylation)

RIBOSOMES:

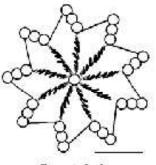
- Ribosomes are composed of ribonucleic acid (RNA) and proteins, so they called ribonucleoprotein granules.
- They are not surrounded by any membrane. These are smallest organelle.
- These are found in both prokaryotic and eukaryotic cells and are, therefore, considered to be universal cell organelle.
- Eukaryotic cells have two types of ribosomes, cytoplasmic (80s) and organelle (70s).
- Cytoplasmic ribosomes (80s) or cytoribosomes may occur free in the cytosol or bound to endoplasmic retuiculum and outer surface of nuclear envelope.
- Organelle ribosomes (70s) occur in two types of semi-autonomous organelles mitoribosomes in the matrix of mitochondria and stroma of plastids (leucoplast, chloroplast).
- Here 'S' stands for the sedimentation coefficient. It is indirectly a measure of density and size.
- Both types of ribosomes are composed of larger and smaller subunits.
- 70s ribosome contains 50s and 30s subunits while 80s contains 60s and 40s subunits.
- The two subunits in both types of ribosomes associate with each other by Magnesium ions.
- Ribosomes provide space as well as enzymes for the synthesis of proteins.
- During protein synthesis, many ribosomes form a chain on a common m - RNA and form the polysomes or ergosome

CYTOSKELETON:


An elaborate network of filamentous proteinaceous structures present in the cytoplasm is collectively referred to as cytoskeleton.

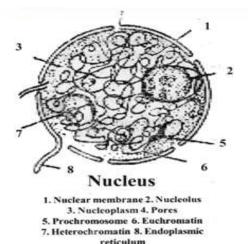
- Eukaryotic cells contain three major components of cytoskeleton:
 - (a) Microtubules (b) Microfilaments
 - (c) Intermediate filaments
- Cytoskeleton in a cell is involved in many functions such as
 - i) Mechanical support
 - ii) Maintenance of cell shape
 - iii) Cell motility
 - iv) Intracellular transport
 - v) Signaling across the cell and karyokinesis

CILIAAND FLAGELLA:

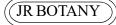

- Cilia and flagella are hair like outgrowths of the cell membrane.
- Cilia are small structures which work like oars, causing the movement of either the cell or the surrounding fluid.
- Flagella are comparatively longer and responsible for cell movement.
- Prokaryotic bacteria also possess flagella but these are structurally different from that of the eukaryotic flagella.
- Both (cilia & flagella) are covered with plasma membrane.
- Their core called the axoneme, possesses a number of microtubules running parallel to the long axis.
- The axoneme usually has nine pairs of doublets of radially arranged peripheral microtubules and a pair of centrally located microtubules.
- Such an arrangement of axonemal microtubules is referred to as the 9+2 array.
- The central tubules are connected by bridges and are also enclosed by a central sheath, which is connected to one of the tubules of each peripheral doublet by a radial spoke.
- Thus, there are nine radial spokes.
- The peripheral doublets are also interconnected by linkers.
- Both the cilium and flagellum emerge from centriole-like structures called the basal bodies.

CENTROSOME AND CENTRIOLES:

- These occur in all eukaryotic animal cells and motile lower plant cells
- Centrosome is an organelle usually containing two cylindrical structures called Centrioles.
- They are surrounded by amorphous pericentriolar materials. Both the centrioles in a centrosome lie at right angles to each other.
- They are made up of nine evenly spaced peripheral fibrils of tubulin.
- Each of the peripheral fibril is a triplet. The adjacent triplets are also linked.
- The central part of the centriole is also proteinaceous and called the hub; which is connected with tubules of the peripheral triplets by radial spokes made of proteins.


Centriole

FUNCTIONS:


- They polymerize microtubules for formation of spindle fibres and astral rays during mitosis and meiosis.
- Centrioles help in the organisation and development of cilia and flagella
- When centrioles move to periphery of the cell, these function as kinetosomes or basal bodies
- > They determine the poles during cell division.

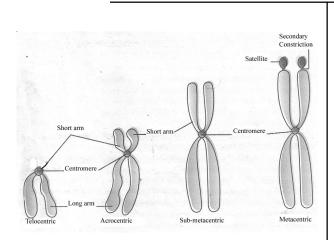
NUCLEUS:

- Nucleus as a cell organelle was first described by Robert Brown as early as 1831.
- The material of the nucleus stained by the basic dyes was given the name chromatin by Flemming.
- The interphase nucleus (nucleus of a cell when it is not dividing) has highly extended and elaborate nucleoprotein fibres called chromatin, nuclear matrix and one or more spherical bodies called nucleoli (sing:nucleolus).
- Nuclear envelope, consists of two parallel membranes with a space between (10 to 50 nm) called the perinuclear space, forms a barrier between the materials present inside the nucleus and that of the cytoplasm. The outer membrane usually remains continuous with the endoplasmic reticulum and also bears ribosomes on it.

- At a number of places the nuclear envelope is interrupted by minute pores called **nuclear pores** which are formed by the fusion of its two membranes. These nuclear pores are the passages through which movement of RNA and protein molecules takes place in both directions between the nucleus and the cytoplasm. Normally, there is only one nucleus per cell, variations in the number of nuclei are also frequently observed.
- Some mature cells even lack nucleus, e.g., Erythrocytes of many mammals and sieve tube cells of vascular plants.
- > The nuclear matrix or the nucleoplasm contains

nucleolus and **chromatin**. The nucleoli are spherical structures present in the nucleoplasm.

- The interphase nucleus has a loose and indistinct network of nucleoprotein fibres called chromatin. It is differentiated into two regions
- Heterochromatin and Euchromatin : It was observed that when chromosomes are stained with basic dyes like acetocarmine or fuelgen stain, then two types of regions can be observed:
 - a) Heterochromatic region : This region gets dark stain during interphase. This is genetically inactive and highly condensed region with tightly packed DNA
 - **b)** Euchromatin region : This region gets light stain during interphase. This portion is genetically active and rich in loosely packed DNA. Transcription occurs here.


But during different stages of cell division, cells show structured chromosomes in place of the nucleus.

- Chromatin contains DNA and some basic proteins called histones, some non-histone proteins and also RNA. single human cell has approximately two metre long thread of DNA distributed among its forty six (twenty three pairs) chromosomes.
- Chromosomes were discovered by Hofmeister and named by waldeyer
- Structure of Chromosome: Structurally, a chromosome is composed of following parts :
 - 1. Chromatid :Each metaphase chromosome consists of two symmetrical strands called chromatids.
 - 2. Chromonema : During prophase each chromatid appears to be made of very thin and highly coiled filaments called chromonemata (as subunits of chromatids)
 - **3.** Chromomeres : These are bead like structures formed due to condensation of chromatin material. These are believed to be location of genes.
 - 4. Centromere : The two chromatids are attached to each other by a narrow area, also

called primary constriction. This decides the ratio of arm length called **centromeric index**. Two arms may be equal (Isobrachial) or unequal (Heterobrachial).

- 5. Kinetochore : This is a disc-shaped protein structure attached to the centromeric portion
- **6. Telomere :** This term is applied to the cytologically distinct tips of the chromosomes , these are specific for a chromosome and are rich in G and T bases.
- 7. Nucleolar Organising Region (NOR) : These areas are certain secondary constrictions containing the genes which code for ribosomal RNA that induce the formation f nucleoli. The chromosomes with these regions are called nucleolar organising chromosomes
- 8. Satellites : This is a rounded body separated from the rest of the chromosome by a secondary constriction, a chromosome having satellite is called SAT-chromosome and these are considered marker chromosome (SAT-Sine Acid Thymonuclenico)
- Based on the position of the centromere, the chromosomes can be classified into four types.
 - i) The **metacentric chromosome** has middle centromere forming two equal arms of the chromosome. These chromosomes appear 'v'-shaped
 - ii) The sub-metacentric chromosome has centromere is slightly away from the centre resulting into one shorter arm and one longer arm. Appear 'L'-shaped
 - iii) In case of acrocentric chromosome the centromere is situated close to its end forming one extremely short and one very long arm. These appear 'J'-shaped
 - iv) Whereas the **telocentric chromosome** has a terminal centromere. These appear '*i*'shaped

- Sometimes a few chromosomes have nonstaining secondary constrictions at a constant location. This gives the appearance of small fragment called the satellite.
- When viewed under electron microscope, chromatin appears as "beads-on-string". The beads are now known as "nucleosomes".
- A typical nucleosome contains 200bp of DNA double helix wrapped (two turns) around a core of histone octamer having two copies of each of four types of histone proteins - H₂A, H₂B, H₃ and H₄.
- H1 histone molecule lies outside the nucleosome core and seals the two turns of DNA by binding at the point where DNA enters and leaves the core.
- The DNA that continues between two successive nucleosomes is called linker DNA.
- The association between negatively charged DNA and positively charged histones allows for meaningful DNA packaging inside the nucleus.
- The beads-on-string structure in chromatin is packaged to form chromatin fibres that are further coiled and condensed to form the chromosomes.

FUNCTIONS OF CHROMOSOMES:

- 1) Chromosomes are responsible for carrying the genetic information from one generation to another, as genes are located on them
- 2) Any variation in chromosome (Structural or

numerical) will lead to change in the characters of an organism

MICROBODIES:

- These are single membrane bound organelles associated with oxidiation reactions other than those of respiration. These include
 - A. Peroxisomes
 - B. Glyoxysomes
 - A) Peroxisomes : Peroxisomes are spherical, sac - like structures , bounded by a single membrane. Initially these were reported in animals only, but later also discovered in plants. Christian De Duve discovered them for the first time. These were called peroxisomes, because these contain 'peroxide - producing enzymes (oxidases) and 'peroxide '-destroying enzymes (catalases)
- Peroxysomes are involved in the catabolism of long chain fatty acids and play important role in the synthesis of phospholipids.
- Peroxisomes are involved in photorespiration and protection of cells form toxic effects of hydrogen peroxide.
 - **b) Glyoxysomes :**Glyoxysomes are bounded by a single membrane. These contain enzymes for the glyoxylate cycle through which fats are converted into carbohydrates (gluconeogenesis). These are found in germinating seeds, especially in germinating fatty seeds such as castor seeds.

DIFFERENCES BETWEEN PROKARYOTIC CELL & EUKARYOTIC CELL

S.No.	PROKARYOTIC CELL	EUKARYOTIC CELL		
1.	The size is 0.1-5.0µm.	The size is 5-100µm.		
2.	The cell possesses one-envelope system.	The cell contains two-envelope system.		
3.	Cell wall, if present, contains mucopeptide or	Cell wall, if present, contains cellulose.		
	peptidoglycan.	Peptidoglycan is absent.		
4.	A typical nucleus is absent. Instead nucleoid or	Eucaryotic cell contains a typical nucleus made of		
	genophore is present.	nuclear envelope, chromatin, nucleoplasm, nuclear		
		matrix and nucleoli.		
5.	DNA of nucleoid lies freely in the cytoplasm.	DNA lies inside the nucleus, mitochondria and		
	, , , , , , , , , , , , , , , , , , ,	plastids.		
6.	DNA is generally circular.	DNA is commonly linear. However, circular DNA		
		does occur inside mitochondria and plastids.		
7.	DNA is naked or without any association with	DNA is associated with histones.		
	histone proteins.			
8.	DNA content is low.	DNA content is comparatively quite high.		
9.	Nucleoid is equal to a single chromosome and is	Nucleus contains chromatin material of two or		
	called prochromosome.	more chromosomes.		
10	Introns or nonessential intervening sequences are	Introns are quite common. RNA, therefore,		
	commonly absent in DNA. RNA, therefore, does	requires splicing before becoming operational.		
	not require splicing.			
11.	Plasmids may occur.	Plasmids are rare.		
12.	Cell membrane may have infolding called	A mesosome like structure is generally absent.		
	mesosome.			
13.	Cell membrane is involved in separating	Cell membrane does not take part in separating		
	replication products.	replication products.		
14.	A spindle apparatus is not formed during cell	A spindle apparatus is formed during cell division		
	division.			
15.	Flagella are smaller, 4 - 5µm x 12nm.	Flagella are longer, 150-200µm x 200nm.		
16.	Flagella are single stranded.	Flagella are 11-stranded.		
17.	A distinction of axoneme & sheath is absent in the	A flagellum shows distinction of axoneme &		
	flagellum.	sheath.		
18.	Cyclosis is absent.	Cytoplasmic streaming or cyclosis is common.		
19.	Endocytosis & exocytosis are absent.	They occur in eukaryotic cells.		
20.	Sap vacuoles are absent.	Sap vacuoles are quite common.		
21.	Gas vacuoles may occur to provide buoyancy &	Gas vacuoles are absent.		
	protection against intense radiations.			
22.	Cytoplasm does not possess endoplasmic	Endoplasmic reticulum is usually present.		
	reticulum.			
23.	Ribosomes occur freely in the cytoplasm as well as	Ribosomes occur in cytoplasm as well as two cell		
	attached to plasmalemma.	organelles (mitochondria and plastids). In		
		cytoplasm the ribosomes are both attached to		
		endoplasmic reticulum as well as free in		
		cytoplasm.		
24.	Ribosomes are 70S.	80S ribosomes occur in cytoplasm. Organelle		
		ribosomes are 70S.		
25.	Thylakoids, if present, lie freely in the cytoplasm.	Thylakoids occur inside chloroplasts.		
26.	Mitochondria are absent.	Mitochondria are often present.		
27.	Respiratory enzymes occur attached to plasma membrane.	Respiratory enzymes occur in cytoplasm and mitochondria.		
28.	Golgi apparatus is absent.	Golgi apparatus is present.		
29.	Lysosomes, sphaerosomes and glyoxysosomes are	They are often present.		
	absent.			
30.	Microtubules & microfilaments are rare.	They are usually present.		
31.	Centrosome is absent.	Centrosome is present except in flowering plants		
		and a few others.		

DIFFERENCES BETWEEN 70S(PROKARYOTIC) AND 80S(EUKARYOTIC) RIBOSOMES

S.No.	70S (PROKARYOTIC) RIBOSOMES	80S (EUKARYOTIC) RIBOSOMES		
1.	The Ribosomes are found in prokaryotes, mitochondria and plastids of eukaryotes.	The Ribosomes occur in cytoplasm of eukaryotes.		
2.	Sedimentation coefficient is 70S.	Sedimentation coefficient is 80S.		
3.	The ribosomes are free.	They are both free and membrane bound.		
4.	The size is 20-29nm in length & 17-21nm in breadth.	The size is 30-34nm x 20-24nm.		
5.	Weight is 2.7-3.0 million daltons.	It is 4.0-4.5 million daltons.		
6.	The smaller and larger subunits are respectively 30S and 50S.	The two subunits are 40S and 60S.		
7.	RNA to protein ratio is 60-65:35-40.	RNA to protein ratio is 40-44:56-60.		
8.	Number of protein molecules is 21 in smaller subunit and 34 in larger subunit.	Number of protein molecules is 30 in smaller subunit and 40 in larger subunit.		
9.	rRNAs are 16S in smaller subunit, and 23S+5S in larger subunit.	rRNAs are 18S in smaller subunit, and 28S+5.8S+5S in larger subunit.		
10.	All the rRNA are transcribed nearby.	18S, 5.8S, 28S rRNAs are transcribed in the region of nucleolus while 5S rRNA is synthesized away from it.		
11.	Ribosomes synthesis occurs in cytoplasm of prokaryotes and matrix of mitochondria as well as plastids.	Ribosome synthesis occurs in the nucleolus.		
12.	Protein synthesis is inhibited by chloramphenicol but not by cycloheximide.	Protein synthesis is inhibited by cycloheximide but not chloramphenicol.		

DIFFERENCES BETWEEN OUTER AND INNER MITOCHONDRIAL MEMBRANE

S.No.	OUTER MITOCHONDRIAL MEMBRANE	INNER MITOCHONDRIAL MEMBRANE
1.	It is smooth. Cristae are absent.	The inner mitochondrial membrane is folded to
		form a number of ingrowths called cristae.
2.	The membrane is permeable to a large solutes.	It is selectively permeable to even small number
		of solutes & metabolites.
3.	Protein content is about 60%.	Protein content is about 80%.
4.	Lipid content is high, about 40%.	Lipid content is low, about 20%.
5.	Phospholipid & cholesterol contents are high.	Phospholipid & cholesterol contents are 1/3-1/6
		of the outer membrane.
6.	Cardiolipins are scarce.	Cardiolipins are abundant.
_	1	1
7.	The membrane contains porins.	Porins are absent. Instead a number of carriers
	1	occur in the membrane.
8.	It does not possess elementary particles.	Elementary particles are present.
0.	reacts not possess crementary particles.	Elementary purches are present.
9.	Enzymes present in the membrane are not	It possesses enzymes connected with electron
	involved in oxidative phosphorylation.	transport & oxidative phosphorylation.

DIFFERENCES BETWEEN LEUCOPLASTS AND CHROMOPLASTS

S.No.	LEUCOPLASTS	CHROMOPLASTS
1.	They are colourless plastids.	Chromoplasts are brownish to red in colour.
2.	Leucoplasts have cylindrical to rounded in shape.	They are commonly irregular in shape.
3.	Lamellae are often present.	Lamellar structure degenerates during maturation of chromoplasts.
4.	Leucoplasts commonly occur in the cells of unexposed plant parts.	Chromoplasts commonly occur in exposed parts, except carrot root.
5.	Depending upon stored materials, leucoplasts are of three – amyloplasts, elaioplasts and aleuroplasts.	Chromoplasts are of one type. They may synthesise & store lipids.
6.	Leucoplasts can change into other types of plastids.	Chromoplasts are unable to change into other types of plastids.

DIFFERENCES BETWEEN MITOCHONDRIA AND CHROMOPLASTS

S.No.	MITOCHONDRIA	CHLOROPLASTS
1.	Mitochondria are colourless cell organelles.	They are green cell organelles.
2.	They occur in plants, animals, fungi and protists.	Chloroplasts occur in plants and some protists.
3.	The organelles are found in all cells of aerobic organisms.	They are present in only green cells exposed to light.
4.	Mitochondria are generally cylindrical in outline.	Chloroplasts of higher plants are discoid in outline. They have various shapes in lower organisms.
5.	The inner membrane shows involutions called cristae.	The inner membrane develops involutions called lamellae or thylakoids.
6.	Cristae remain attached to inner membrane.	Thy lakoids generally separate from the inner membrane.
7.	Intracristal space is connected to outer chamber.	Intrathylakoid space or loculus is not connected to periplastidial space.
8.	There is no stacking of cristae.	Thy lakoids are stacked at places to produce grana.
9.	Mitochondria lack pigments.	Chloroplasts possess photosynthetic pigments.
10.	ATP-ase synthetase projects towards the inner surface of cristae.	ATP-synthetase projects towards the outer surface of thylakoids.
11.	They undertake catabolic reactions.	Chloroplasts perform anabolic reactions.
12.	There is no mechanism to harvest light energy.	They are able to harvest light energy & convert into chemical energy.
13.	Mitochondria perform part of respiration.	Chloroplasts perform all the steps of photosynthesis.
14.	Organic food is broken down to produce energy.	Organic food is built up to store energy.
15.	They consume oxygen.	They liberate oxygen.
16.	Mitochondria produces CO_2 and H_2O as end products.	Chloroplasts utilize CO ₂ and H ₂ O as raw materials.

Chapter 9 : Cell The Unit of Life <u>DIFFERENCES BETWEEN CILIA AND FLAGELLA</u>

S.No.	CILIA	FLAGELLA
1.	A cell bears many cilia, 300-14000.	A cell bears few flagella, 1-4.
2.	The length is 2-10µm.	The length is 100-150µm.
3.	Cilia occur throughout or on major part of the cell surface.	Flagella develop from one end of the cell.
4.	There is coordination in beating of different cilia of the same cell.	Flagella show independent beating.
5.	Ciliary beating is asymmetrical.	Flagellar beating is symmetrical.
6.	Cilia perform sweeping or rowing action.	Flagella perform undulatory action.
7.	Besides locomotion, cilia can perform function of circulation, aeration, protection, feeding, etc.	Flagella take part in locomotion only.
8.	They may form cirri and undulating membrane.	Such groupings and fusions are unknown in flagella.

MODEL TEST - I

- 1. Who observed few living cells capable of moving, such as bacteria, protozoa, spermatozoa and red blood corpuscles under his own designed microscope?
 - 1)Aristotle 2)Robert Hooke
 - 3) Leeuwenhoek 4) Dutrochet
- 2. Cells that have membrane bound nucleus are found in
 - 1) Rhizobium
 2) Meristem
 3) Sieve tube
 4) Nostoc
- 3. Endomembrane system of cell includes
 - 1) Golgi complex
 - 2) Lysosome and vacuoles
 - 3) ER 4) All of these
- 4. Intercellular matrix or common layer between the primary walls of adjacent cells is
 - 1) Middle lamella 2) Primary wall
 - 3) Secondary wall 4) Periplasmic space
- 5. Which structure determines the shape of the cell and provides a strong structural support to prevent the bacterium from bursting?
 - 1) Slime layer 2) Capsule
 - 3) Cell membrane 4) Cell wall
- 6. The semifluid nature of the biomembrane1) Helps in quick repair
 - 2) Provides dynamic nature
 - 3) Gives semipermeable nature
 - 4) More than one option is correct
- 7. Which face of golgi complex rise to the secretory vesicles?
 - 1) Trans face 2) Proximal face
 - 3) Convex face 4) Cis face
- 8. A forming face and maturing face are seen in this cell organelle
 - 1) Golgi complex 2) Endoplsmic reticulum
 - 3) Chloroplast 4) Mitochondria
- 9. RER is found abundantly in those cells which are actively involved in

- 1) Protein synthesis 2) Lipid synthesis
- 3) Steroidal hormones synthesis
- 4) Glycogen metabolism
- 10. This is not a function of the cell organelle which was named by Porter
 - 1) Protein synthesis
 - 2) Synthesis of cell wall materials
 - 3) Lipid synthesis
 - 4) Synthesis of steroidal hormones

MODEL TEST - II

- 11. Which of the following is not true of a eukaryotic cell?
 - 1) It has 80S type of ribosome present in the mitochondria
 - 2) It has 80S type of ribosome present in the cytoplasm
 - 3) Mitochondria contain circular DNA
 - 4) Membrane bound organelles are present
- 12. Plastid differs from mitochondria on the basis of one of the following features. Mark the right answer
 - 1) Presence of two layers of membrane
 - 2) Presence of ribosome
 - 3) Presence of chlorophyll
 - 4) Presence of DNA
- 13. Many ribosomes may associate with one mRNA to form
 - 1) Polyhedral bodies 2) Polysome
 - 3) Nucleosome 4) Plastidome
- 14. The power house of the cells has

1) DNA	2) RNA
3) Ribosomes	4) All the above

15. Which one of the following plastid is involved in storage of proteins in maize?

Chromoplast
 Chloroplast
 Amyloplast
 Aleuroplast

16. Which one of the following funtion is not associated with microtubules?

Help in anaphasic movement of chromosomes
 Form the cytoskeleton of cilia and flagella

	3) Help in pseudopo			interphase is	
	4) Spindle and astral	ray formation		1) Genetically inactiv	e
17.	Centrioles have			2) Highly condensed	region
	1)9+2 arrangement	of microtubules		3) Rich in loosely pa	cked DNA
	2) 9 peripheral doub	let microtubules		4) Rich in tightly pac	ked DNA
	3) 2 centrally located	lmicrotubules	27.	Kinetochore is assoc	iated with
	4) An organisation li	ke the cart wheel		1) Primary constriction	on
18.	One centrosome con	tains centrioles		2) Secondary constri	ction
	1) one	2) two		3) Satelite	
	3) three	4) many		4) More than one op	tion is correct
19.	Which of the follo	owing cell organelles is	28.	Centromere is also k	nown as
	concerned with phot	ophosphorylation?		1)Satilite	
	1) Mitochondria	2) Plastochondria		2) Primary constriction	on
	3) Chloroplast			3) Kinotochore	
	4) More than one op	tion is correct		4)Secondary constric	ction
20.		s in eukaryotic flagellum are	29.	The position of Second	
	made up of a protein			1)near centromere	2) at tip
	1) Nexin 2) Dyneii	n 3)Flagellin 4)Actin		3) constant	4) variable
			30.	Type of histone protein	ins present in chromatin are
	MODEL 1	TEST - III		1)4 2) 5	3) 8 4) 9
21.	Cell organelle with	both oxidase and catalase			
	enzymes is			OUFSTI	ON BANK
				QUESIK	
	1) Lysosome	2) Peroxisome		TYP	
	3) Mitochondria	4) Sphaerosome	31.	-	E - I
22.	3) Mitochondria Karyotheca or nucle	4) Sphaerosome ar membrane is absent in	31.	TYP	E - I
22.	3) Mitochondria	4) Sphaerosome	31.	TYP The middle lamella is	E - I s composed of
22.	3) MitochondriaKaryotheca or nucle1) Nostoc3) Drosophila	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) 	31. 32.	TYP The middle lamella is 1) Pectates 3) Lignin	E - I s composed of 2) Cellulose 4) Proteins
22. 23.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is 	4) Sphaerosome ar membrane is absent in 2) Rhizobium		TYP The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell
	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 	32.	TYP The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell	E - I s composed of 2) Cellulose 4) Proteins
	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 		TYP The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above
23.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin 	32.	TYP The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable
23.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 	32. 33.	TYPE The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable
23.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell chromosomes 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin is with number of 	32.	TYPE The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable Selective permeabili	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable ty occurs in
23.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell chromosomes 1) 23 pairs 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin is with number of 2) 46 pairs 	32. 33.	TYP: The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable Selective permeabili 1) Cell wall	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable ty occurs in 2) Plasma membrane
23. 24.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell chromosomes 1) 23 pairs 3) 23 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin is with number of 2) 46 pairs 4) 22 pairs 	32.33.34.	TYP: The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable Selective permeabili 1) Cell wall 3) Cytoplasm	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable ty occurs in 2) Plasma membrane 4) None of these
23. 24.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell chromosomes 1) 23 pairs 3) 23 Chromosome with 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin is with number of 2) 46 pairs 	32. 33.	TYP: The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable Selective permeabili 1) Cell wall 3) Cytoplasm C.Schleiden a Germa	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable ty occurs in 2) Plasma membrane 4) None of these n botanist examined a large
23. 24.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell chromosomes 1) 23 pairs 3) 23 Chromosome with chromosome 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin is with number of 2) 46 pairs 4) 22 pairs two arms can be seen in 	32.33.34.	TYP: The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable Selective permeabili 1) Cell wall 3) Cytoplasm C.Schleiden a Germa number of plats and	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable ty occurs in 2) Plasma membrane 4) None of these in botanist examined a large
23. 24.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell chromosomes 1) 23 pairs 3) 23 Chromosome with chromosome 1) Metacentric 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin is with number of 2) 46 pairs 4) 22 pairs two arms can be seen in 2) Sub-metacentric 	32.33.34.	TYP: The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable Selective permeabili 1) Cell wall 3) Cytoplasm C.Schleiden a Germa number of plats and	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable ty occurs in 2) Plasma membrane 4) None of these n botanist examined a large observed mposed by cells similar in
23. 24. 25.	 3) Mitochondria Karyotheca or nucle 1) Nostoc 3) Drosophila This part of nucelus is reticulum 1) Pore 3) Outer membrane Single human cell chromosomes 1) 23 pairs 3) 23 Chromosome with chromosome 1) Metacentric 3) Acrocentric 	 4) Sphaerosome ar membrane is absent in 2) Rhizobium 4) Both (1) & (2) in contact with endoplasmic 2) Inner membrane 4) Chromatin is with number of 2) 46 pairs 4) 22 pairs two arms can be seen in 	32.33.34.	TYP: The middle lamella is 1) Pectates 3) Lignin Cell wall is present in 1) Plant cells 3) Algal cell Plasma membrane is 1) Selectively permea 3) Impermeable Selective permeabili 1) Cell wall 3) Cytoplasm C.Schleiden a Germa number of plats and 1) All palnts are cor structure and func	E - I s composed of 2) Cellulose 4) Proteins 2) Prokaryotic cell 4) All the above able 2) Permeable 4) Partial permeable ty occurs in 2) Plasma membrane 4) None of these n botanist examined a large observed mposed by cells similar in

	Chapter 9: Cer	I I ne (
	3) All paints are formed by both similar and		1) Ribosomes	2) Mitochondria
	dissimilar cells.		3) Chloroplast	4) Lysosomes
	4) All paints are formed by different kinds of cells	44.		wing plastids are helpful in
	which form the tissue of the palnt.		starch formation an	id storage?
36.	In fluid mosaic model of plasma membrane		1) Chromoplast	2) Leucoplasts
	1) Upper layer is non-polar & hydrophilic		3) Chloroplast	4) Lycopene
	2) Polar layer is hydrophobic	45.	Lamellae of chloro	plast are known as
	3) Phospholipids form a bimolecular layer in		1)Granum	2) Frets
	middle part		3) Thylakoids	4) Stroma lamellae
	4) Proteins form a middle layer	46.	70S type of ribosor	nes is found in
37.	Plasmodesmata connections help in		1) Prokaryotic cells	5
	1) Cytoplasmic streaming		2) Prokaryotic cells,	chloroplasts & mitochondria
	2) Synchronous mitotic divisions		3) Mitochondria	
	3) Locomotion of unicellular organisms		4) Nucleus, mitoche	ondria
	4) Movement of substances between cells	47.	Grana & stroma lar	nellae are the parts of
38.	Which one of the following is not a constituent of		1) Mitochondria	
	cell membrane?		2) Chloroplast	
	1) Cholesterol 2) Glycolipids		3) Endoplasmic reti	culum
20	3) Proline 4) Phospholipids		4) Vacuoles	
39.	Cell theory as proposed by schleiden and	48.		ellular activities in plant and
	schwann explains		animal cell is	
	1)All living organisms are composed of cells and products of cell		1)Cytoplasm	2) Nucleus
	2) All cell arise from pre-existing cells	10	3)Nuceolus	4) Chromosomes
	3) Cell is the structural and functional unit of all	49.		ving substances are stored in
	organisms		Aleuroplast	$2) \bigcirc 1 \land 1$
	4) Both 1 and 3		 1) Starch 3) Proteins 	2) Oil & Lipids 4) Water & Oil
40.	Three morphological forms of golgi complex are	50	/	4) water & Oll nelle which is called protein
	1) Lamellae, tubules & vesicles	50.	factory is	iene which is caned protein
	2) Cisternae, tubules & vesicles		1) Ribosome	2) Lysosome
	3) Cisternae, tubules & lamellae		3) Vacuoles	4) Endoplasmic reticulum
	4) Granum, thalykoids & vesicles	51.	The Ribosomes are	· •
41.		51.	1) DNA+Protein	2) RNA+Protein
	1) Nucleus & chloroplast		3) DNA+RNA	4)None of these
	2) Chloroplast & mitochondria		5) DIVITINAT	i)i tone of these
	3) Vacuoles & golgi complex	52.	Cilia and flagella bo	oth have
	4) Ribosome & lysosome	52.	1) 9+2 arrangement	
42.			2) Protective struct	
	1) Surface of grana		3) Only present in p	
	2) Surface of plasma membrane			structure of cytoplasm
	3) Wall of Mitochondria	53.		somes are present in cells of
	4) Nuclear membrane		1)Animals	2) Bacteria
43.	A single unit membrane organelle is		3) Green cells	4) Cyanobacteria
			,	, <u> </u>
				211

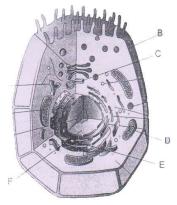
54	Double membrane bo	und bodies in eukaryotic cell		fibres is	
57.	are	und bodies in eukaryotie een		1) Chromatid	2) Chromonema
	1Mitochondria,plasti	ds nucleus		3) Chromomere	4) Centromere
	2)Peroxisomes,Glyoz		65.	Choose the correct s	· ·
	3)E.R,Golgi complex		05.		rally similar and functionally
	4) Lysosomes and va			dissimilar	any sinina and functionally
55.	, .	om Prokaryotic cell in having			tionally similar through they
55.	1) membrane bound			differ in size and	
	 membrane bound membrane bound 	e			trally similar and functionally
	/	Inucleus		similar	a any sininar and functionally
	3) Both 1 and 2	tau1			radually in size, shape and
5(4) dense matrix of cy	-		activities	radianty in size, shape and
56.	which of the follo membrane?	wing pair lack the unit	66.		number of chromosomes is
			00.	1) Haplopappus gra	
	1) Nucleus & E.R.	. 1 1 4		2) Salix tetrasperm	
	2) Mitochondria & cl	-		3) Poa	4) Cynodon
	3) Ribosome & nucle		67.	/	rs present in DNA wrapped
	4) Golgi body & lyso		07.	around a core of hist	1 11
57.	Golgi body is concer				3) 200 4) 54
	1) Respiration	2) Secretion	68.	, , ,	bacteria, blue green
-0	3) Excretion	4) Degradation	00.	U 1	nd PPLO(pleuro pneumonia
58.	-	commonly present in both			cell representation expalins
	prokaryotes and euk			as they are	
	1) Peroxisomes	2) Lysosomes		•	2) Prokaryotic cell
-0	3) Ribosomes	4) Nucleolus		· •	thout membrane bound cell
59.	Within the cells ribos			organelles	
	, 1	chondria,Rough E.R		e	that lack macro bodies
	2) Rough E.R microb		69.	· •	
	3) Chroroplast, golgi	-	09.	-	
6.0	4) Mitochondria, and	•		1) Basal bodies	, -
60.	Chromosome with c		70	3) Blepharoplasts	4) All of the above
	1) Metacentric	2) Sub-metacentric	70.	Choose the correct s	
	3) Telocentric	4) Acrocentric		/ 1 ·	we cell wall surrounding cell
61.		animal cell that helps in cell		membrane	
	division			, 1 ,	acks membrane bound cell
	1) Ribosomes	2) Centrioles		organelles	
	3) Nucleus	4) Lysosomes		· ·	identifed by membrane
62.	-	type of set of chromosomes		bound nucleus	
	1) Haploid	2) Diploid			al with histone proteins seen
	3) Triploid	4) Polyploid		in prokaryotes	
63.		esent in chromosomes	71.		zyme synthesis in cells
	1) Nucleus	2) Centromere		1) Golgi body	2) Ribosome
	3) Centrosome	4) Golgi body		3) Lysosomes 4) Sm	ooth endoplasmic reticulum
64.	Part of chromosome	which joins with spindle			
				$ \rightarrow $	212

212

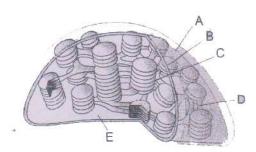
		Chapter 9: Cen	Ineu	Init of Life	
72.		lition to the genomic DNA		1) Steroids	2) Proteins
		are present outside these		3) Carbohydrates	4) All of these
	structures are called	as	82.	A piece of chromati	n with 40 H ₄ proteins means
	1) Plasmids	2) Nucleoid		it containsnum	ber of nucleosomes
	3) Chromosomes	4) Mesosomes		1) 5 2) 10	3) 40 4) 20
73.	Glycosidation of lipic	ls and proteins occurs in the	83.	More ribosomes wo	ould be found in
	cell organelle called			1) Parenchymatous	cells 2) Dead cells
	1) Golgi complex	2) Mitochondria		3) Meristematic cell	s 4) Lignified cells
	3) Ribosomes	4) Peroxisomes	84.	The Golgi complex	plays major role
74.		g cell organelles is justposed		1) As energy transd	ucing organelles
	to nucleus and contai	ns cisternae		2) In digesting prot	eins and carbohydrates
	1) Lysosomes	2) Mitochondria			uanta and transforming them
	3) Peroxisomes	4) Golgi apparatus		into chemical ene	
75.	Oxidation of NADH	H^+ to NAD ⁺ occurs in		4) In glycosidation	n of lipids and proteins to
	1) F_1 particles of mite	ochondria			oids and glycoproteins
	2) Mitochondrial mat	rix	85.	When will green ton	matoes turn red
	3) Outer membrane of	of mitochondria		1) New chloroplast	ts are made
	4) shuttle mechanism	ofmitochondria		2) Chloroplasts are	disintegrated and converted
76.	The term 'suicide b	bag' is applicable to cell		into chromoplast	
	organelle			3) Carbon asimilati	on will not occur
	1) Golgi apparatus	2) Lysosome		4) Respiration will	not take place
	3) Microsome	4) Peroxisome	86.	If the ribosomes of	a cell are destroyed then
77. Certain unique phenotypic characters to bacteria are			1) Fats will not stor	ed	
	indicated by			2) Proteins will not	be formed
	1) Nucleoid	2) Chromosomes		3) Carbon assimilat	
	3) Genomic DNA	4) Plasmid DNA		4) Respiration will	not take place
78.	In bacteria this struc	cture confers resistance to	87.	A feature common	to nucleus, chloroplast and
	antibiotics			mitochondria is at th	he presence of
	1) Circular DNA	2) Plasmid DNA		1) Lamellae	2) Cristae
	3) Genomic DNA	4) Both 2 and 3		3) Nucleic acids	4) All the above
79.	• •	of plant in which chloroplast	88.	In the plasmalemma	, the hydrophobic tails of the
	transform into chrom	-		lipid molecules are p	present towards the inner part
	1) Fruits of Tomato a	and Chillies		to protect then from	1
	2) Lady finger	3) Cucurbita		1) Toxins	2) Aqueous environment
	4) Cotton			3) Heat	4) All of the them
80.		ified into two groups on the	89.	A carrier protein is	required for the transport of
	basis of			theme ions across th	ne membrane
	,	chemical composition of cell		1) Polar molecules	2) Non-polar molecules
	wall			3) Nuetral solutes	4)All of them
	2) Staining reaction	3) Mode of nutrition	90.		ytic enzymes of lysosomes
	4) Both 1 and 2			function at	
81.	-	reticulum is well-developed		1) Basic pH	2) Any pH
	in the cells, which syn	thesize		T	213

	Chapter 9: Cen	i i ne (
	3) Neutral pH 4) Acidic pH		1) Proteins 2) Carbohydrates
91.	Polyribosomes are the aggregation of		3) Lipids 4) All of these
	1) Ribosomes and rRNA	100.	
	2) Only rRNA 3) Peroxisomes		tiny tubular structures on its outer membrane
	4) Several ribosomes held together by a string		which is
	ofmRNA		1) Endoplasmic reticulum
92.	If we separate the cell organelles of a living cell,		2) Golgi complex 3) Microtubules
	which part should be alive		4) Chromatin reticumlum
	1) Endoplasmic reticulum	101.	Mitochondria and chloroplasts are concerned
	2) Chloroplast		with the transfer of cellular energy. Is this
	3) Cell wall 4) Ribosomes		statement correct ?
93.	Which of the following cell organelles is		1) Yes, it is correct
	considered to be rich in catabolic enzymes		2) No, mitochondria are but not chloroplast
	1) Lysosomes 2) Golgi bodies		3) No, neither of them
	3) Mitochondria 4) Endoplasmic reticulum		4) No, chloroplasts are but not mitochondria
94.	One of the following statement with respect to	102.	Where will you find the description of tiny, regular-
	primary cell wall is wrong		shaped honey comb like compartments. They make up the tissue of cork of Spanish oak and
	1) It is seen in a young plant cell		other plants
	2) It is the first formed between middle lamella		1) Systema Naturae 2) Cell theory
	and secondary wall		3) Micrographia 4) Scala Naturae
	3) It is capable of growth	103.	
	4) It is present between middle lamellum and		cis and trans faces is
	secondary wall		1) Endoplasmic reticulum 2) Vacuole
95.	Which of the following is the smallest cell organelle		3) Golgi complex 4) Lysosome
	1) Mitochondrion 2) Ribosome	104.	The biomolecules synthesis by the rough
	3) Chloroplast 4) ER		endoplasmic reticulum are modified here before
96.	The enzymes for Krebs' cycle in mitochondrion		being released 1) Golgi complex 2) Vacuoles
	are located		3) Lysosomes 4) Peroxisomes
	1) On the outer membrane	105.	After packing materials golgi apparatus secretes
	2) On the inner membrane	1000	then to the
	3) In perimitochondrial space		1) Inside of the cell 2) Outside of the cell
~ -	4) In mitochondrial matrix		3) Both of them
97.	The endoplasmic reticulum that is not studded		4) Secretion is not a functin of golgi
	with ribosomes on its surface is the major site		
	for synthesis of	106.	Cell organelle extract from endosperm of
	1) Proteins 2) Carbohydrates		germinating castor beans are
00	3) Lipids 4) All of these		1) Glyoxysomes 2) Peroxisomes
98.	The highest number of mitochondria are in	107.	3) Transposons 4) None of these The pigment, which is not found in chloroplast is
	1) Parenchyma cells 2) Sieve tubes	10/.	1) Carotene 2) Chlorophyll
00	3) Meristematic tissues 4) None of these		3) Xanthophyll 4) Anthocyanin
99.	This is not a function of the cell organelle which	108.	The enzymes present in lysosomes belong to
	was named by porter		

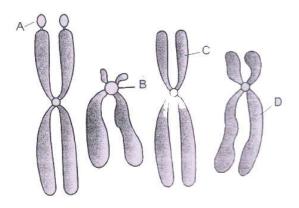
	Chapter 9: Cel	Inel	Unit of Life
	class namely		membrane
	1) 1 2) 2 3) 3 4) 4		3) Plasmodesmata are the cytoplasmic
109.	As they release hydrolase that digest old and		connections between cells
	damaged cells, the term suicide bags is aptly used		4) Cell membrane is semipermeable or selectively
	by cell biologists for the 1) Golgi bodies 2) Lysosomes		permeable
	1) Golgi bodies2) Lysosomes3) Glyoxysomes4) Glyoxysomes	117.	The cell organelle which has DNA is
110.	Which of the following statements is correct		1) Endoplasmic reticulum
	1) Ribosomes do not contain DNA		2) Golgi complex 3) Lysosome
	2) Eukaryotic 80S ribosomes break into 50 S and 30 S		4) Mitochondria
	3) Plasmodesmata are found as intercellular	118.	Identify the correct pair
	junction between animal cells		1) 70% of cellular proteins –Mitochondrial
	4) Ribosomes were discovered by Beadle and Tatum		enzymes
111.	Which cell structure, substructure acts as the site of oxidation reduction reaction		2) Lysosomes –Oxidoreductases
	1) Glyoxysomes 2) Mitochondrial cristae		3) Peroxisomes–Hydrolases
	3) Lysosomes		4) Ribosomes–Transferases
	4) Coated vesicles in Golgi complex	119.	
112.	Membrane bound space with cell sap most		either by absorption from their surroundings or
	common to plant cells is		as by products of chemical activities. Cell would die if such compounds accumulated in cytoplasm
	1) Chloroplast 2) Lysosome		& nucleus. Hence, mechanisms have evolved to
	3) Vacuole 4) Chromoplast		effect their removal. In palnt cells, this is
113.	A cell biologist used ultrasonic method to disrupt		accomplished by developing a system of
	the cell and found fragments in cell organelle,		1) Membranes such as the endoplasmic
	which served as site of ATP synthesis. These		reticulum
	fragments actually are the parts of		2) Pores in nuclear wall
	1) Mitochondria 2) Lysosomes		3) Vacuoles
	3) Liposomes 4) Ribosomes		4) Semipermeable cell membranes surroundin the cytoplasm
114.	One of these is an important function of vacuole	120	Under what conditions do lysosomes cause
	1) Osmoregulation 2) Starch synthesis	120.	autolysis
	3) Energy production 4) Digestion		1) Starvation 2) Excess food
115.	Mitochondria are called as the power houses of		3) Injection 4) All the above
	the cell because	121.	8
	1) They produce ATP		monera and protista
	2) They release O_2		1) Ribosome 2) Lysosome
	3) They use CO_2	100	3) Mitochondria 4) Chloroplast
	4) They synthesis proteins	122.	The process in the cell that is the source of energy for cellular activities is
116.	Select the false statement		1) Photosynthesis 2) Respiration
110.	1) Ribosomes and centriole are non-membrane		3) Fermentation 4) All of these
	bound organelles of a cell	123.	Ribosomes present in mitochondria are of this
	2) Ribosomes are enveloped by a double		type
			1) 70S 2) 80S 3) 30S 4) 60S
	(IR BC)TANY	215



124 The sell and an elle that is continue and		1) 20.40	2) 0 = =
124. The cell organelle that is continuous wi outermembrane of the cell brain is	th the	1) 20-40	2) One
		3) Numerous	4) 5 or 6
1) Mitochondria 2) Endoplasmic retion	culum 133.		bound cell organelles of
3) Golgi complex 4) Lysosome	a f the	cytoplasm are	2) Mitachandrian
125. Which of the following is not the function golgi apparatus	or the	1) Chloroplast	2) Mitochondrion
• • • • •	an that 124		ochondrion and Nucleus
1) Proteins synthesized by the ribosomes endoplasmic reticulum are transferred		protoplasm are	ne bound organelles of
Golgi, where it is accumulated in sacs.		1) Chloroplast	2) Mitochondrion
sacs may migrate to the surface of th		, I	2) WINOCHONDINI
and discharge their contents to the outs		3) Both 1 and 2 4) Chloroplast Mite	abandrian and Nuclaus
2) The protein filled sacs may be retained v		, -	ochondrion and Nucleus
the cells as ribosomes	within 135.	them to the	ials golgi apparatus secretes
3) It is the site, where the synthes	sis of		2) Outside of the cell
polysaccharides takes place		3) Both 1 and 2	2) Outside of the cell
4) It is the site, where synthesis of lipids	takes	4) Secretion is not a	function of golgi
place	. 136.	,	1 by inner membrane of
126. Plastids are seen in all plant cells and also	in 150.	chloroplast is	d by miler memorane or
1)Animals 2)Bacteria		1) Stroma	2) Lumen
3) Euglenoids 4) All the above		3) Periplastidial	4) Cavity
127. Classification of plastids is based on their	137.		, ,
1) Size 2) Pigments	137.		nactive hydrolytic enzyme
3) Motility 4) Nuclei acid		2) Centrosome–Sma	
128. The types of plastids present in a genus Sol	lanam	3) Cell drinking–Cili	
tuberosum are		, U	e
1) Chloroplasts 2) Chromoplasts	120	4) Nucleoid – Proka Intergranal thylako	
3) Leucoplasts 4) All the above	138.	e .	
129. The fine network of membranes distri	buted	1) Grana lamella	2) Stroma lamellae
throughout the cytoplasm in a cell is	120	3) Lumen	4) Stroma
1) Golgi body 2) Mitochondria	139.	• •	plasm from cell to cell is
3) ER 4) Lysosomes		plants called	cytoplasmic connections in
130. Autonomic genome system is present in1) Mitochondria and ribosomes		1) ER	2) Tight junction
2) Mitochondria and chloroplast		3) Gap junction	2) Tight junction4) Plasmodesmata
3) Ribosomes and chloroplast	140	, 10	,
4) Golgi body and mitochondria	140.	are	organelles inside chloroplast
131. The pigment molecules of a chloropla	st are	1)Pigments	2) Circular DNA
located within		3) Granum	4) Ribosome
1) Its thylakoid membranes	141.	,	between active and passive
2) The space between the inner and			membrane is that the
membranes		1) Passive transport	
3) The inner membrane 4) Intrathylakoid s	spaces		t occurs more rapidly than
132. Number of chloroplasts in a ce	-	passive transport	
chlamydomonas are			·
,			216
()	JR BOTANY	Y))	-


	3) Passive transport is gradient based, while		4) Group of chromosomes associated with				
	active transport is energy based against		proteins				
	concentration gradient		One of the following is not a part of cytoskeleton				
	4) Passive transport is confined to anions, while		1) Microfilaments 2) Microsomes				
	active transport is for cations only		3) Microtubules 4) Intermediate filaments				
142.	Pigments required for light reaction of	151.	Nucleus was discovered by				
	photosynthesis are present in		1) Robert Hooke 2) Robert Brown				
	1) Stroma 2) Lumen		3) Robert Dixen 4) Robet Koch				
	3) Ribosome 4) Thylakoids	152.	One of the most abundant constituent of a cell				
143.	Trans membranes are		that has a unique structure is				
	1) Glycocalyx 2) Intrinsic proteins		1) Amino acid 2) Carbohydrate				
	3) Extrinsic protein 4) Tunnel protein		3) Water 4) Nucleic acid				
144.		153.	5				
1	present in		is cooperated by				
	1) Stroma 2) Lumen		1) Cilia 2) Flagella				
	3) Circular DNA 4) Granum	151	3) Cytoskeleton 4) Ribosomes Chromosomes with terminal centromeres are				
145	, , ,	154.	known as				
145.	Mg^+ ions play an important role in		1) Telocentric 2) Metacentric				
	1)Association of ribosomal sub units		3) Sub metacentric 4) Acrocentric				
	2) Formation of middle lamella	155.	, , , , , , , , , , , , , , , , , , , ,				
	3) Both 1 and 2	155.	functional DNA, is				
	4) Production golgi complex		1) Nucleus 2) Chloroplast				
146.	According to fluid mosaic model, plasma		3) Mitochondrion 4) Peroxisome				
	membrane consists of	156.					
	1) Cellulose, hemicellulose	1000	matched?				
	2) Phospholipid, intrinsic protein, extrinsic protein		1) Nucleus – Genetic information				
	3) Phospholipid, intrinsic protein		2) Cell membrane– Selectively Permeable				
1 477	4) Phospholipidm hemicellulose		3) Golgi complex–Secretion				
14/.	Network of proteinaceous filaments present in cytoplasm is known as		4) Microtubular organelles – Glycolysis				
		157.	The central core of cilium (or) flagellum is known as				
	 Endoplasmic reticulum Cytoplasm 3) Cytoskeleton 		1)Axoneme 2)Microtubule				
	2) Cytoplasm 3) Cytoskeleton 4) Cell-organelles		3) Doublet 4) Triplet				
148.		158.	Centriole like structure causing the emergence				
140.	chloroplast and nuclear DNA		of cilium or flagellum is known as				
	1) Single DNA in chloroplast		1) Basal body 2) Hub				
	2) Less number of basis in DNA of chloroplast		3)Axoneme 4)Centrosome				
	3)Absence of histone proteins 4)All of the above	159.	5				
149.	Nucleoid is a		nucleus is known as				
, .	1) Single inactive nucleus with double stranded		1) Karyon 2) Nucleolous				
	DNA and protein		3) Chromatin 4) Spoke				
	2) A nucleus without karyotheca with proteins	160.	e				
	3) Chromosome associated with proteins		1) Mammalian erythrocytes are without nucleus				
	· •						

- 2) All dead cells are without nucleus
- 3) Mature sieve tube cells of cryptogams are without nucleus
- 4) All eukaryotic cells are with nuclear membrane
- 161. Identify the correct statements in the given cell


- A. Concerned with lipid and steroidal hormone synthesis
- B. Outer non-living rigid structure which gives shape to the cell and protects from mechanical damage and infection
- C. Both lie perpendicular to each other and each has an organisation like the cart wheet
- D. Responsible for trapping light energy for the synthesis of sugar
- E. Present in cells actively involved in protein synthesis and secretion
- F. Spherical structures, rich in hydrolytic enzymes
- 1) A, D & E 2) B, C, D
- 3) A, C & E 4) A, B, C, F
- 162. Consider the following five statements (A to E)w.r.t chloroplast shown below. select the correct option stating which ones are True (T) and which ones are False (F)

- C. Stalked thylakoids one over other which is the site of production of assimilatory power
- D. Present between two grana and contains enzymes of dark reaction
- E. It contains enzymes for the synthesis of sugar and proteins

А	В	С	D	E
1) F	Т	Т	Т	Т
2) F	Т	Т	F	Т
3) T	F	Т	Т	Т
4) T	F	F	Т	Т

163. Find out the correct option on the basis of following diagrams

- 1) A Satellite, B-Secondary constriction C- Short arm, D- Long arm
- 2) A A satellite, B Centromere, C- Short arm, D- Long arm
- 3) A Secondary constriction, B Satellite C - Long arm, D - Short arm
- 4) A NOR, B- secondary constriction
 - C Short arm, D Long arm

TYPE - II

- 164. Prokaryotic cell differes from eukaryotic cell in lacking
 - I) Nuclear envelope
 - II) Membrane bound cell organells
 - III) Nucleolus IV) Histone proteins
 - 1) I, II, III and IV 2) I and II only
 - 3) I, II and III 4) I and III only
- 165. Regarding prokaryotic cells
 - I) Absence of nucleus

A. It is impermeable and lack porinsB. It is selectively permeable having carrier

	II) Absence of membrane -bound protoplasm.	170.	Amembranous struct	tures of the animal cell are
	III) Compartmentalized nuclear meterial and		A) Ribosome	B) Nucleolus
	cytoplasm		C) Centrosome	
	IV) Absence of nucleolus		1)Aonly	2)ABC
	1) I only correct 2) I and II correct		3) AB only	,
	3) II and III only incorrect		4) A and C only	
	4) IV only correct	171.		lasts to chloroplasts is found
166.	Middle lamellum is		in	1
	I) The intercellular cement-like substance		I) Tubers of Radish	II) Potato tubers
	binding adjacent cells together		III) Fruit of Tomato	IV) Maize kernels
	II) Made up mainly of calcium pectate and little		1) I and II only	2) II and III are correct
	amout of magnesium pectate		3) III and IV are cor	,
	III) Cell plate formed during cytokinesis		4) IV and II are corr	
	transforms into middle lamellum	172.		natch with regard to stored
	IV) Found in the middle of primary wall and		food	0
	secondary wall		I) Aleuroplasts–Prote	eins
	1) I and II are only correct		II) Elaioplasts–Fats a	
	2) II and III are only correct		III) RER - Glycogen	
	3) I, II, III and IV are correct		IV) Amyloplasts – Sta	
	4) IV alone is incorrect		1) I & II only	2) I,II,II & IV
167.	1 1		3) I, II, & IV	4) I, III and IV
	of materials	173.		found in chloroplasts and
	I) E.R II) Glogi complex		mitochondria is	1
	III) Peroxisomes IV) Cytoskeleton		I) Both involve in me	tabolism
	1) I and II are correct 2) II and III are correct		II) Photophosphoryla	ation
1.00	3) III and I are correct 4) I and IV are correct		III) Both are semi aut	tonomous organelles
168.			IV) Both contain oxy	vsomes
	statements are $D_{\rm eff}$ The discussion of with a series is 220 A θ		1) I & II	2) II & IV
	 I) The diameter of ribosomes is 230 Å⁰ II) Evaluation of Production have both 80 		3) I & III	4) III & IV
	II) Eukaryotes and Prokaryotes have both 80 S and 70 S ribosomes	174.	Carotenoids are foun	ıd in
	III) 80S ribosomes are formed by association		I) Chloroplasts	II) Leucoplasts
	between 50 S and 30 S sub units		III) Vacuole	IV) Chromoplasts
	IV) Polyribosomes translate and produce		1) I only	2) I and II
	different polypeptides		3) II and III	4) I and IV
	1) I only 2) I and III only	175.	Chloroplast does not	not contain
	3) I, II, and III only 4) II and IV		I) Double membrane	
169.			II) Grana and Strom	a
107.	cell plate are		III) Matrix and Crist	ae
	I) Golgi complex II) Lysosomes		IV) Circular DNA an	nd 70 S ribosomes
	III) Ribosomes IV) Mitochonodria		1) I and IV	2) I and III
	1) I and II are correct		3) III only	4) II and IV
	2) I and III are correct	176.	· ·	garding Mitochondria and
	3) III and IV correct 4) I only		Chloroplast	
			-	

D) Grana

1)

2)

3)

4)

181.

A

4

3

4

4

		· · · · · · · · · · · · · · · · · · ·				
	I) ATP synthesis is seen in both					
	II) Outer membrane has more surface in both					
	III) Circular nake	d DNA, RNA and 70S				
	ribosomes are se	een in both				
	IV) Oxidative phosp	phorylation occurs in both				
	1) I and II	2) II and III				
	3) I and III	4) I and IV				
177.	Single membrane bo	ound organelles are				
	I) Lysosomes	II) Peroxisomes				
	III) Ribosomes	IV) Glyoxysomes				
	1) I and II	2) I, II and III				
	3) I, II and IV	4) I, II, III and IV				
178.	Double membraned	envelope is found around				
	I) Nucleus	II) Plastids				
	III) Mitochondria	IV) ER				
	1) I and II	2) II and III				
	3) III and IV	4) I, II and III				
TYPE - III						
		2 - 111				
179.	double membranes	tures bounded by single or s, while some other without h the organelle in L ist L				

double membranes, while some other withou a membrane. Match the organelle in List I wiht the nature of mambrane in List II and select the correct answer using the codes given below the lists

	groun		uic nois						-				
Lis	<u>t –I</u>			List	<u>–II</u>		A) I	ysoso	mes	1) F	Protein	synthesis	5
A) M	Mitochondria 1) Without membrane				B) I	Riboso	mes	2) H	Iydroly	ic activi	ty		
B) L	ysosom	nes	2) Sin	gle men	ıbrane		C) St	nooth	endopla	smic 3)	Steroid	ogenesis	
C) Ri	bosom	es	3) Dou	- ble men	ıbrane		reti	culum					
,	ucleus		<i>,</i>		rane with pr	osed	D) C	entriol	e	4) (Blycolyt	ic activi	ty
,		A			<u>D</u>		E) C	hromos	somes	5) Rej	pository	of gene	tic
	1)	1	<u>B</u> 2	<u>C</u> 3	2						inform	ation	
	2)	3	1	1	1					6) Form	nation o	of spindl	e
	3) 4)	3 2	2 3	1	33						appara	atus	
180.	/		-	and sele	ct the correc	et		<u>A</u>	B	<u>C</u>	D	E	
100.					below the l		1)	2	1	3	6	5	
		List –I	-	e	st –II	1000	2)	6	3	4	5	1	
		ctyoson		1) Sto			3)	1	4	3	6	1	
	,	tochone		<i>,</i>	otosynthesis		4)	4	3	1	2	5	
	<i>,</i>	cuoles	unu	<i>,</i>	nsport								
							•						

JR BOTANY

	answ	ver					
List	<u>–I</u>		<u>List –II</u>				
A) N	lucleol	lus	1) Lipic	l storag	e		
B) Sp	oheroso	omes	2) Glyce	olate me	etabolism		
C) Pe	roxiso	mes	3) Tran	sport o	f		
			macro	molecu	ules		
D) Plasmodesmata 4) RNA synthesis							
		A	<u>B</u>	<u>C</u>	<u>D</u>		
	1)	4	1	3	2		
	2)	1	2	4	3		
	3)	4	1	2	3		
	4)	1	2	3	4		
182.	Matc	h the fo	ollowing				
		<u>List –</u>	<u>I List –II</u>				
A) L	ysosor	nes	1) Protein synthesis				
B) R	ibosoı	nes	2) Hydrolytic activity				
C) Sn	100th e	endopla	asmic 3)	Steroido	ogenesis		
retio	culum						
D) Ce	entriol	e	4) Glycolytic activity				
E) Ch	iromos	somes	5) Repository of genetic				
			information				
			6) Formation of spindle				
				appara	atus		
		п	C	р	F		

4) Secretion

<u>C</u>

1 2

3

1

Match list I with List II and select the correct

<u>B</u>

5

4

5

3

5) Respiration

D

2

1

2

Chapter 9: Cel	ll The Unit of Life
	4) II I V III
	187. Match the following
183. Match the following	List - I List - II
List –I List –II	A)Glyoxysomes I) Storage of food
A) Karyolymph 1) Nucleolus	B) Leucoplasts II) Osmoregulation
B) Ribonucleoprotein 2) Nucleus	C) Plasma membrane III) Digestion
C) Spindle fibre 3) DNA	D) Nucleolus IV) Ribosome synthesis
D) Genes 4) Centrioles	V) Conversion of fat to
E) Rough endoplasmic 5) Protein synthesis	carbohydrate
reticulum	A B C D
	1) V I II IV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2) I II I IV
	3) IV II III I
	4) V IV III I
3) 2 1 4 3 5	188. Match the following
4) 1 2 3 4 5	List - I List - II
184. Match the following	A)Mitochondrion I) Cell with in a cell
List - I List - II	(Autotrophic endsymbiont)
A) Suicidal bags I) Mitochondria	B) Chloroplast II) Suicide bag
B) Power house of the cell II) Lysosomes	C) Lysosome III) Cell furnace
C) Cell Brain III) Nucleous	D) Vacuole IV) Power house of cell
D) Plasmosome IV) Chloroplast	V) Repository of cell
V) Nucleus	A B C D
A B C D	1) III II II IV
1) II IV V III	2) IV I II III
2) I IV V III	3) III I II V
3) II I V III	4) IV V III II
4) II IV V I	
185. Match the following	
List - I List - II	
A) Lysosome I) Riosome synthesis	
B) Nucleolus II) Heredity	
C) Nucleus III) Secretion	
D) Golgi complex IV) Digestion	
$\begin{array}{c} \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \end{array}$	
1) I II III IV	
2) IV I II III	
3) III I II IV	
4) II I IV III	
186. Match the following	
List - I List - II	
A)Mitochondria I) Photorespiration	
B)Peroxisomes II)Aerobic respiration	
C) Nucleus III) Intracellular transport	
D) E R IV) Protein synthesis	
V) Heredity	
A B C D	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
c, i i i iii	

TYPE - IV MULTIPLE MATCHING TYPE

189. Study the following Ta	ble		
Cell organelle	Di	iscoverer	Function
I. Ribosomes	Pa	lade	Protein synthesis
II. Golgi complex	Go	olgi	DNA synthesis
III. Glyoxysomes		ridenbach	Fat metabolism
IB. Nucleus	Ro	obert brown	Cell plate
Which two show the c			
1) I and II	2) II and III	3) III and IV	4) I and III
190. Study the following tabl	/		
Structure	Chlorophylls	Carotenes	Xanhophylls
I. Choloroplast	Present	Present	Present
II. Chromoplasts	Absent	Present	Present
III. Vacuoles	Absent	Present	Present
IV. Leucoplasts	Absent	Absent	Present
Which two are correct		1100000	
1) I and II	2) II and III	3) III a	and IV 4) I and IV
191. Study the following Tabl	/	-)	.,
Cell organelle		Scientist	Function
I. E.R		K.R porter	Production of Golgi complex
II. Lysosomes		Christian de Duve	Autolysis of cell
III. Peroxisomes		Rhodin	Photophosphorylation
IV. Glyoxysomes		Bridenbach	Calvin cycle
Which two are correct	combinations?		2
1) I and II	2) II and III	3) III and IV	4) I and IV
192. Study the following table	/	,	,
Cell structure	Common Nan	ne Func	tion
I) Lysosome	Repository of ce	ll Digest	tion of food materials
II) Mitochondria	Power house of		ersion of potential energy
<i>,</i>		into k	inetic energy
III)Nucleus	Cell Brain	Regula	ates the function of macrocellorganelles
		only	_
IV) Vacuole	Suicide bags of c	cell Osmo	regulatroy process
Correct combination is	5		
1) I and IV	2) II alone	3) III and IV	4) II and III
193.Cell organile Discove	ered by For	med from Envelo	ped by Functions
I) Plasmosome Fontar	na N	ucleolar No uni	it Synthesis of ribosmes
II)Idiosome Golgi	E.R	One unit mer	mbrane Cell wall material synthesis
III) Lysosome de Duve	Golg	i complex Single uni	t/ER Autolysis membrane
IV) Ergosome Palade		mosome No unit i	membrane Protein synthesis
Correct combinations			
1) All are correct 2) II & III 3	6) I, III & IV 4)	I, II, & III

194.	Study the f	ollowing	table		I				
	Cell org		,	discove	ered by		functio	on	
	I) Lysoso			Christian		A	utolysis	of cell con	ntents
	II) Plasm	osomes		Fontan	a	Production of ribosomes			
	III)Idioso	mes		Camello	Golgi	S	ecretion	ofhormo	ones
	IV) Perox	isomes		Rhodin	U	Oz	kidation	of Amino	o acids
	The corre		ination i						
	1) I & II				3) III &	IV	4)	II & IV	
95.	/				he wrong co				
	Study the		15 more c		Plastid	momunor	Pigme	nts	
	I) Petals				romoplasts		Caroter		
	I) Brown	alaae			romoplasts		Fucoxar		
	III) Red a	•			romoplast		Phycoen		
	IV) Blue	•	100		loroplasts		Phycocy		
	1) I and I					3) III and			Vanly
06	/			II and III		5) III allu	1 V	4)1	V only
96.	Study the		glable		G • 4• 4				
•	Cell orga				<u>Scientist</u>			Functio	
	Golgicom	-			Golgi			-	oxidation
	Ergosome				Palade			otein syn	
III) Glyoxysc	omes			Bridenbad	1		$_{2}O_{2}$ degra	
IV) Lysosom	es			de Duve		Aut	olysis of	cell contents
	Which tw	vo show t	he corre	ct combina	ation				
	1) II & IV	V	2)]	I & III	3) II &	III	4)	I & IV	
197.	<u>Structur</u>	<u>e</u>	Fo	rmed fron	<u>n</u>			volved in	-
			M	ER		a	e)Polype	tide syth	esis
	A) Plasm	osome	11)						
	A) Plasm B) Riboso			Dictyosom	e	ſ)Digest	ion of foo	od
	B) Riboso	ome	N)I	Dictyosom) Digest		
	B) Riboso C)Idiosor	ome ne	N)I O)S	Dictyosom Secondary	constiction	γ) Cellulo	se synthe	sis
	B) Riboso C)Idiosor D) Lysoso	ome ne ome	N)I O)S P) I	Dictyosom Secondary Nucleoulus	constiction s	γ Ω) Cellulo 2) Produc	se synthe ction of e	sis rgosomes
	B) Riboso C)Idiosor D) Lysoso Identify t	ome ne ome he correc	N)I O)S P) I t combin	Dictyosom Secondary Nucleoulus nation of A	constiction s A,B,C and D	γ with those) Cellulo 2) Produce given ir	se synthe ction of e 1 the seco	sis rgosomes nd and third colum
	B) Riboso C)Idiosor D) Lysoso Identify t	ome ne ome he correc	N)I O)S P) I t combin	Dictyosom Secondary Nucleoulus nation of A	constiction s	γ with those) Cellulo 2) Produce given ir	se synthe ction of e 1 the seco	sis rgosomes nd and third colum
	B) Riboso C)Idiosor D) Lysoso Identify t	ome ne ome he correc	N)I O)S P) I t combin	Dictyosom Secondary Nucleoulus nation of A	constiction s A,B,C and D	γ with those) Cellulo 2) Produce given ir B	se synthe ction of e 1 the seco	sis rgosomes nd and third colum
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	B) Riboso C)Idiosor D) Lysoso Identify th A	ome ne ome he correc B	N)I O)S P)I t combin C	Dictyosom Secondary Nucleoulus nation of A D	constiction s A,B,C and D	γ Ω with those A) Cellulo 2) Produce given ir B	se synthe ction of e the seco C	sis rgosomes nd and third colum D
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ
	 B) Riboso C)Idioson D) Lysoso Identify the A 1) O Ω 	bome b	N)I O)S P)I t combin C $M\gamma$	Dictyosom Secondary Nucleoulus nation of A \mathbf{D} $N\beta$	constiction s A,B,C and D	$\frac{\gamma}{\Omega}$ with those A 2) $\Omega \alpha$) Cellulo 2) Produce given in \mathbf{B} $M\Omega$	se synthe ction of e the seco C $P\beta$	sis rgosomes nd and third colum D Nγ

(JR BOTANY

	TYPE - V		2) Many ribosomes a	ttaced to a strand of en-
			doplasmic reticulum	
	QUESTIONS FROM PREVIOUS		3) A ribosome with se	veral subunits
	MEDICAL ENTRANCE EXAMS			d to each other in a linear
			arrangement	
198.	Stroma in the chloroplasts of higher palnts con-	205.	e	bosome remain united at
	tain (CBSE-AIPMT 2009)	200.		(CBSE-AIPMT 2008)
	1) Light-independent reaction enzymes		1) Copper	2) Manganese
	2) Light-dependent reaction enzymes		3) Magnesium	4) Calcium
	3) Ribosomes 4) Chlorophyll	206.	, 0	,
199.	Middle lamella is mainly composed of	200.		(CBSE-AIPMT 2008)
	(CBSE-AIPMT 2009)			nd and contains storage
	1) Hemicellulose 2) Muramic acid		proteins	1 1 . • . 1
	3) Calcium pectate		,	d and contains water and
	4) Phosphoglyceridesp		excretory substances	
200.	Plasmodesmata are (CBSE-AIPMT 2009)		3) Lacks membrane a	
	1) Lignified cemented layers between cells			nd contains water and ex-
	2) Locomotory structures		cretory substances	
	3) Membranes connecting the nucleus with	207.		fatty acids are degraded
	plasmalemma		exclusively in the	(CBSE-AIPMT 2008)
	4) Connections between adjacent cells			
201.	Cytoskeleton is made up of (CBSE-AIPMT 2009)		1) Proplastids	2) Glyoxisomes
2011	1) Calcium phosphate granules	200	3) Peroxisomes	4) Mitochondria
	2) Callose deposits	208.		ing is not a constituent of
	3) Cellulosisc microfibrils		cell membrane	(CBSE-AIPMT 2007)
	4) Proteinaceous filaments		1) Cholesterol	2) Glycolipids
202.	Semiconservative replication of DNA was first	200	3) Proline	4) Phospholipids
202.	demonstrated in (CBSE-AIPMT 2009)	209.	_	ment from the following SE-AIPMT 2008)
	1) Drosophila melanogaster			nd mitochondria contain
	2) Escherichia coli		an inner and an outer	
	3) Streptococcus pneumoniae			nd mitochondria have an
	4) Salmonella typhimurium		· -	nt, the thylakoid space
203.	Keeping in view, the Fluid mosaic model for		bounded by the thyla	· · ·
205.	the structure of cell membrane, which respect			nd mitochondria contain
	to the movement of lipids and proteins from		DNA	
	one lipid monolayer to the other (described as		4) The chloroplasts a	re generally much larger
	flip-flop movement (CBSE-AIPMT 2008)		than mitochondria	6 , 6
	1) Both lipids and proteins can flip-flop	210.	Chlorophyll in chloro	plasts is located in
	2) While lipids can rarely flip-flop, proteins can-		1.	(AFMC-2009)
	not		1) Grana	2) Oyrenoid
			3) Stroma	4) Both (1) and (3)
	3) While proteins can flip-flop, lipids cannot 4) Neither lipids, per proteins can flip, flop	211.	Lysosomes are the res	ervoirs (store houses) of
204	4) Neither lipids, nor proteins can flip-flop Polycoma is formed by (CPSE A IPMT 2008)			(AFMC-2007)
204.	Polysome is formed by (CBSE-AIPMT 2008)		1) Hydrolytic enzyme	s
	1) Several ribosomes attached to a single		2) Secretory glycopro	teins
	mRNA		3) RNA and protein	

	4) Fats (or sugars or ATP)	220.	Cristae are associate	d with which of the fol-
212.	Which of the following cell structures is cor-		lowing	(CPMT-2007)
	rectly matched with the accompanying descrip-		1) Mitochondrion	2) Cytoplasm
	tion (AIIMS 2009)		3) Protoplasm 4) End	oplasmic reticulum
	1) Plasmamembrane – Outer layer of cel lulose	221.	Centrosome is not pro	esent in cell of
	of chitin on absent			(CPMT-2007)
	2) Mitochondria – Bacteria like elements		1) Of higher plants	2) Of lower plants
	with inner membrane		3) Of higher animals	4) Of lower animals
	forming sacs containing	222.		ome are (DUMET-2008)
	chlorophyll		1) 40S	2) 60S
	found in plant cells and		3) Both (1) and (2)	4) None of these
	algae	223.	Which one of the follo	2
3) Ch	loroplasts – Bacteria like elements with	_		(DUMET-2008)
-)	inner membrane highly folded		1) Mitoplast	2) Chromoplast
4) Go	lgi apparatus–Sacks of flattened vesicles		3) Chloroplast	4) Leucoplast
,	What is common between chloroplasts, chro-	224.	Fat storing granules a	× 1
215.	moplasts and leucoplasts (AIIMS 2008)	221.	1) Elaioplast	2)Amyloplast
	1) Presence of pigments		3)Aleuroplast	4) None of these
	2) Possession of thylakoids and grana	225.	Subunits in prokaryot	<i>,</i>
	3) Storage of starch, proteins and lipids	223.	Subulitis in prokaryo	(DUMET-2007)
	4) Ablity to multiply by a fisson -like process		1) 60S–40S	(DOME 1-2007) 2) $50S-30S$
214.	Assertion (A) : A cell membrane shows fluid		3) 40S–30S	4) 50S–20S
214.	behaviour	226.		nembrane in prokaryotic
		220.	cell is	(DUMET-2007)
	Reason (R): A membrane is a mosaic or com-			
	posite of diverse lipids and proteins		1) Mesosome	2)Hapnoid
215	(AIIMS 2008)	227	3) Ribosome	4) None of these
215.	Golgi apparatus is absent in (BHU-2008)	227.		exceptionally rich in hy-
	1) Higher plant 2) Yeast		drolytic enzymes is	
	3) Bacteria and blue-green algae			Andoplasmic reticulum
216	4) Liver cells	220	3) Lysosome	4) Mitochondria
216.	Protein synthesis takes place in (BHU-2008)	228.		(Haryan PMT-2009)
	1) Ribosomes 2) Chloroplasts		1) Chromosome	2) Plasmalemma
217	3) Mitochondria 4) Golgibodies	220	3) Nucleolus	4) Ribosome
217.	A genophore is made up of (BHU-2007)	229.	Highest number of en	•
	1) A single double-stranded DNA		1) T	(Haryan PMT-2008)
	2) Asingle-stranded DNA		1) Lysosome	2) Chloroplast
	3) RNA and histones	220	3) Mitochondria	4) Peroxisome
210	4) Histones and non-histones	230.		esent in higher number in
218.	Membrane that covers the vacuole in a plant		secretory cells	(Haryan PMT-2008)
	cell is called (CPMT-2009)		1) Dictyosome	2) ER
	1) Tonoplast 2) Tonoplasm	0.01	3) Lysosome	4) Vacuole
010	3) Jacket 4) Cell membrane	231.	F_1 -particles are presented by F_2 -particles are presented by	
219.	Nuclear membrane is continuous with		1) Chloroplast	2) Mitochondria
	(CPMT-2009)		3) Ribosome	4) Rough ER
	1) Rough endoplasmic reticulum	232.	Plastids of an etiolate	
	2) Smooth endoplasmic reticulum		1) Phycobilins	(AMU-2008)
	3) Cell membrane 4) Golgi bodies			
		•		225

								—	
233. 234.	1) Spindle fibres2) Chromosomes3) Ribosomes4) Peroxisomes			 3) Rod-shaped structure in cytoplasm near the nucleus 4) None of the above 241. Which of the following organelles is associated with photorespiration (MP PMT-2009 1) Mitochondrion 2) Peroxisome 3) Chloroplast 4) All of these 242. Which of the following does not contain DNA (MP PMT-2009) 1) Mitochondrion 2) Chloroplast 3) Peroxisome 4) Nucleus 243. Which of the following is responsible for the origin of lysosome (MP PMT-2009) 1) Chloroplast 2) Mitochondrion 3) Golgi body 4) Ribosome 					ciated 2009) DNA) or the
	A OF ST	- D - C			-	-	· ·		
	B - HAHIGAN :		244.	Highe	stnum	nber of en	-	found in	
				1) T •	000000			PMT-2007))
					osomo tochon			oroplast oxisome	
	1) D 2) A	3) B 4) C	245.	<i>·</i>		llowing	+)1 Civ	JAISOIIIC	
235.	Surrounding membra	ine of vacuole is called	243.	Match	i ule lo	e			•••
		(Pb PMT-2008)				(KEI		PMT - 200	(8)
	1) Tonoplast	2) Symplast		i	List –	I	Li	st –II	
226	3) Apoplast	4) Phragmoplast	A) En	doplası	mic ret	ticulum 1)Stack of	of cisternae	
236.	given by	of palsma membrane was (Pb PMT-2008)	B) Spl	heroso	me	2)) Store of	oils or fats	
	1) Robertson	2) Robert Hooke	C) Die	ctyosor	ne	3) Svr	thesis a	nd storage	
	2) Singer and Nichols	/				-)-]	of lipi	U	
	4) Pantin and Mast					4) DL	-		
237.	/	e has sedimentation coef-	,	roxiso		,	otoresp		
	ficientof	(Pb PMT-2007)	E) Ela	ioplast	S	5) Deto	xificatio	on of drugs	
	1) 80S	2) 70S		A	<u>B</u>	<u>C</u>	<u>D</u>	E	
	3) 40S	4) 60S	1)	5	3	1	4	2	
238.		ng cell organelles is rich in	2)	5	3	2	4	1	
	catabolic enzymes	(Pb PMT-2007)	3)	2	3	1	4	5	
	1) Chloroplast 3) Golgi complex	2) Mitochondria4) Ribosomes	4)	4	3	1	5	2	
239.		ed body present in nucleo-	5)	3	5	1	4	2	
237.	_	a particular chromosome	246.	-	-	-		and identify	v the
	at a definite place is	-				ons given		•	,
	1) Plasmid	2) Karyolymph			1	U		PMT - 200)8)
	3) Nucleolus	4) Nuclear reticulum	D Sap	vacuol	es –		tain dige		,0,
240.	Nucleolus is	(Pb PMT-2007)	- <i>)</i> ~ ~ P				U	n the help	
	1) Rounded structure	found in cytoplasm near				-		rients are	
	nucleus						diges	sted	
	,	inside nucleus and having	II) Co	ntractil	e vacu	oles – Tal	ke part in	1	
	rRNA								
				~					226

	osmoregulation and					fication	of proteins and
excretion		glycosidation of lipids (4) in trapping the light and transforming it into					
III) Food vacuoles –	Store and concentrate				andtra	Instorm	ng it into
	mineal salts as well as		nemical e				•
	nutrients	250.	Match	the follo	owing	and sel	ect the correct
IV) Air vacuoles – S	-		answer				
an	d hepl in buoyancy of		(NEET	`2014)			
	cells		a. Centr	riole	i. In	folding	s in mitochondria
	2) I and III are correct		b. Chlor	rophvll	ii. T	Thylakoi	ids
/	t 4) II and IV are correct		c. Crist			Vucleic	
5) II and III are correct							
247. Which of these	e is mis-matched		d. Riboz	Zymes	IV. I	Dasai DO	dy cilia or
(KEH	RALA PMT - 2007)		flagella			~	-
1)Amyloplasts –	Store protein granules			А	В	С	D
2) Elaioplasts –	Store oils or fats		1	iv	ï	i	Ĩ
3) Chloroplasts –	Contain chlorophyll		2	i	ï	iv	ш Ш
	pingments		3	i	iii	ï	iv
4) Chromoplasts-	Contain coloured		4	IV	ü	i	i
	pigments othe then	251	The os	motic ex	nansi	on of a	cell kept in
	chlorophyll	-011		is chiefly	-		-
5) Leucoplasts –	contain colourless		water	is enterry	Itgui	•	
	pigment.		1.10	1 1'	2.1		ET 2014)
0 40 W/1 · 1 · C/1 · C ·11	· 11 · 1 C			chondira		acuoles	
	owing organelle in the figure		3.Plastic			ibosom	
correctly match w	vith its function [NEET 2013]	252.	The so	lid linea	r cyto	skeleta	l elements
and the second s			having	a diame	ter of	6nm ar	nd made up of a
			single t	ype of m	ionom	er are	known as
						(NE	ET 2014)
			1. Micro	otubules		2. M	icrofilaments
	KALKUI		3. Intern	nediate fi	lament	ts 4. La	mins
		253.					he function of
. //					-		NEET 2014)
700	(\mathcal{O})		1. Nucl			libosom	
102	2035					lesosor	
	10.0		3.Cell w				
-7-9	0	254.		the corre	ect ma	0	
				ng pairs			ET 2015)
(1) Golgi apparatus, p	5		1. Roug	gh ER-Ox	kidatio	n of fatt	y acids
	ormation of glycolipids ic reticulum, protein synthesis		2. Smoo	oth ER-O	xidati	on of ph	ospholipids
() U	ic reticulum, formation of		3. Smoo	oth ER-S	ynthes	is of lipi	ids
glycoproteins	le rededitum, formation of		4. Roug	h ER- Sy	nthesi	s of glyc	cogen
249. The Golgi comple	y nlave a major role	255.	-				is not an
24). The Goigreompic	[NEET - 2013]					-	karyotes?
(1) in digesting protein	ins and carbohydrates		(NEET	•	lounu	in pror	ui y 00051
(2) as energy transfer				2013)			
			_				227
	(JR BC	DTANY	\mathbf{M}				
			- /				

	1. Polysome	2. Phosphate granule	a	Thylak	oids	i	Disc-	shaped sacs in
	3. Cyanophycean granul	e4. Glycogen granule					Golgi	apparatus
256.	Nuclear envelope is a	derivative of	b	Cristae		ï	Cond	ensed structure
	(NEET 2015)						ofDN	JA
	1. Rough endoplasmic re	ticulum	C	Cistern	ae	ü	Flat n	nembranous
	2. Smooth endoplasmic r	eticulum					scas i	n stroma
	3. Membrane of Golgi co	omplex	d	Chroma	atin	iv		ings in
	4. Microtubules						mitoc	hondria
257.	DNA is not present in	(NEET 2015)			а	b	c	d
	1. Mitochondria	2. Chloroplast		1.	ü	iv	ï	i
	3.Ribosomes	4. Nucleus		2.	ĪV	m	i	1
258.	Which of the following	structures is not		3.	iii	iv	i	1
	found in prokaryotic co			4.	Ш́	i	iv	i
		(NEET 2015 Re)	264.		0		•	EET 2015 Re)
	1. Plasma membrane	2. Nuclear envelope			and pro	-	thesis	
	3.Ribosome	4.Mesosome		_	l synthes			
259.	Which of the following				eotide sy			
	bound?	(NEET 2015 Re)	265		sacchario			
	1. Mesosomes	2. Vacuoles	265.	Mitoc	hondria		-	
	3.Ribosomes	4. Lysosomes		1) 0	. ,			T PHASE I)
260.	Cellualr organelles wit			· · ·	i-autono		-	
		(NEET 2015 Re)			ned by di		-	-
	1. Lysosomes, Golgi app	baratus and		-	synthesiz	-		A but lack
	mitochondria			-	-	-	-	
	2. Nuclei, ribosomes and			Which one of the following options is correct (1) Both(1) and (2) are correct				
	3. Chromosomes, riboso reticulum	mes and endoplasmic			s true but			
	4. Endoplasmic reticulum	n ribosomos and			s true bu			
	nuclei	n, noosonnes and		· · · ·	(1) and			
261	Cell wall is absent in	(NEET 2015 Re)	266.	/	· /	· /		uents of
201.	1. Nostoc	2. Aspergillus						T PHASE I)
	3.Funaria	4. Mycoplasma		1) Cilia	, flagella			
262.	A protoplast is a cell	(NEET 2015 Re)		2) Spin	dle fibre	s, centrio	oles and	cilia
	1. Without cell wall	()		3) Cent	rioles, sp	oindle fil	ores and	chromatin
	2. without plasma memb	rane		4) Cent	rosome,	nucleos	ome and	d centrioles
	3. without nucleus		267.	One of	the maj	jor com	ponent	ts of cell wall
	4. undergoing division				t fungi i			T PHASE I)
263.	Match the columns and	d identify the		1) Chiti	n		2) Pep	otidoglycan
	correct option	(NEET 2015 Re)		3) Cellu	ulose		4)Her	micellulose
	Column-I	Column-II						
			1					

268.	Which one of the following cell organelles	275. Which of the following pairs of organelles
	is enclosed by a single membrane ?	does not contain DNA ? (NEET 2019)
	(2016 PHASE-I)	1) Chloroplast and Vacuoles
	1) Mitochondria 2) Chloroplasts	2) Lysosomes and Vacuoles
	3) Lysosomes 4) Nuclei	3) Nuclear envelope and Mitochondria
269.	A cell organelle containing hydrolytic	4) Mitochondria and Lysosomes
	enzyme is (2016 NEET PHASE-II)	276. The concept of 'Omnis cellula –e-cellula'
	1. Ribosome 2. Mesosome	regarding cell division was first proposed
	3.Lysosome 4.Microsome	by (NEET 2019)
270.	Which of the following components	1) Theodor Schwann 2) Schleiden
	provides sticky character to the bacterial	3)Aristotle 4)Rudolf Virchow
	cell ? (NEET 2017)	277. Which of the following cell organelles is
	1) Cell wall 2) Nuclear membrane	present in the highest number in secretory
	3) Plasma membrane	cells ? (NEET 2019 - Odisha)
	4) Glycocalyx	1) Mitochondria 2) Golgi complex
271.	Which of the following cell organelles is	3) Endoplasmic reticulum 4) Lysosomes
	responsible for extracting energy from	278. Non-membranous nucleoplasmic
	carbohydrates to form ATP? (NEET 2017)	structures in nucleus are the site for active
	1) Lysosome 2) Ribosome 3)	synthesis of (NEET 2019 - Odisha)
	Chloroplast 4) Mitochondrion	1) protein synthesis 2) mRNA
272.	The Golgi complex participates in	3) rRNA 4) tRNA
	(NEET 2018)	
	1) respiration in bacteria	KEY
	2) formation of secretory vesicles	<u>MODEL TEST - I</u>
	3) fatty acid breakdown	1) 3 2) 2 3) 4 4) 1 5) 4
	4) activation of amino acid	6) 4 7) 1 8) 1 9) 1 10) 2
273.	Which of the following is true for nucleolus	<u>MODEL TEST - II</u>
	? (NEET 2018)	
	1) It takes part in spindle formation	11) 1 12) 3 13) 2 14) 4 15) 3
	2) It is a membrane – bound structure	16) 3 17) 4 18) 2 19) 3 20) 1
	3) Larger nucleoli are present in dividing cells	<u>MODEL TEST - III</u>
	4) It is a site for active ribosomal RNA	21) 2 22) 1 23) 3 24) 1 25) 4
274	synthesis The shorter and longer arms of a	26) 3 27) 1 28) 2 29) 3 30) 2
2/11	submetacentric chromosome are referred	TYPE - I
	to as (NEET 2019)	
	1) p-arm and q-arm, respectively	31) 1 32) 4 33) 1 34) 2 35) 4
	2) q-arm and p-arm, respectively	36) 3 37) 4 38) 3 39) 4 40) 2 41) 2 42) 2 42) 4 44) 2 45) 2
	3) m-arm and n-arm, respectively	41) 2 42) 3 43) 4 44) 2 45) 3 46) 2 47) 2 48) 1 49) 3 50) 1
	4) s-arm and i-arm, respectively	51)2 $52)1$ $53)1$ $54)1$ $55)3$
		56) 3 57) 2 58) 3 59) 1 60) 3

Chapter 9: Cell The Unit of Life

61) 2 62) 1 63) 2 64) 4 65) 4 62) 1 67) 1 68) 2 69) 4 70) 2 71) 2 72) 1 73) 1 74) 4 75) 4 72) 2 77) 4 78) 2 79) 1 80) 4 81) 1 82) 4 83) 3 84) 4 85) 2 86) 2 87) 3 88) 2 89) 1 90) 4 82) 4 97) 3 88) 2 89) 1 90) 4 92) 4 97) 3 98) 3 99) 4 100) 1 101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 14) 1 115) 1 111) 2 112) 3 113) 1 14) 1 15) 1 111) 2 112) 3 113) 1 14) 1 15) 1 111) 2 112) 3 113) 1 14) 1 15) 1 111) 2 112) 3 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 161) 4 162) 3 163) 2 TYPE - II 164) 1 165) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174) 4 175) 3 176) 3 177) 3 178) 4 TYPE - II 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192)2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 189)1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 201) 4 202) 2 203) 2 204) 1 201) 4 202) 2 203) 2 204) 1 201) 1 217) 1 211) 1 122) 2 123) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 188) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 201) 1 217) 1 217) 1 122) 1 222) 2 23) 1 223) 2 229) 3 240) 2 241) 4 242) 3 223) 2 229) 3 240) 2 241) 4 242) 3 223) 2 241) 2 25) 2 226) 1 277) 3 228) 2 229) 3 240) 2 241) 4 242) 3 243) 3 244) 3 245) 1 246) 5 247) 1	-	
71)2 72)1 73)1 74)4 75)4 258)2 259)3 260)1 261)4 262)1 76)2 77)4 78)2 79)1 80)4 252 266)3 270)4 271)4 262)3 264)1 265)2 266)3 270)4 271)4 272)2 86)2 87)3 88)2 89)1 90)4 268)3 269)3 270)4 271)4 272)2 96)4 97)3 98)3 99)4 100)1 10101 1012 1023 103)1 100)1 1011 1102 123)1 130)1 140)1 115)1 116)2 117)4 118)1 119)3 120)1 121)1 122)4 123)1 130)2 278)3 3 116)2 117)4 118)1 119)3 120)1 130)2 278)3 3 3 3 136)1 137)4 133)3 134)4 155)4 155)4 155)4 155)4 155)4 155)4 155)4 156)3 160)3 161)4 162)3 170)3 173)3 174)4 175)3 176)3 177)3 <td>61) 2 62) 1 63) 2 64) 4 65) 4</td> <td>248) 3 249) 3 250) 1 251) 2 252) 2</td>	61) 2 62) 1 63) 2 64) 4 65) 4	248) 3 249) 3 250) 1 251) 2 252) 2
76) 2 77) 4 78) 2 79) 1 80) 4 81) 1 82) 4 83) 3 84) 4 85) 2 86) 2 87) 3 88) 2 89) 1 90) 4 91) 4 92) 2 93) 3 94) 2 95) 2 96) 4 97) 3 98) 3 99) 4 100) 1 101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 114) 1 115) 1 126) 3 127) 2 128) 3 120) 1 278) 3 131) 1 122) 1 122) 1 225) 4 276) 4 277) 2 131) 1 122) 1 123) 1 120) 1 278) 3 276) 4 277) 2 131) 1 122) 2 123) 3 130) 2 130) 2 277) 1 278) 3 140) 3 143) 4 149 2 150) 2 151) 2 153) 3 160) 3 161) 4 162) 3 163) 2 177) 3 178) 3 183) 3 1794 170) 1 171) 2	66) 1 67) 1 68) 2 69) 4 70) 2	253) 4 254) 2 255) 1 256) 1 257) 3
76) 2 77) 4 78) 2 79) 1 80) 4 81) 1 82) 4 83) 3 84) 4 85) 2 86) 2 87) 3 88) 2 89) 1 90) 4 91) 4 92) 2 93) 3 94) 2 95) 2 96) 4 97) 3 98) 3 99) 4 100) 1 101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 114) 1 115) 1 126) 3 127) 2 128) 3 120) 1 278) 3 131) 1 122) 1 122) 1 225) 4 276) 4 277) 2 131) 1 122) 1 123) 1 120) 1 278) 3 276) 4 277) 2 131) 1 122) 2 123) 3 130) 2 130) 2 277) 1 278) 3 140) 3 143) 4 149 2 150) 2 151) 2 153) 3 160) 3 161) 4 162) 3 163) 2 177) 3 178) 3 183) 3 1794 170) 1 171) 2	71) 2 72) 1 73) 1 74) 4 75) 4	258) 2 259) 3 260) 1 261) 4 262) 1
81) 1 82) 4 83) 3 84) 4 85) 2 80) 2 87) 3 88) 2 89) 1 90) 4 91) 4 92) 2 93) 3 94) 2 95) 2 90) 4 97) 3 98) 3 99) 4 100) 1 101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 14) 1 115) 1 116) 2 117) 4 118) 1 19) 3 120) 1 121) 1 122) 4 123) 1 124) 2 125) 4 126) 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174) 4 175) 3 176) 3 177) 3 178) 4 TYPE - II 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 189)4 190) 1 191)1 192) 2 193) 1 194)2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 2 211) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 233) 3 234) 1 235) 1 236) 2 237) 2 233) 2 239) 1 231) 2 232) 3 233) 3 240) 2 241) 4 242) 3		
86) 2 87) 3 88) 2 89) 1 90) 4 91) 4 92) 2 93) 3 94) 2 95) 2 96) 4 97) 3 98) 3 99) 4 100) 1 101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107, 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 114) 1 115) 1 116) 2 117, 4 18) 1 199, 3 120) 1 121) 1 122, 4 123) 1 124, 2 125, 4 136) 1 137, 4 138, 1 199, 3 130, 2 131) 1 132, 2 133, 3 134, 4 135, 3 136) 1 137, 4 138, 1 139, 4 140, 4 141) 3 142, 2 144, 145, 3 146, 2 147, 7 188, 1 166, 4 167, 4 168, 1 160, 3 160, 3 3 161, 4 162, 3 163, 2 TYPE - II 179, 3 180, 1 181, 3 182, 1 183, 3 3 184, 3 185, 2 186, 4		
91) 4 92) 2 93) 3 94) 2 95) 2 96) 4 97) 3 98) 3 99) 4 100) 1 101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 114) 1 15) 1 116) 2 117) 4 118) 1 119) 3 120) 1 121) 1 122) 4 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174)4 175) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174)4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194)2 195) 4 196) 1 197) 1 TYPE - V 189)1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 3 206) 2 207, 2 203) 2 204) 1 205) 2 201) 221) 1 222, 3 223) 1 224) 1 225) 2 226) 1 227, 3 223) 1 224) 1 225) 2 226) 1 227, 3 223) 1 224) 1 225) 2 226) 1 227, 3 223) 2 239) 3 240) 2 241) 4 242) 3		
96) 4 97) 3 98) 3 99) 4 100) 1 101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 114) 1 115) 1 116) 2 117) 4 118) 1 119) 3 120) 1 121) 1 122) 4 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 1744 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189) 4 190) 1 191) 1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 223) 1 224) 1 225) 2 226) 1 227) 3 223) 2 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 233) 233) 1 234) 1 231) 2 232) 3 233) 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
101) 2 102) 3 103) 3 104) 1 105) 3 106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 114) 1 115) 1 116) 2 117) 4 118) 1 1193 3 120) 1 121) 1 122) 4 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174)4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 189)1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 126) 1 277) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 2 234) 1 225) 1 236) 2 277) 3 223) 2 243) 1 225) 1 231) 2 237) 2 233) 2 334) 1 235) 1 236) 2 277) 3 233) 2 334) 1 235) 1 236) 2 237) 2 233) 2 334) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 34) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 233) 2 239) 2 240) 2 241) 4 242) 3		278) 3
106) 1 107) 4 108) 3 109) 2 110) 1 111) 2 112) 3 113) 1 114) 1 115) 1 116) 2 117) 4 118) 1 119) 3 120) 1 121) 1 122) 4 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174)4 175) 3 176) 3 177) 3 178) 4 TYPE - II 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194)2 195) 4 196) 1 197) 1 TYPE - V 189)1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 223) 2 234) 1 235) 1 236) 2 237) 2 233) 2 334) 1 235) 1 236) 2 237) 2 233) 2 334) 1 235) 1 236) 2 237) 2 233) 2 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
$\begin{array}{c} 11112 & 1123 & 1131 & 1 & 1119 & 1 & 1151 & 1\\ 1160 & 2 & 1177 & 4 & 1189 & 1 & 1199 & 3 & 1200 & 1\\ 1211 & 1222 & 4 & 1233 & 1 & 1249 & 2 & 1255 & 4\\ 1263 & 1272 & 1283 & 3 & 1293 & 1300 & 2\\ 1311 & 1322 & 1333 & 1349 & 4 & 1355 & 3\\ 1361 & 1377 & 4 & 1382 & 2 & 1399 & 4 & 400 & 4\\ 1413 & 3 & 1422 & 4 & 1432 & 2 & 14491 & 1 & 455 & 3\\ 1460 & 2 & 1477 & 3 & 1489 & 4 & 1499 & 2 & 1500 & 2\\ 1512 & 1523 & 3 & 1534 & 1 & 1559 & 4\\ 1560 & 4 & 1577 & 1 & 1588 & 1 & 1559 & 3 & 1600 & 3\\ 1614 & 1623 & 3 & 1663 & 4 & 1677 & 4 & 1688 & 1\\ 16694 & 1700 & 2 & 1771 & 2 & 1723 & 3 & 1773 & 3\\ 1744 & 1755 & 3 & 1666 & 4 & 1677 & 4 & 1688 & 1\\ 16994 & 1700 & 2 & 1771 & 2 & 1723 & 3 & 1773 & 3\\ 1744 & 1755 & 3 & 1760 & 3 & 1777 & 3 & 1788 & 4\\ \hline \\ \hline \\ \mathbf{TYPE - III \\ 1799 & 3 & 1800 & 1 & 1811 & 3 & 1822 & 1 & 1833 & 3\\ 1843 & 3 & 1857 & 2 & 1860 & 4 & 1877 & 1 & 1888 & 3\\ \hline \\ \hline \\ \mathbf{TYPE - IV \\ 18991 & 1900 & 1 & 19171 & 1922 & 2 & 1933 & 1\\ 19491 & 2 & 1951 & 4 & 1966 & 1 & 1977 & 1\\ \hline \\ \hline \\ \hline \\ \mathbf{TYPE - V \\ 1988 & 1 & 1993 & 2000 & 4 & 2001 & 4 & 2002 & 2\\ 2038 & 2 & 2001 & 1 & 2011 & 4 & 2021 & 2\\ 2038 & 2 & 2001 & 1 & 2011 & 4 & 2022 & 3\\ 2088 & 3 & 2009 & 2 & 1001 & 4 & 2012 & 4\\ 2134 & 2 & 1491 & 1 & 2153 & 3 & 2166 & 1 & 21771 & 2\\ 2188 & 1 & 2199 & 1 & 2200 & 1 & 2211 & 1 & 2223 & 3\\ 2231 & 22441 & 1 & 2255 & 2 & 2661 & 22773 & 3\\ 2288 & 2 & 2293 & 3 & 2001 & 2 & 2110 & 2 & 223 & 3\\ 2338 & 2 & 3391 & 2 & 331) & 2 & 332 & 3 & 2\\ 2389 & 2 & 2393 & 3 & 2400 & 2 & 2414 & 4 & 242 & 3 \\ \hline \end{aligned}$	101) 2 102) 3 103) 3 104) 1 105) 3	
116) 2 117) 4 118) 1 119) 3 120) 1 121) 1 122) 4 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 163) 2 TYPE - II 164) 1 165) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174)4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 216) 2 217) 3 213) 3 209 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 2 230) 1 231) 2 232 3 223) 1 224) 1 225) 2 266) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 238) 2 239) 3 240) 2 241) 4 242) 3	106) 1 107) 4 108) 3 109) 2 110) 1	
116) 2 117) 4 118) 1 119) 3 120) 1 121) 1 122) 4 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 163) 2 TYPE - II 164) 1 165) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174)4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 206) 2 207) 2 203) 2 204) 1 205) 3 216) 2 217) 3 213) 3 209 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 2 230) 1 231) 2 232 3 223) 1 224) 1 225) 2 266) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 233) 2 234) 1 225) 1 236) 2 277) 2 238) 2 239) 3 240) 2 241) 4 242) 3	111) 2 112) 3 113) 1 114) 1 115) 1	
121) 1 122) 4 123) 1 124) 2 125) 4 126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 163) 2 TYPE - II 164) 1 165) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174)4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 189)1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 29) 1 220) 1 221) 1 222) 3 223) 2 241) 1 220) 1 221) 1 222) 3 223) 2 241) 1 225) 2 260 1 227) 3 223) 2 241) 1 225) 2 260 1 227) 3 223) 2 241) 1 225) 2 260 1 227) 3 223) 2 241) 1 225) 1 230 2 237) 2 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
126) 3 127) 2 128) 3 129) 3 130) 2 131) 1 132) 2 133) 3 134) 4 135) 3 136) 1 137) 4 138) 2 139) 4 140) 4 141) 3 142) 4 143) 2 144) 1 145) 3 146) 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174) 4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 29) 1 220) 1 221) 1 222) 3 223) 2 241) 2 25) 2 260 1 227) 3 223) 2 241) 2 25) 2 260 1 227) 3 223) 2 241) 2 25) 2 260 1 227) 3 223) 2 241) 2 25) 2 260 1 227) 3 223) 2 241) 2 25) 2 260 1 227) 3 223) 2 241) 2 25) 2 260 1 227) 3 2233) 2 241) 2 25) 2 260 1 227) 3 2233) 2 241) 2 25) 1 230) 2 277 2 238) 2 239) 3 240) 2 241) 4 242) 3		
$\begin{array}{c} 131) 1 \ 132) 2 \ 133) 3 \ 134) 4 \ 135) 3 \\ 136) 1 \ 137) 4 \ 138) 2 \ 139) 4 \ 140) 4 \\ 141) 3 \ 142) 4 \ 143) 2 \ 144) 1 \ 145) 3 \\ 146) 2 \ 147) 3 \ 148) 4 \ 149) 2 \ 150) 2 \\ 151) 2 \ 152) 3 \ 153) 3 \ 154) 1 \ 155) 4 \\ 156) 4 \ 157) 1 \ 158) 1 \ 159) 3 \ 160) 3 \\ 161) 4 \ 162) 3 \ 163) 2 \\ \hline {\bf TYPE - II} \\ 164) 1 \ 165) 3 \ 166) 4 \ 167) 4 \ 168) 1 \\ 169) 4 \ 170) 2 \ 171) 2 \ 172) 3 \ 173) 3 \\ 174) 4 \ 175) 3 \ 176) 3 \ 177) 3 \ 178) 4 \\ \hline {\bf TYPE - III} \\ 179) 3 \ 180) 1 \ 181) 3 \ 182) 1 \ 183) 3 \\ 184) 3 \ 185) 2 \ 186) 4 \ 187) 1 \ 188) 3 \\ \hline {\bf TYPE - IV} \\ 189) 4 \ 190) 1 \ 191)1 \ 192) 2 \ 193) 1 \\ 194) 2 \ 195) 4 \ 196) 1 \ 197) 1 \\ \hline {\bf TYPE - V} \\ 189) 4 \ 190) 1 \ 191)1 \ 192) 2 \ 193) 1 \\ 194) 2 \ 195) 4 \ 196) 1 \ 197) 1 \\ \hline {\bf TYPE - V} \\ 198) 1 \ 199) 3 \ 200) 4 \ 201) 4 \ 202) 2 \\ 203) 2 \ 204) 1 \ 205) 3 \ 206) 2 \ 207) 2 \\ 208) 3 \ 209) 2 \ 210) 1 \ 211) 1 \ 212) 4 \\ 213) 4 \ 214) 1 \ 215) 3 \ 216) 1 \ 217) 1 \\ 218) 1 \ 229) 1 \ 220) 1 \ 221) 1 \ 222) 3 \\ 223) 1 \ 224) 1 \ 225) 2 \ 226) 1 \ 227) 3 \\ 223) 2 \ 229) 3 \ 230) 1 \ 231) 2 \ 232) 3 \\ 233) 3 \ 234) 1 \ 235) 1 \ 236) 2 \ 237) 2 \\ 238) 2 \ 239) 3 \ 240) 2 \ 241) 4 \ 242) 3 \\ \end{array}$		
$\begin{array}{c} 136) 1 \ 137) 4 \ 138) 2 \ 139) 4 \ 140) 4 \\ 141) 3 \ 142) 4 \ 143) 2 \ 144) 1 \ 145) 3 \\ 146) 2 \ 147) 3 \ 148) 4 \ 149) 2 \ 150) 2 \\ 151) 2 \ 152) 3 \ 153) 3 \ 154) 1 \ 155) 4 \\ 156) 4 \ 157) 1 \ 158) 1 \ 159) 3 \ 160) 3 \\ 161) 4 \ 162) 3 \ 163) 2 \\ \hline {\bf TYPE - II} \\ 164) 1 \ 165) 3 \ 166) 4 \ 167) 4 \ 168) 1 \\ 169) 4 \ 170) 2 \ 171) 2 \ 172) 3 \ 173) 3 \\ 174) 4 \ 175) 3 \ 176) 3 \ 177) 3 \ 178) 4 \\ \hline {\bf TYPE - III} \\ 179) 3 \ 180) 1 \ 181) 3 \ 182) 1 \ 183) 3 \\ 184) 3 \ 185) 2 \ 186) 4 \ 187) 1 \ 188) 3 \\ \hline {\bf TYPE - IV} \\ 189) 4 \ 190) 1 \ 191)1 \ 192) 2 \ 193) 1 \\ 194) 2 \ 195) 4 \ 196) 1 \ 197) 1 \\ \hline {\bf TYPE - V} \\ 189) 1 \ 199) 3 \ 200) 4 \ 201) 4 \ 202) 2 \\ 203) 2 \ 204) 1 \ 205) 3 \ 206) 2 \ 207) 2 \\ 208) 3 \ 209) 2 \ 210) 1 \ 211) 1 \ 212) 4 \\ 213) 4 \ 214) 1 \ 215) 3 \ 216) 1 \ 217) 1 \\ \hline {\bf 218} 1 \ 129) 1 \ 220) 1 \ 221) 1 \ 222) 3 \\ 223) 1 \ 224) 1 \ 225) 2 \ 226) 1 \ 227) 3 \\ 228) 2 \ 229) 3 \ 230) 1 \ 231) 2 \ 237) 2 \\ 238) 2 \ 239) 3 \ 240) 2 \ 241) 4 \ 242) 3 \\ \end{array}$		
141) $3 142) 4 143) 2 144) 1 145) 3$ 146) 2 147) $3 148) 4 149) 2 150) 2$ 151) 2 152) $3 153) 3 154) 1 155) 4$ 156) $4 157) 1 158) 1 159) 3 160) 3$ 161) $4 162) 3 163) 2$ TYPE - II 164) 1 165) 3 166) $4 167) 4 168) 1$ 169) $4 170) 2 171) 2 172) 3 173) 3$ 174) $4 175) 3 176) 3 177) 3 178) 4$ TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189) 4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
140 2 147) 3 148) 4 149) 2 150) 2 151) 2 152) 3 153) 3 154) 1 155) 4 156) 4 157) 1 158) 1 159) 3 160) 3 161) 4 162) 3 163) 2 TYPE - II 164) 1 165) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174) 4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 223) 1 224) 1 225) 2 226) 1 227) 3 223) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	136) 1 137) 4 138) 2 139) 4 140) 4	
$\begin{array}{c} 151) 2 & 152) 3 & 153) 3 & 154) 1 & 155) 4 \\ 156) 4 & 157) 1 & 158) 1 & 159) 3 & 160) 3 \\ 161) 4 & 162) 3 & 163) 2 \\ \hline \\ \textbf{TYPE - II} \\ 164) 1 & 165) 3 & 166) 4 & 167) 4 & 168) 1 \\ 169) 4 & 170) 2 & 171) 2 & 172) 3 & 173) 3 \\ 174) 4 & 175) 3 & 176) 3 & 177) 3 & 178) 4 \\ \hline \\ \textbf{TYPE - III} \\ 179) 3 & 180) 1 & 181) 3 & 182) 1 & 183) 3 \\ 184) 3 & 185) 2 & 186) 4 & 187) 1 & 188) 3 \\ \hline \\ \textbf{TYPE - IV} \\ 189) 4 & 190) 1 & 191)1 & 192) 2 & 193) 1 \\ 194) 2 & 195) 4 & 196) 1 & 197) 1 \\ \hline \\ \textbf{TYPE - V} \\ 198) 1 & 199) 3 & 200) 4 & 201) 4 & 202) 2 \\ 203) 2 & 204) 1 & 205) 3 & 206) 2 & 207) 2 \\ 208) 3 & 209) 2 & 210) 1 & 211) 1 & 212) 4 \\ 213) 4 & 214) 1 & 215) 3 & 216) 1 & 217) 1 \\ 218) 1 & 219) 1 & 220) 1 & 221) 1 & 222) 3 \\ 223) 1 & 224) 1 & 225) 2 & 226) 1 & 227) 3 \\ 228) 2 & 229) 3 & 230) 1 & 231) 2 & 232) 3 \\ 233) 3 & 234) 1 & 235) 1 & 236) 2 & 237) 2 \\ 238) 2 & 239) 3 & 240) 2 & 241) 4 & 242) 3 \\ \end{array}$	141) 3 142) 4 143) 2 144) 1 145) 3	
$\begin{array}{c} 151) 2 & 152) 3 & 153) 3 & 154) 1 & 155) 4 \\ 156) 4 & 157) 1 & 158) 1 & 159) 3 & 160) 3 \\ 161) 4 & 162) 3 & 163) 2 \\ \hline \\ \textbf{TYPE - II} \\ 164) 1 & 165) 3 & 166) 4 & 167) 4 & 168) 1 \\ 169) 4 & 170) 2 & 171) 2 & 172) 3 & 173) 3 \\ 174) 4 & 175) 3 & 176) 3 & 177) 3 & 178) 4 \\ \hline \\ \textbf{TYPE - III} \\ 179) 3 & 180) 1 & 181) 3 & 182) 1 & 183) 3 \\ 184) 3 & 185) 2 & 186) 4 & 187) 1 & 188) 3 \\ \hline \\ \textbf{TYPE - IV} \\ 189) 4 & 190) 1 & 191)1 & 192) 2 & 193) 1 \\ 194) 2 & 195) 4 & 196) 1 & 197) 1 \\ \hline \\ \textbf{TYPE - V} \\ 198) 1 & 199) 3 & 200) 4 & 201) 4 & 202) 2 \\ 203) 2 & 204) 1 & 205) 3 & 206) 2 & 207) 2 \\ 208) 3 & 209) 2 & 210) 1 & 211) 1 & 212) 4 \\ 213) 4 & 214) 1 & 215) 3 & 216) 1 & 217) 1 \\ 218) 1 & 219) 1 & 220) 1 & 221) 1 & 222) 3 \\ 223) 1 & 224) 1 & 225) 2 & 226) 1 & 227) 3 \\ 228) 2 & 229) 3 & 230) 1 & 231) 2 & 232) 3 \\ 233) 3 & 234) 1 & 235) 1 & 236) 2 & 237) 2 \\ 238) 2 & 239) 3 & 240) 2 & 241) 4 & 242) 3 \\ \end{array}$	146) 2 147) 3 148) 4 149) 2 150) 2	
156) 4 157) 1 158) 1 159) 3 160) 3 $161) 4 162) 3 163) 2$ $TYPE - II$ $164) 1 165) 3 166) 4 167) 4 168) 1$ $169) 4 170) 2 171) 2 172) 3 173) 3$ $174) 4 175) 3 176) 3 177) 3 178) 4$ $TYPE - III$ $179) 3 180) 1 181) 3 182) 1 183) 3$ $184) 3 185) 2 186) 4 187) 1 188) 3$ $TYPE - IV$ $189)4 190) 1 191)1 192) 2 193) 1$ $194) 2 195) 4 196) 1 197) 1$ $TYPE - V$ $198) 1 199) 3 200) 4 201) 4 202) 2$ $203) 2 204) 1 205) 3 206) 2 207) 2$ $208) 3 209) 2 210) 1 211) 1 212) 4$ $213) 4 214) 1 215) 3 216) 1 217) 1$ $1218) 1 219) 1 222) 1 222) 3$ $223) 1 224) 1 225) 2 226) 1 227) 3$ $223) 1 224) 1 225) 2 226) 1 227) 3$ $223) 1 224) 1 235) 1 236) 2 237) 2$ $238) 2 239) 3 240) 2 241) 4 242) 3$		
161) 4 162) 3 163) 2 $TYPE - II$ $164) 1 165) 3 166) 4 167) 4 168) 1$ $169) 4 170) 2 171) 2 172) 3 173) 3$ $174) 4 175) 3 176) 3 177) 3 178) 4$ $TYPE - III$ $179) 3 180) 1 181) 3 182) 1 183) 3$ $184) 3 185) 2 186) 4 187) 1 188) 3$ $TYPE - IV$ $189) 4 190) 1 191) 1 192) 2 193) 1$ $194) 2 195) 4 196) 1 197) 1$ $TYPE - V$ $198) 1 199) 3 200) 4 201) 4 202) 2$ $203) 2 204) 1 205) 3 206) 2 207) 2$ $208) 3 209) 2 210) 1 211) 1 212) 4$ $213) 4 214) 1 215) 3 216) 1 217) 1$ $218) 1 219) 1 220) 1 221) 1 222) 3$ $223) 1 224) 1 225) 2 226 1 127) 1$ $218) 1 219) 1 220) 1 221) 1 222) 3$ $223) 1 224) 1 225) 2 226 1 227) 3$ $228) 2 229) 3 230) 1 231) 2 232 3$ $233) 3 234) 1 235) 1 236) 2 237) 2$ $238) 2 239) 3 240) 2 241) 4 242 3$		
TYPE - II 164) 1 165) 3 166) 4 167) 4 168) 1 169) 4 170) 2 171) 2 172) 3 173) 3 174) 4 175) 3 176) 3 177) 3 178) 4 TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189) 4 190) 1 191) 1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2		
$\begin{array}{c} 164) 1 \ 165) 3 \ 166) 4 \ 167) 4 \ 168) 1 \\ 169) 4 \ 170) 2 \ 171) 2 \ 172) 3 \ 173) 3 \\ 174) 4 \ 175) 3 \ 176) 3 \ 177) 3 \ 178) 4 \\ \hline \textbf{TYPE - III} \\ 179) 3 \ 180) 1 \ 181) 3 \ 182) 1 \ 183) 3 \\ 184) 3 \ 185) 2 \ 186) 4 \ 187) 1 \ 188) 3 \\ \hline \textbf{TYPE - IV} \\ 189) 4 \ 190) 1 \ 191) 1 \ 192) 2 \ 193) 1 \\ 194) 2 \ 195) 4 \ 196) 1 \ 197) 1 \\ \hline \textbf{TYPE - V} \\ 198) 1 \ 199) 3 \ 200) 4 \ 201) 4 \ 202) 2 \\ 203) 2 \ 204) 1 \ 205) 3 \ 206) 2 \ 207) 2 \\ 208) 3 \ 209) 2 \ 210) 1 \ 211) 1 \ 212) 4 \\ 213) 4 \ 214) 1 \ 215) 3 \ 216) 1 \ 217) 1 \\ 218) 1 \ 219) 1 \ 220) 1 \ 221) 1 \ 222) 3 \\ 223) 1 \ 224) 1 \ 225) 2 \ 226) 1 \ 227) 3 \\ 228) 2 \ 229) 3 \ 230) 1 \ 231) 2 \ 232) 3 \\ 233) 3 \ 234) 1 \ 235) 1 \ 236) 2 \ 237) 2 \\ 238) 2 \ 239) 3 \ 240) 2 \ 241) 4 \ 242) 3 \end{array}$	101) 4 102) 5 103) 2	
$\begin{array}{c} 164) 1 \ 165) 3 \ 166) 4 \ 167) 4 \ 168) 1 \\ 169) 4 \ 170) 2 \ 171) 2 \ 172) 3 \ 173) 3 \\ 174) 4 \ 175) 3 \ 176) 3 \ 177) 3 \ 178) 4 \\ \hline \textbf{TYPE - III} \\ 179) 3 \ 180) 1 \ 181) 3 \ 182) 1 \ 183) 3 \\ 184) 3 \ 185) 2 \ 186) 4 \ 187) 1 \ 188) 3 \\ \hline \textbf{TYPE - IV} \\ 189) 4 \ 190) 1 \ 191) 1 \ 192) 2 \ 193) 1 \\ 194) 2 \ 195) 4 \ 196) 1 \ 197) 1 \\ \hline \textbf{TYPE - V} \\ 198) 1 \ 199) 3 \ 200) 4 \ 201) 4 \ 202) 2 \\ 203) 2 \ 204) 1 \ 205) 3 \ 206) 2 \ 207) 2 \\ 208) 3 \ 209) 2 \ 210) 1 \ 211) 1 \ 212) 4 \\ 213) 4 \ 214) 1 \ 215) 3 \ 216) 1 \ 217) 1 \\ 218) 1 \ 219) 1 \ 220) 1 \ 221) 1 \ 222) 3 \\ 223) 1 \ 224) 1 \ 225) 2 \ 226) 1 \ 227) 3 \\ 228) 2 \ 229) 3 \ 230) 1 \ 231) 2 \ 232) 3 \\ 233) 3 \ 234) 1 \ 235) 1 \ 236) 2 \ 237) 2 \\ 238) 2 \ 239) 3 \ 240) 2 \ 241) 4 \ 242) 3 \end{array}$		
$\begin{array}{c} 169) 4 & 170) 2 & 171) 2 & 172) 3 & 173) 3 \\ 174)4 & 175) 3 & 176) 3 & 177) 3 & 178) 4 \\ \hline \textbf{TYPE - III} \\ 179) 3 & 180) 1 & 181) 3 & 182) 1 & 183) 3 \\ 184) 3 & 185) 2 & 186) 4 & 187) 1 & 188) 3 \\ \hline \textbf{TYPE - IV} \\ 189)4 & 190) 1 & 191)1 & 192) 2 & 193) 1 \\ 194) 2 & 195) 4 & 196) 1 & 197) 1 \\ \hline \textbf{TYPE - V} \\ 198) 1 & 199) 3 & 200) 4 & 201) 4 & 202) 2 \\ 203) 2 & 204) 1 & 205) 3 & 206) 2 & 207) 2 \\ 208) 3 & 209) 2 & 210) 1 & 211) 1 & 212) 4 \\ 213) 4 & 214) 1 & 215) 3 & 216) 1 & 217) 1 \\ 218) 1 & 219) 1 & 220) 1 & 221) 1 & 222) 3 \\ 223) 1 & 224) 1 & 225) 2 & 226) 1 & 227) 3 \\ 228) 2 & 229) 3 & 230) 1 & 231) 2 & 232) 3 \\ 233) 3 & 234) 1 & 235) 1 & 236) 2 & 237) 2 \\ 238) 2 & 239) 3 & 240) 2 & 241) 4 & 242) 3 \\ \end{array}$	TYPE - II	
$\begin{array}{c} 169) 4 & 170) 2 & 171) 2 & 172) 3 & 173) 3 \\ 174)4 & 175) 3 & 176) 3 & 177) 3 & 178) 4 \\ \hline \textbf{TYPE - III} \\ 179) 3 & 180) 1 & 181) 3 & 182) 1 & 183) 3 \\ 184) 3 & 185) 2 & 186) 4 & 187) 1 & 188) 3 \\ \hline \textbf{TYPE - IV} \\ 189)4 & 190) 1 & 191)1 & 192) 2 & 193) 1 \\ 194) 2 & 195) 4 & 196) 1 & 197) 1 \\ \hline \textbf{TYPE - V} \\ 198) 1 & 199) 3 & 200) 4 & 201) 4 & 202) 2 \\ 203) 2 & 204) 1 & 205) 3 & 206) 2 & 207) 2 \\ 208) 3 & 209) 2 & 210) 1 & 211) 1 & 212) 4 \\ 213) 4 & 214) 1 & 215) 3 & 216) 1 & 217) 1 \\ 218) 1 & 219) 1 & 220) 1 & 221) 1 & 222) 3 \\ 223) 1 & 224) 1 & 225) 2 & 226) 1 & 227) 3 \\ 228) 2 & 229) 3 & 230) 1 & 231) 2 & 232) 3 \\ 233) 3 & 234) 1 & 235) 1 & 236) 2 & 237) 2 \\ 238) 2 & 239) 3 & 240) 2 & 241) 4 & 242) 3 \\ \end{array}$	164) 1 165) 3 166) 4 167) 4 168) 1	
$\begin{array}{c} 174)4 & 175)3 & 176)3 & 177)3 & 178)4 \\ \hline \textbf{TYPE - III} \\ 179)3 & 180)1 & 181)3 & 182)1 & 183)3 \\ 184)3 & 185)2 & 186)4 & 187)1 & 188)3 \\ \hline \textbf{TYPE - IV} \\ 189)4 & 190)1 & 191)1 & 192)2 & 193)1 \\ 194)2 & 195)4 & 196)1 & 197)1 \\ \hline \textbf{TYPE - V} \\ 198)1 & 199)3 & 200)4 & 201)4 & 202)2 \\ 203)2 & 204)1 & 205)3 & 206)2 & 207)2 \\ 208)3 & 209)2 & 210)1 & 211)1 & 212)4 \\ 213)4 & 214)1 & 215)3 & 216)1 & 217)1 \\ 218)1 & 219)1 & 220)1 & 221)1 & 222)3 \\ 223)1 & 224)1 & 225)2 & 226)1 & 227)3 \\ 228)2 & 229)3 & 230)1 & 231)2 & 232)3 \\ 233)3 & 234)1 & 235)1 & 236)2 & 237)2 \\ 238)2 & 239)3 & 240)2 & 241)4 & 242)3 \\ \end{array}$		
TYPE - III 179) 3 180) 1 181) 3 182) 1 183) 3 184) 3 185) 2 186) 4 187) 1 188) 3 TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
$\begin{array}{c} 179) \ 3 \ 180) \ 1 \ 181) \ 3 \ 182) \ 1 \ 183) \ 3 \\ 184) \ 3 \ 185) \ 2 \ 186) \ 4 \ 187) \ 1 \ 188) \ 3 \\ \hline \mathbf{TYPE - IV} \\ 189) \ 4 \ 190) \ 1 \ 191) \ 1 \ 192) \ 2 \ 193) \ 1 \\ 194) \ 2 \ 195) \ 4 \ 196) \ 1 \ 197) \ 1 \\ \hline \mathbf{TYPE - V} \\ 198) \ 1 \ 199) \ 3 \ 200) \ 4 \ 201) \ 4 \ 202) \ 2 \\ 203) \ 2 \ 204) \ 1 \ 205) \ 3 \ 206) \ 2 \ 207) \ 2 \\ 208) \ 3 \ 209) \ 2 \ 210) \ 1 \ 211) \ 1 \ 212) \ 4 \\ 213) \ 4 \ 214) \ 1 \ 215) \ 3 \ 216) \ 1 \ 217) \ 1 \\ 218) \ 1 \ 219) \ 1 \ 220) \ 1 \ 221) \ 1 \ 222) \ 3 \\ 228) \ 2 \ 229) \ 3 \ 230) \ 1 \ 231) \ 2 \ 232) \ 3 \\ 233) \ 3 \ 234) \ 1 \ 235) \ 1 \ 236) \ 2 \ 237) \ 2 \\ 238) \ 2 \ 239) \ 3 \ 240) \ 2 \ 241) \ 4 \ 242) \ 3 \end{array}$	1,1,1,1,1,0,0,1,0,0,1,1,0,1	
$\begin{array}{c} 179) \ 3 \ 180) \ 1 \ 181) \ 3 \ 182) \ 1 \ 183) \ 3 \\ 184) \ 3 \ 185) \ 2 \ 186) \ 4 \ 187) \ 1 \ 188) \ 3 \\ \hline \mathbf{TYPE - IV} \\ 189) \ 4 \ 190) \ 1 \ 191) \ 1 \ 192) \ 2 \ 193) \ 1 \\ 194) \ 2 \ 195) \ 4 \ 196) \ 1 \ 197) \ 1 \\ \hline \mathbf{TYPE - V} \\ 198) \ 1 \ 199) \ 3 \ 200) \ 4 \ 201) \ 4 \ 202) \ 2 \\ 203) \ 2 \ 204) \ 1 \ 205) \ 3 \ 206) \ 2 \ 207) \ 2 \\ 208) \ 3 \ 209) \ 2 \ 210) \ 1 \ 211) \ 1 \ 212) \ 4 \\ 213) \ 4 \ 214) \ 1 \ 215) \ 3 \ 216) \ 1 \ 217) \ 1 \\ 218) \ 1 \ 219) \ 1 \ 220) \ 1 \ 221) \ 1 \ 222) \ 3 \\ 228) \ 2 \ 229) \ 3 \ 230) \ 1 \ 231) \ 2 \ 232) \ 3 \\ 233) \ 3 \ 234) \ 1 \ 235) \ 1 \ 236) \ 2 \ 237) \ 2 \\ 238) \ 2 \ 239) \ 3 \ 240) \ 2 \ 241) \ 4 \ 242) \ 3 \end{array}$	TVPF _ III	
$\begin{array}{c} 184) 3 \ 185) 2 \ 186) \ 4 \ 187) 1 \ 188) 3 \\ \hline \mathbf{TYPE - IV} \\ 189) 4 \ 190) 1 \ 191) 1 \ 192) 2 \ 193) 1 \\ 194) 2 \ 195) 4 \ 196) 1 \ 197) 1 \\ \hline \mathbf{TYPE - V} \\ 198) 1 \ 199) 3 \ 200) 4 \ 201) 4 \ 202) 2 \\ 203) 2 \ 204) 1 \ 205) 3 \ 206) 2 \ 207) 2 \\ 208) 3 \ 209) 2 \ 210) 1 \ 211) 1 \ 212) 4 \\ 213) 4 \ 214) 1 \ 215) 3 \ 216) 1 \ 217) 1 \\ 218) 1 \ 219) 1 \ 220) 1 \ 221) 1 \ 222) 3 \\ 228) 2 \ 229) 3 \ 230) 1 \ 231) 2 \ 232) 3 \\ 233) 3 \ 234) 1 \ 235) 1 \ 236) 2 \ 237) 2 \\ 238) 2 \ 239) 3 \ 240) 2 \ 241) 4 \ 242) 3 \end{array}$		
TYPE - IV 189)4 190) 1 191)1 192) 2 193) 1 194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
$\begin{array}{c} 189)4 & 190)1 & 191)1 & 192)2 & 193)1\\ 194)2 & 195)4 & 196)1 & 197)1 \end{array}$ $\begin{array}{c} \textbf{TYPE - V}\\ 198)1 & 199)3 & 200)4 & 201)4 & 202)2\\ 203)2 & 204)1 & 205)3 & 206)2 & 207)2\\ 208)3 & 209)2 & 210)1 & 211)1 & 212)4\\ 213)4 & 214)1 & 215)3 & 216)1 & 217)1\\ 218)1 & 219)1 & 220)1 & 221)1 & 222)3\\ 223)1 & 224)1 & 225)2 & 226)1 & 227)3\\ 228)2 & 229)3 & 230)1 & 231)2 & 232)3\\ 233)3 & 234)1 & 235)1 & 236)2 & 237)2\\ 238)2 & 239)3 & 240)2 & 241)4 & 242)3 \end{array}$	184) 3 185) 2 186) 4 187) 1 188) 3	
$\begin{array}{c} 189)4 & 190)1 & 191)1 & 192)2 & 193)1\\ 194)2 & 195)4 & 196)1 & 197)1 \end{array}$ $\begin{array}{c} \textbf{TYPE - V}\\ 198)1 & 199)3 & 200)4 & 201)4 & 202)2\\ 203)2 & 204)1 & 205)3 & 206)2 & 207)2\\ 208)3 & 209)2 & 210)1 & 211)1 & 212)4\\ 213)4 & 214)1 & 215)3 & 216)1 & 217)1\\ 218)1 & 219)1 & 220)1 & 221)1 & 222)3\\ 223)1 & 224)1 & 225)2 & 226)1 & 227)3\\ 228)2 & 229)3 & 230)1 & 231)2 & 232)3\\ 233)3 & 234)1 & 235)1 & 236)2 & 237)2\\ 238)2 & 239)3 & 240)2 & 241)4 & 242)3 \end{array}$		
194) 2 195) 4 196) 1 197) 1 TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	TYPE - IV	
TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	189)4 190) 1 191)1 192) 2 193) 1	
TYPE - V 198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	194) 2 195) 4 196) 1 197) 1	
198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	, , , , ,	
198) 1 199) 3 200) 4 201) 4 202) 2 203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	TYPE - V	
203) 2 204) 1 205) 3 206) 2 207) 2 208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
208) 3 209) 2 210) 1 211) 1 212) 4 213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
213) 4 214) 1 215) 3 216) 1 217) 1 218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
218) 1 219) 1 220) 1 221) 1 222) 3 223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
223) 1 224) 1 225) 2 226) 1 227) 3 228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3		
228) 2 229) 3 230) 1 231) 2 232) 3 233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	218) 1 219) 1 220) 1 221) 1 222) 3	
233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	223) 1 224) 1 225) 2 226) 1 227) 3	
233) 3 234) 1 235) 1 236) 2 237) 2 238) 2 239) 3 240) 2 241) 4 242) 3	228) 2 229) 3 230) 1 231) 2 232) 3	
238) 2 239) 3 240) 2 241) 4 242) 3		
	210/0 211/0 210/0 21//1	

- Living organisms present on earth exhibit a great diversity in habit, habitat, life span, mode of nutrition and mode of reproduction etc...
- The chemical analysis of a plant tissue, an animal tissue, microbial paste(living matter) and a piece of earth's crust (non-living matter) describes that – all living and non living systems are made up of same chemicals i.e., elements (Carbon, hydrogen, oxygen and several other elements)
- The close examination of this chemical analysis indicates the relative abundance of carbon and hydrogen with respect to other elements is higher in living organisms than in earth's crust

Element	% weight of the element in	% weight of the element
in		
	earth's crust	Human body
Hydrogen (H)	0.14	0.5
Carbon (C)	0.03	18.5
Oxygen (O)	46.6	65.0
Nitrogen (N)	Very little	3.3
Sulphur(S)	0.03	0.3
Sodium (Na)	2.8	0.2
Calcium (Ca)	3.6	1.5
Magnesium (M	(g) 2.1	0.1
Silicon (Si)	27.7	Negligible
	I I C 1	· · · · ·

- The ascending order of elements according to their % weight in earth's crust
 N → C/S → H → Mg → Na → Ca
 - $\overrightarrow{} Si \rightarrow (0)$
- The ascending order of elements according to their % weight in Human body

- The technique that is to be followed to know about the organic compounds present in the living organisms is – Chemical analysis
- To perform the chemical analysis, any living tissue is taken and (a vegetable or a piece of Liver) grind it in – Trichloroacetic acid (Cl₃CCOOH)
- The slurry obtained after grinding, during the chemical analysis is filtered through cheese cloth or cotton (this phenomenon divides the slurry into two parts i.e., acid soluble fraction or pool (filtrate) and acid insoluble fraction (retentate)

- The acid soluble pool or fraction of this slurry of a living tissue obtained during the chemical analysis has – thousands of organic compounds
- Whenever the analytical techniques are applied to a compound, such an application gives an idea of – Molecular formula of the compound and probable structure of the compound.
- All the carbon compounds that we get from a living tissue can be called as
 Biomolecules.
- A living organism is constituted by various types of organic compounds, various types of inorganic elements and

inorganic compounds - water (Inorganic constituent)

- The ash analysis of a living tissue indicates the presence of Inorganic elements (Na⁺, K⁺, Ca⁺⁺, Mg⁺⁺ etc...) Inorganic compounds (NaCl, CaCO₃, PO₄³⁻, SO₄²⁻ etc...)
- The elemental analysis gives the elemental composition of living tissues in the form of -Carbon, Hydrogen, Oxygen, Chlorine etc...
- An idea about organic constituents and inorganic constituents present in living organisms is provided by Chemical (Elemental) analysis
 The weight of living tissue = wet weight
- The weight of living tissue = wet weight
 Wet weight (Living tissue) water = Drvv
- Wet weight (Living tissue) water = Dry weight
 The weight of Ash = weight of inorganic elements and compound
- Dry weight-weight of Ash=weight of Organic compounds
- The chemist classifies the chemical compounds of living organisms as Aldehydes, Ketones, Aromatic compounds etc...
- A bio-chemist classifies the chemical compounds of living organism as Amino acids, Nucleotide bases, Fatty acids etc...

Amino acids :

- > The structural units of a protein are Amino acids
- > The building blocks of a protein Amino acids
- An organic compound having an amino group (-NH₂) and an acidic group(-COOH) as substituents on the same carbon i.e., α-Carbon is known as – α-Amino acids.
- > The amino acids are Substituted Methanes

- The four substituents groups occupying the four valency positions of α-Carbon of an amino acid are 1) Carboxyl group(COOH) (Acidic group)
 2) Hydrogen (H)
 - 3) Amino group (NH_2) (Basic group)
 - 4) Functional or variable group (R group)
- The amino acids are many types based on the Nature of R group
- Based on the involvement in the formation of proteins, the amino acids present in the cells are classified into two types and they are:
 1) Non protein amino acids which do not form the proteins (about 170 amino acids)

2) Protein amino acids that form proteins (which are only of **21** types)

- In a proteinaceous amino acid, if R-group is Hydrogen, the amino acid is – Glycine
- In a proteinaceous amino acid, if R-group is Methyl group, the aminoacid is – Alanine

In a proteinaceous amino acid, if R-group is Hydroxy methyl, the amino acid is – Serine

- The physical and chemical properties of amino acid are in accordance to – Amino group, Carboxyl group and R-functional group
- Based on the number of amino groups and carboxyl groups present, the amino acids are of different types and they are – Acidic amino acids (Glutamic acid)- Basic amino acids (Lysine) -Neutral amino acids (Valine)
- The aromatic amino acids are Tyrosine, Tryptophan and Phenylalanine
- The particular property (Main) of amino acids is
 The Ionizable nature of amino group
 (-NH₂) and carboxyl group (-COOH)
- The structure of amino acids changes in the solutions of different pHs because of
 the Ionisable nature of amino group (-NH₂) and carboxyl group (-COOH)
- The carboxyl group (– COOH) has the property of being acidic because it easily looses the terminal H of its OH and becomes COO⁻ i.e., releases the H⁺ ion in solution
- The amino group has the property of being basic or alkaline because it attract H⁺ ion to become NH₃

- Thus the amino acids are acid on one end and base on other end. Hence the two amino acids reacts as an acid reacts with a base producing an union of the reacting amino acids called peptide bonding
- A tri-peptide contains Three amino acids and two peptide bonds

The enzyme that catalyses the formation of peptide bond between two amino acids is – Peptidyl transferase

- Essential amino acids:
- The amino acids that have to be supplied through diet and essential for our health care are – Essential amino acids
- The essential amino acids have to be supplied through diet because – They are not synthesised in the body
- The essential amino acids are Lucine, Isolucine, Lysine, metheonine, Phenylalanine, Tryptophan and valine

Lipids:

- Lipids are generally Water insoluble (insoluble in polar solvents like water)
- Lipids are soluble in Benzene, Ether and Chloroform (non-polar solvents
- Fatty acid: $(C_nH_{2n}O_2)$
- Fatty acid is a simple form of lipid
- A Fatty acid has a carboxyl group attached to an R – group
- The -R group of fatty acid could be a Methyl (CH₃) or Ethyl ($-C_2H_5$) or higher number of -CH₂ groups (1 carbon to 19 carbons)
- The 16 carbon fatty acid is Palmatic $acid(C_{16}H_{32}O_2):CH_3 (CH_2)_{14} COOH$ (Including carboxyl carbon)
- The 20 carbon fatty acid is Arachidonic $acid(C_{20}H_{40}O_2):CH_3 (CH_2)_{18} COOH$ (Including carboxyl carbon)
- The fatty acids without double bonds are Saturated fatty acids
- The saturated fatty acids are Palmitic acid and Arachidonic acid
- The fatty acids with one or more C = C double bonds – unsaturated fatty acids Glycerol:
- \triangleright Glycerol is a simple form of lipid

≻

- The Glycerol is Trihydroxy propane Glycerides:
- Many lipids have both Glycerol and fatty acids (Neutral or True lipids)
- An organic compound in which the fatty acids are found esterified with glycerol is - Glyceride
- The Glycerides are Monoglycerides, Diglycerides and Triglycerides.
 Triglyceride (R₁, R₂ and R₃ are fatty acids)
- The lipids are classified into fats and oils based on – the melting point
- The lipids with lower melting points are Oils (Gingely oil, remains as oil in winter)
 Phospholipids:
- Lipids having phosphorus and a phosphorylated organic compounds are Phospholipids
- Phospholipids are abundantly found in cell membrane
- A phospholipid is Lecithin (Phosphatidyl choline): C₄₄H₈₆NO₈P
- The neural tissues have lipids with more complex structures
- $\succ \quad \text{Cholesterol:}(C_{27}H_{45}OH)$
- Cholesterol is a- fat soluble steroid alcohol
- > The most abundant steroid in the animal tissue
- Cholesterol is abundant in food which is rich in animal fats
- The site of synthesis of cholesterol is Liver Nucleotide bases:
- Examples for a number of carbon compounds having heterocyclic rings found in living organisms are - Nucleotide bases (A, G, C, T, U) (Adenine, Guanine, Cytosine, Thymine & Uracil)
- The total number of types nitrogen bases found in Nucleic acids - 5 (A, G, C, T, U)
- A Combination of pentose sugar and Nitrogen base is – Nucleoside (Nitrogen base + Pentose sugar = Nucleoside)

Nucleosides of DNA	Nucleosides of RNA

- $A + C_5 H_{10}O_4 = Adenosine A + C_5 H_{10}O_5 = Adenosine G + C_5 H_{10}O_4 = Guanosine G + C_5 H_{10}O_5 = Guanosine G +$
- $0 + C_5 H_{10} O_4 Ottailosine O + C_5 H_{10} O_5 Ottailosin$

 $T + C_5 H_{10}O_4 =$ Thymidine $U + C_5 H_{10}O_5 =$ Uridine $C + C_5 H_{10}O_4 =$ Cytidine $C + C_5 H_{10}O_5 =$ Cytidine

- \blacktriangleright Nucleotides are present only in DNA and RNA
- > The DNA and RNA functions as Genetic material

- RNA function as genentic material in most of the phytophages (TMV) few of zoophages (Influenza and poilo virus)
 - Primary and Secondary Metabolites
 - When one analyses plant, fungal and microbial cells, one would see thousands of compounds that constitute primary and secondary metabolites
- Primary metabolites have identifiable functions and play known roles in normal physiological processes.
- The role or funcitons of all the 'secondary metabolites' in host is not known but many of them are useful to human welfare

Some Secondary Metabolites :

Pigments - Carotenoids, Anthocyanins, etc...

Alkaloids-Morphine, Codeine, etc.

Terpenoides-Monoterpenes, Diterpenes etc.

Essential oils- Lemon grass oil, etc

Toxins-Abrin, Ricin

Lectins -Concanavalin A

Drugs -Vinblastin, curcumin, etc.

Polymeric substances - Rubber, gums, cellulose

BIOMACROMOLECULES

- Biomolecules found in living organisms are of two types. One, those which have molecular weights less than one thousand dalton and are usually referred to as micromolecules or simply biomolecules while those which are found in the acid insoluble fraction are called macromolecules or Biomacromolecules.
- The acid insoluble fraction, has only four types of organic compounds i.e. proteins, nucleic acids, polysaccharides and lipids.
- These classes of compounds with the exception of lipids (around 800 daltons) have molecular weights in the range of ten thousand daltons and above
- The molecules in the insoluble fraction with the exception of lipids are polymeric substances.
- Lipids, whose molecular weights do not exceed 800 Daltons, come under acid insoluble fraction.
- Lipids are indeed small molecular weight compounds and are present not only as such but also arranged into structures like cell membrane and other membranes.
- When we grind a tissue, we are disrupting the cell structure. Cell membrane and other

> > > Aver	vesicles which a Therefore, these of vesicles get insoluble pool a fraction. Lipids are not The acid solub cytoplasmic com The macromo organelles becom Together they	lecules from cytoplasm and me the acid insoluble fraction. represent the entire chemical iving tissues or organisms.	AAAAAA	The number of types of proteinaceous amino acids is – 21 types The maximum number of types of amino acids found in proteins are – 21 types The polymer of amino acids is – protein A protein is a heteropolymer and not a homopolymer because it is a polymer of – different monomers (amino acids) A polymer having only one type of monomer repeating 'n' number of times – Homopolymer The amino acids that have to be supplied through diet which are essential for our health are – Essential amino acids have to be supplied
	ponent	% of the total cellular		through diet because – They are not
	-	mass		synthesised in the body
Wate	r	70-90	\triangleright	The essential amino acids are - Lucine,
Prote		10-15		Isolucine, Lysine, metheonine,
	ohydrates	3		Phenylalanine, Tryptophan and threonine,
Lipid				histidine valine
	eic acids	5-7	\blacktriangleright	Our body can make some of the amino acids
Ions	D (1	1	~	which are – Non essential amino acids
~	Proteins:		\blacktriangleright	The amino acids that can be synthesised by our
\triangleright		e-Organic compounds		body by utilising existing precursors or ingested
		e-Bio macromolecules	\sim	substances are – Non essential amino acids
\triangleright		f amino acids are – Proteins		The most abundant protein in animal world is– Collagen
\wedge		of amino acids are – Proteins	\blacktriangleright	The triple helical structure of the most abundant
	Macromolecula	re obtained as a portion of –		protein in animal world was first discovered by
\triangleright		weight of Proteins is – 10000 or		-G. N. Ramachandran
	More than 10,0	•	\triangleright	The structural unit of Collagen – Amino acid
\triangleright		e obtained as a portion of-Acid	\searrow	The most abundant protein in plant kingdom is-
-	insoluble fraction		-	RUBISCO (Ribulose bisphosphate
\triangleright		cks of Proteins are – Amino acids		Carboxylase – oxygenase)
\triangleright	Proteins are – P		\succ	The most abundant protein in the whole of the
\triangleright		of amino acids linked by peptide		biosphere is - RUBISCO (Ribulose
	bonds is-Prote	in		bisphosphate Carboxylase-Oxygenase)
\triangleright	The number of	amino acids and peptide bonds	Prote	
	found in a tetra	peptide respectively are -4 and	Colla	6 6
	3		Antib	
			Tryps	
			Rece	
				in Hormone (controls blood sugar)
			GLU	JT-4 Enables glucose transport into
				cells (transportation of nutrients
				across cell membrane)

Structure of Proteins:

- A heteropolymer containing strings of amino acids
 Protein
- In inorganic chemistry, the structure of a chemical compound invariably refers to the – Molecular formula (NaCl, MgCl,, etc...)
- Organic chemists always write the Two dimensional view of the molecules while representing the structure of the molecules (Benzene, Naphthalene, etc...)
- ➤ The physicists describes the molecular structure of a compound in – Three dimensional views
- The biologists describes the protein structure at -Four levels

Primary structure:

- The linear sequence of amino acids or the positional information of amino acids in a protein is refers to as Primary structure
- The structure of protein that describes which is the first amino acid, which is second and so on is – Primary structure
- The left end of a protein imagined as a line (polypeptide chain) is represented by the–First amino acid (Methionine)
- ➤ The first amino acid of a polypeptide chain (Protein) is called as – N-terminal amino acid
- The amino acid found towards the extreme left end of a polypeptide chain is called as – Nterminal amino acid
- The right end of a protein imagined as a line (polypeptide chain) is represented by the – Last amino acid
- The Last amino acid of a polypeptide chain (Protein) is called as – C-terminal amino acid
- The amino acid found towards the extreme Right end of a polypeptide chain is called as - Cterminal amino acid
- The direction of synthesis of a polypeptide is N terminal to C terminal
- The structure that gives the complete description of the covalent connections of a protein is – Primary structure

Secondary structure:

- The folding of a linear polypeptide chain into a specific coiled (Helix)structure is referred to as – the secondary structure of protein
- The helices observed in the secondary structure of a protein are – Only right handed helices Tertiary structure:
- The structure that exhibits the bending and folding of protein upon itself like a hollow woollen ball (sphere) is – Tertiary structure
- The structure that gives us a 3-dimensional view of protein is—Tertiary structure
- The structure that gives us a view of protein with active sites is—Tertiary structure
- The structure that is absolutely necessary for the many biological activities of proteins is

- Tertiary structure

Quaternary structure:

- Quaternary structure is exhibited by a protein which is - an assembly of more than one polypeptide chains or subunits
- Quaternary structure is exhibited by a protein which has – two or more polypeptide chains or subunits
- The arrangement of polypeptide chains or subunits of a protein with respect to each other gives the – Quaternary structure
- In the quaternary structure of a protein, the individual folded polypeptides or subunits are arranged as – linear string of spheres, Spheres arranged one upon each other in the form of a cube or plate
- A protein with four polypeptides or subunits is Adult human Haemoglobin(the oxygen transporting protein of Blood)
- Out of four polypeptides of an adult human Haemoglobin-two are identical to each other
- The human Haemoglobin(Hb) is constituted by - two subunits of α -type and two subunits of β -type
- Nature of Bond linking monomers(amino acids) of a polymer (Protein):
- In a polypeptide chain or a protein, the amino acids are linked by Peptide bonds
- The number of amino acids and peptide bonds found in a tetrapeptide – 4 and 3

		JLEC	
\triangleright	The peptide bond is formed in between the -		Starch:
	carboxyl group of previous amino acid and amino	\succ	Starch is a – Polysaccharide
	group of next amino acid (-COOH of 1st amino	\succ	Starch is a – Homopolymer
	acid and	\succ	Starch is a – Polymer of Glucose
	$-\mathrm{NH}_2$ of 2^{nd} amino acid)	\succ	The repeating monomer of starch is – Glucose
\triangleright	During the formation of a peptide bond, the moiety	\succ	The store house of energy in the plant tissue –
	removed is – Water moiety		Starch
\triangleright	The peptide bond is formed by – Dehydration (\succ	In most of the plants the reserve food is – Starch
	removal of water moiety)	\succ	The major fuel in plants is – Starch
\triangleright	The enzyme that catalyses the formation of	\succ	The most abundant polysaccharide found in plants
	peptide bond – Peptidyl transferase		is – Starch
\triangleright	According to IUB system of classification, the	\triangleright	The starch forms – Helical secondary structure
	enzyme that catalyses the formation of peptide	\triangleright	The starch can hold iodine molecules (I_2) in-
	bond formation is a member of – II class –		Helical portions
	Transferases	\triangleright	The starch I_2 is in – Blue colour
\triangleright	The peptidyl transferase is found – at larger sub	\triangleright	The conformation test for starch is – Iodine test
	unit of ribosome(50S) in P-site		Cellulose:
	Polysaccharides:	\succ	Cellulose is a – Polysaccharide
\triangleright	The Polysaccharides are–Organic compounds	\succ	Cellulose is a – Homopolymer
\triangleright	The Polysaccharides are-Bio macromolecules	\succ	Cellulose is a – Polymer of Glucose
\triangleright	The polymers of Monosaccarides are –	\succ	The repeating monomer of Cellulose is – Glucose
	Polysaccharides	\triangleright	Cellulose does not exhibit – Complex helices
	The long chains of sugars are-Polysaccharides		(Secondary structure)
\triangleright	The long chains of sugars of polysaccharides are	\succ	Cellulose cannot hold iodine(I_2) because it has –
	- either unbrached (Chitin) or		No complex helices
	branched (Glycogen)	\succ	The cellulosic structures are – Cell walls of plants
\triangleright	In a polysaccharide chain the right end is called		- paper made up of with plant pulp $-$ Cotton
~	-Reducing end	~	fibre – Flax fibre
\triangleright	In a polysaccharide chain the Left end is called	\succ	The most abundant polysaccharide found in plants
~	-Non-Reducing end		next to starch is – Cellulose
\succ	The Polysaccharides are obtained as a portion		Glycogen:
~	of–Macromolecular fraction		Glycogen is an – Animal Polysaccharide
\triangleright	The molecular weight of Nucleic acids is -10000		Glycogen is a – Homopolymer
N	or More than 10,000 Daltons		Glycogen is a – Polymer of Glucose The repeating monomer of Glycogen is – Glucose
\triangleright	The Polysaccharides are obtained as a portion		The glycogen is - a long branched chain of sugars
\triangleright	of-Acid insoluble fraction of living tissue The building blocks of Polysaccharides are –		with a right reducing and a left non reducing end
	Monosaccarides	\triangleright	Complex Polysaccharides
\triangleright	The long threads containing different	-	(Heteropolymers):
	Monosaccharides as the building blocks are -	\triangleright	The complex polysaccharides are -
	Polysaccharides	Í	Heteropolymers
	The Polysaccharides found as homopolymers are	\succ	The polysaccharides having amino sugars and
-	–Starch, Cellulose, Glycogen and Inulin		chemically modified sugars as monomers are -
	A polymer of Fructose is - Inulin		Complex Polysaccharides
	A polymer of Glucose(Homopolymer) – Starch,		
-	Cellulose, Glycogen		
		-	236

		JLLC	ULES
	The building blocks of Complex Polysaccharides are – amino sugars and chemically modified	AA	The Nucleic acids are obtained as a portion of – Macromolecular fraction
\triangleright	sugars The building blocks of complex polysaccharides		The molecular weight of Nucleic acids is – 10000 or More than 10,000 Daltons
	are-Glucosamine,- N-acetyl galactosamine	\triangleright	The Nucleic acids are obtained as a portion of-
\triangleright	Peptidoglycon is - heteropolymer and		Acid insoluble fraction of living tissue
	polysaccharide	\triangleright	The building blocks of Nucleic acids are
\triangleright	The bacterial cell wall is made up of with –		– Nucleotides
	Peptidoglycon	\rightarrow	The polynucleotides are – Nucleic acids
	The peptidoglycon is constituted by – NAG (The three distinct components of a Nucleotide
	N-acetyl glucosamine) and NAM (N-acetyl		are-1)Heterocyclic compound (Nitrogen bases)
	muramic acid) Chitin:		2) Monosaccharide (Ribose in RNA($C_5H_{10}O_5$)
\triangleright	The chitin is a – Complex polysaccharide and a		and 2'deoxyribose in $DNA(C_5H_{10}O_4)$ –
,	homopolymer(contains glucosamine)		3)Phosphate or Phosphoric acid
\triangleright	The chitinous structures are – Fungal cell	\triangleright	The number of types of nitrogen bases found in
,	wall, Exoskeleton of Arthropods	-	nucleic acids – 5 types
\triangleright	Agar, pectin are complex polysaccharides and	\triangleright	The number of types of purines found in nucleic
	Heteropolymers having – N – acetyl		acids – 2 types (A and G)
,	galactosamine	\triangleright	The number of types of pyrimidines found in
\triangleright	Nature of Bond linking		nucleic acids – 3types (T, U and C)
	monomers(Monosaccharides)of	\triangleright	The pyrimidines found in DNA are – T and C
~	polymer(Polysaccharide):	\blacktriangleright	Out of two types of pyrimidines found in DNA –
\triangleright	The bond found in between two successive		One is methylated(T) and the other is Non –
	Monosaccharides of a Polyccharides–Glycosidic bond	\triangleright	Methylated(C) Out of two types of pyrimidines found in RNA –
\triangleright	The bond found in between glucose and fructose	-	both are Non – Methylated $(U \& C)$
	is – Glycosidic bond	\triangleright	The thymine differs from Uracil in having a methyl
\triangleright	In between two Monosaccharides, the glycosidic		group(CH ₃) at -5^{th} carbon positions
	bond is formed during the removal of – water	\triangleright	The pyrimidines found in RNA are–U and C
	moiety	\triangleright	The common pyrimidine found in both DNA and
\triangleright	The glycosidic bond is formed due to -		RNA is – Cytosine
	Dehydration (removal of water)	\triangleright	Instead of Uracil the DNA contains – Thymine
\triangleright	In a polysaccharide the glycosidic bond is formed		Instead of Thymine the RNA contains - Uracil
	in between – two carbon atoms of two		The number of types of nucleosides found in
	successive Monosaccharides		nucleic acids – 8 types
	The individual Monosaccharides of a	\blacktriangleright	The number of types of nucleotides found in the
	polysaccharide are linked by	~	nucleic acids – 8 types
	-Glycosidic bond	\triangleright	The monosaccharide found in RNA is - Riboga(CH, Q)
\triangleright	Nucleic acids:	\blacktriangleright	Ribose($C_5H_{10}O_5$) The monosaccharide found in DNA is -
	The Nucleic acids are–Organic compounds	,	2'deoxyribose $(C_5H_{10}O_4))$
	The Nucleic acids are—Bio macromolecules	\triangleright	The monosaccharide of DNA is deficient in one
>	The polymers of Nucleotides are – Nucleic acids		oxygen atom at -2^{nd} carbon position
>	The long chains of Nucleotides are – Nucleic		$(2' \text{deoxyribose} (C_5 H_{10} O_4))$
	acids		× 5 10 4 ⁷⁷

A A A	The monosaccharide of DNA differs from the monosaccharide of RNA in having a – deficiency of an oxygen atom at 2^{nd} carbon position In a ribose the oxygen atom is found in between – 1^{st} carbon and 4^{th} carbon In a Nucleotide the nitrogen base is attached to – 1^{st} carbon of monosaccharide HOTS	AAA	The moiety that links the 3 rd carbon of sugar of a nucleotide and 5 th carbon of sugar of succeeding nucleotide of a polynucleotide strand is – Phosphate moiety The bond formed in between the phosphate and hydroxyl group of sugar is – Ester bond Whenever the successive nucleotides of a polynucleotide strand are linked by phosphate
Com	plimentary base pairs :		moiety, one ester bond is present on either side
1.	A = T / T = A Two hydrogen bonds found		of phosphate. Hence the formed bond is called as Phosphodiester bond
	in between A & T	\succ	The nucleic acids exhibit a - wide variety of
	$G \equiv C / C \equiv G$ Three hydrogen bonds found	^	secondary structures
	in between G & C	\triangleright	The DNA exhibits – secondary helical
Char	rgaff rule : Purines: Pyrimidines = 1:1 A+G = C+T	·	structure(Double Helix)
	A = T, G = C	\triangleright	The molecular structure of DNA was first
	A^{-1}, G^{-C} $A^{+}T \neq G^{+}C$		described by – Watson and Crick
	Chargaff rule is not applicable to s.s. DNA/s.s	\succ	The model proposed by Watson and Crick to
	RNA		explain the molecular structure of DNA is -
Type	s of Nucleosides and Nucleotides = 8		Double helix
1.	Adenine + Ribose = Adenosine	\succ	The DNA is usually found as – Double helix (
	Adenosine+Phosphate=Adenylic acid	~	contains two polynucleotide strands)
2.	Adenine+deoxyribose = Deoxy adenosine	\succ	Single stranded DNA is found in $-$ M 13
_	Deoxy adenosine+ p = Deoxy adenylic acid	\succ	bacteriphage $-\emptyset X 174$ bacteriophage The two polynucleotides of a DNA molecule are
3.	Guanine+Ribose=Guanosine		- Opposite and anti-parallel to one another
4	Guanosine + p = Guanilic acid		(5'end one strand is found opposite to 3'of other
4.	Guanine+Deoxyribose = Deoxy Guanosine Deoxyguanosine+p = Deoxyguanylic acid		strand)
5.	Cytosine +Ribose = Cytidine	\succ	The back bone of a polynucleotide strand is
5.	Cytidine $+ p = Cytidilic acid$		formed by–Sugar – phosphate – sugar chain
6.	Cytidine + deoxyribose = Deoxycytidine	\succ	The nitrogen bases of a polynucleotide strand
	Deoxycytidine +p = Deoxycytidylic acid		are oriented more of less-perpendicular to the
7.	Thymine+Deoxyribose =Deoxy thymidine		back bone of the strand but face inside
	Deoxy thymidine+p=Deoxythymidilic acid	\succ	The A present in one strand of DNA pairs with –
8.	Uracil+Ribose=Uridine	~	T in opposite strand
	Uridine + Phosphate = Uridylic acid		The T present in one strand of DNA pairs with –
Nat	ure of bond linking monomers (Nucleotide)	\succ	A in opposite strand The G present in one strand of DNA pairs with
Inal	of a polymer(Nucleic acid)		-C in opposite strand
\triangleright	The two successive nucleotides of a	\succ	The C present in one strand of DNA pairs with
,	polynucleotide strand are linked by –		-G in opposite strand
	Phosphodiester bond	\succ	Between A and T – two hydrogen bonds are
\triangleright	A Phosphodiester bond is formed between -3^{rd}		present(A=T)
	carbon of sugar of a nucleotide and 5 th carbon	\succ	Between G and C – three hydrogen bonds are
	of sugar of succeeding nucleotide		present(G = C)

- The purine of DNA exhibit complementarity with – Pyrimidines
- > The A + G of DNA = T + C of DNA
- The DNA molecule appears as Helical straircase
- One full turn (coil) of DNA can accommodate 10 pairs of Nitrogen bases (20nitorgen bases)
- At each step of ascent the DNA strand turns -36°
- The angle between successive base pairs of a DNA molecule 36⁰
- > The pitch of each coil is $-34A^0$
- A rise in pitch per base pair is -3.4A⁰
- > The most common type of DNA B DNA
- > The minimum number of hydrogen bonds found in a coil of B - DNA is - 20
- The maximum number of hydrogen bonds found in a coil of B - DNA is -30
- The number of types of DNA's found in living organisms –more than 12 types represented by English alphabets with unique structural features
- > Dynamic state of the Body Constituents:
- The organic compounds found in the living organisms (Bacterial cell, a protozoan, a plant or an animal) are known as – Bio molecules (Metabolites)
- In living organisms the Bio molecules are present in-certain or definite concentrations (mols/cell or mols/litre)
- The biomolecules of the living organisms have constantly being changed into some other biomolecules (Hydrolysis of polys-accharides into monosaccharides) and also made from some other biomolecules (synthesis of protein by the use of amino acids). These phenomena can be described as – Turn over of biomolecules
- The Turnover of biomolecules means Breaking and making of Biomolecules
- The breaking and making of Biomolecules is due to- the chemical reactions constantly occurring in living organisms
- All the biochemical reactions that occur in living organisms responsible for the breaking and

making of biomolecules (Turnover) together referred to as – Metabolism

- The metabolic reaction result in the transformation of biomolecules
- A metabolic transformation or conversion Amino acid–CO₂=Amine–Removal of amino group in a nucleotide base–Hydrolysis of glycosidic bond in a disaccharide (sucrose) to form Monosaccharides(glucose and fructose)
- The bond found in between Glucose and fructose of sucrose Glycoside bond)
- The metabolic reactions of living organisms generally – do not occur in isolation but are always linked to some other reactions
- In living organisms the metabolic conversion is carried out by a series of linked reactions called as – Metabolic path ways
- > The metabolic path ways are either Linear (Glycolysis) or Circular (C_3 , C_4 pathway)
- The flow of metabolites through metabolic path way has a – Definite rate and Direction
- The metabolite flow in a definite rate and direction through metabolic path way is called as – Dynamic state of body constituents
- When the interlinked metabolic traffic is very smooth and without any mishap the condition is – Healthy condition
- Any mishap in metabolic traffic of a living organism is – Disease (Disorder)
- ➢ All the metabolic reactions are − Catalysed
- Uncatalysed metabolic conversion is Absent in living organisms
- ▷ Dissolution of CO_2 in water, a physical process that occur in a living organism is - Catalysed reaction (C_4 plants)
- The catalyst that hastens the rate of a given metabolic conversion Protein

MODEL TEST - I

 98% of living organism is formed of six elementscarbon, hydrogen, nitrogen, oxygen and

 S & Mg
 Mg & Na
 Ca & P
 P & S

 Glucose is

 Cane sugar
 Malt sugar
 Triose sugar

3.	Pentose and hexoses are			
	1) Oligosaccharides			
	3) Monosaccharides	4) Polysaccharides		
4.	Which of the following is	spresent in acid insoluble		
	fraction?			
	1) Glucose 2) Fructose 2	3)Alanine4)Lipid		
5.	Which of the following s	secondary metabolites is		
	a polymeric substance?			
	1)Ricin	2) Monoterpenes		
	3) Curcumin	4) Rubber		
6.	Which of the following	g is the most abundant		
	element present in huma	an body?		
	1) Carbon	2) Hydrogen		
	3) Oxygen	4) Nitrogen		
7.	Which of the following i	s a primary metabolite?		
	1) Carotenoid	2) Glucose		
	3) Morphine	4) Cellulose		
8.	Which of the following is	s a secondary metabolite		
	as well as a drug ?			
	1) Concanavalin A	2) Vinblastine		
	3) Diterpenes	4) Ricin		
9.	Inulin is a polymer of			
	1) Fructose 2) Glu	cose 3)		
	Mannose4) Ribose			
10.	Plant cell walls are made	e of		
	1) Homopolymer of frue	ctose		
	2) Heteropolymer of gly	cogen		
	3) Homopolymer of glu	cose		
	4) Homopolymer of gly	cogen		
11.	As starch is related to p	lant body, which of the		
	following polysacchari	des is related to animal		
	body?			
	1) Cellulose	2) Chitin		
	3) Glycogen	4) Inulin		
12.	1			
	1) Cellulose	2) Glycogen		
	3) Chitin	4) Starch		
13.		-		
	1) Starch 2) Cell			
	3) Both 1 & 2	4) Chitin		
14.	Which of the follow	wing is a structural		
	polysaccharide?			
	1)Glycogen	2) Starch		
	3) Inulin	4) Cellulose		
15.	Which of the following i			
	1) Chitin - Polymer of gl			
	2) Glycogen - Polymer	ofglucose		

	3) Cellulose - I	Heteropolysaccharide		
	4) Inulin - Homopolysaccharide			
16.	Unbranched polymer of glucose is			
	1) Starch	2) Glycogen		
	3) Cellulose	4) Chitin		
17.	Which of the following is the most abundant			
	carbohydrate in biosphere?			
	1) Starch	2) Glycogen		
	3) Cellulose	4) Hemicellulose		
MODEL TEST - II				

18.	Which of the following bonds are present in
	between the two amino acids of a protein
	1) Glycosidic bond
	2) Phosphodiester bond
10	3) Peptide bond 4) Ionic bond
19.	Which bonds are present inbetween the
	monosaccharides of polysaccharide
	1) Glycosidic 2) Phosphodiester bond
20	3) Peptide bond 4) Ionic bond
20.	In which of the following bond formations
	dehydration process is occured
	1) Peptide bond & phosphodiester bond
	2) Peptide bond & Glycosidic bond
	3) Glycosidic bond & Phosphodiester bond
	4) Between purines and Pyrimidines
21.	Bond existing between sugar and Nitrogen base
	of Nucleic Acid is
	1) Ester bond 2) Glycosidic bond
~~	3) Hydrogen bond 4) Phosphodiester bond
22.	Phosphodiester bond is formed between the
	following carbons of deoxy ribose sugars
	1) 1st & 2nd 2) 4th & 5th
	3) 1st & 3rd 4) 3rd & 5th
23.	Number of double bonds found in any pyrimidine
	molecule is
~ /	1) 2 2) 3 3) 4 4) 5
24.	Number of double bonds present in any purine
	molecule is
~ -	1) 4 2) 5 3) 2 4) 1
25.	In Pyrimidine nucleoside bond developed
	between carbon of sugar and nitrogen of
	Nitrogenbase
	1) $C_1 - N_3$ 2) $C_1 - N_1$
•	3) $C_5^1 - N_3^2$ 4) $C_5^1 - N_1^1$
26.	In Purine nucleoside bond developed between

carbon of sugar and Nitrogen of Nitrogen base

0	0
1) $C_1 - N_9$	2) C ₁ - N ₇
3) $C_1 - N_1$	4) $C_1 - N_3$

27.	Sucrose is a disaccharide it is composed of two
	monosaccharides, which bond is present
	between them

- 1) Ionic
- 3) Peptide

2) Disulphide4) Glycosidic

QUESTION BANK TYPE - I

	TYPE ·	- 1	
1.	Following elements are relatively more in a		
	living tissue than earth's crust		
	1) C, H,P 2) N,P	3) C,H 4) Ca, Mg	
2.	Percentage weight of element that is very little in earth's crust and negligible in human body		
	respectively are		
	1) N, S	2) C, Mg	
	3) Si, Na	4) N, Si	
3.	% weight of the element		
	earth's crust and human	body is	
	1) N 2) O 3) Mg	4) S	
4.	When a tissue is burnt to	ashes, ash contains	
	1) all biomolecules	2)Acid insoluble	
	substance		
	3) Inorganic elements	4)All non essential	
	elements		
5.	Organic acid used to grir	-	
	order to analyse chemica	-	
	1) Chloroform	2) Hydrochloric acid	
	3) Oxalo acetic acid 4)7		
6.	Acid soluble pool in the	filtrate consists of	
	1) Organic compounds		
	2) Inorganic compounds		
_	3) Only mineral elemer		
7.	Elements present in all biomolecules are $1 \times C$ H C M_{C}		
	1) C, H, O	2) N, Ca, Mg 3) H,	
0	O, P	4) N, P, S	
8.	All the carbon compounds present in living		
	tissues are	2) In anomia	
	1) Organic compounds	2) morganic	
	compounds 3)Biomolecules	1) 1 8-2	
9.	Dry weight (biomass) of	4) 1 & 3	
9.	1) Organic, inorganic su	-	
	2) only inorganic substar		
	3) Organic and inorganic		
	water	substances excitating	
	4) only organic substanc	es	
10.	Amino acids may be in t		
10.	1) substituted methanes		
	2) with amino and acidic	groups	
	3) with variable R group		
	e, mai tanaore region		

11.	Amino acid in zwitterionic from possess 1) Only negative charge 2) no charge 3) both positive and negative charge 4) only positive charge	23. During the process of chemical analysis the living tissue is grinded by using a mortar and a pestle in the presence of a chemical what is the formula of that chemical ?
12.	Lipids are called fats or oils based on	1. C_2H_5OH 2. CH_3COOH
	1) double bonds2) melting pointboiling point4) ester bonds	3. <i>CH</i> ₃ <i>COCH</i> ₃ 4. <i>Cl</i> ₃ <i>CCOOH</i>
13.	Number of carbons in palmitic acid excluding carboxyl carbon is 1) 16 2) 19 3) 20 4) 15	24.The ratio between the number of carbon atoms present in arachidonic acid and palmitic acid is 1.4:52.5:43.1:14.2:3
14.	By having the following group at á-carbon, theamino acid Alanine differ from Glycine1) H (Hydrogen)2) NH23) COOH4) CH2	25. Study the following ionizable state of amino acids R^{R}
15.	Which of the following is a ephosphorylated nucleotide	$H_{3}^{+}N - CH_{(X)}^{R} - COOH \square H_{3}^{+}N - CH_{(Y)}^{R} - COO^{-} \square$
	1) Andenylic acid2) Guanylic acid 3)Adenine4) Uridine	$H_2N - CH_{(Z)} - COO^-$
16.	Find the correct pair from the following 1) Morphine - Terpinoid 2) Abrin – Lectin	Find the zwitter ionic form from the above states
17.	3) Curcumin – Drug 4) Rubber-Pigment Which one of the following is not a secondary	1. x2. y3. z4. x,y,z26.Antibodies that help to fight against infectious
1,1	metabolite 1) Rubber 2) Glucose	agents are 1. Polysaccharides 3. Proteins 4. Glucose
18.	3) Spices 4) Colored pigmentsElement which is negligible amounts inhuman body is1) Silicon2) Nitrogen3)Magnesium4) Sulphur	 27. A DNA molecule is having 15% cytidylic acid molecules. In that number of hydrogen bonds in between polynucleotide strands are 460. Estimate the length of that DNA
19.	Number of amino acids involved in biosynthesis of proteins is 1) 21 2) 25 3) 10 4) 15	1. 340_{A^0} 2.680 $_{A^0}$ 3.510 $_{A^0}$ 4. Data is not sufficient 28. Bioenergetics deals with
20.	Rubbers, Gums, cellulose are examples of1. Toxins 2. Drugs3. Alkaloids4. Polymeric substances	 Dischergedes deals with The total sunlight energy trapping mechanism in organism in nature in detail The energy conversions which are
21.	Phosphorus and phorphorylated organiccompound containing lipid and which is presentin cell membrane is1. Lectin2. Glycine	occuring outside of the earth planet 3. Energes transfer from non-living things to living things 4. How living organisms derive their energy,
22.	 Lysine Lecithin A nucleotide consists of the following bonds Glycosidic bond, peptide bond Ester bond, covalent bond Glycosidic bond, ester bond Peptide bond, ester bond 	on what way they store, how do they convert energy into work 29. FInd the number of hydrogen bonds and phosphodiester bonds present between the nucleotides which are present in the DNA having 119 A^0 length and 18 thymine bases in it
		242

30. 31.	 70, 70 70, 69 87,68 87,70 N-terminal and C-terminal in polypeptide chain indicate the following respectively Last amino acid and first aminoacid First aminoacid and last aminoacid Middle aminoacid and last aminoacid First aminoacid and middle aminoacid First aminoacid and middle aminoacid Which structure is absoluletly necessary for biological activities of protein ? 	37. 38. 39.	The biomolecule found in the macromolecularfraction of the living tissue with small molecularlar weight among the following is :1. Polysaccharides2. Lipids3. Protein4. Nucleic acidFind the odd man out1. Lecithin2. Triglyceride3. Palmitic acid4. Concanavalin-AThe most abundant chemical found in livingorganisms next to the most abundant inorganic
32.	 Primary structure Secondary structure Quatenary structure Tertiary structure The following secondary metabolite belongs 	40.	constituent of living organisms among the following is1. Water2. Carbohydrate3. Protein4. Nucleic acidIn a primary structure of a protein1. Last amino acid is also called
33.	to lectins1. Concanavalin A2. Abrin3. Vinblastin4. CelluloseThe relative abundance of the following		 1. Last amino acid is also called N-terminal amino acid 2. Left end is represented by the last aminoacid 3. Right end is represented by the last
34.	elements with respect to other elements is higher in human body than in earths crust 1. Carbon, calcium, oxygen 2. Carbon, hydrogen, oxygen 3. Calcium, magnesium, hydrogen 4. Oxygen, Magnesium, Hydrogen Elemental analysis of a leaf tissue reveals the presence of 1. Simple acid-soluble organic molecules	41.	 aminoacid 4. First aminoacid is also called C-terminal amino acid The correct pair of biomolecules, in which the former is an aromatic aminoacid, where as the latter is a toxin 1. Tyrosine and Morphine 2. Tryptoplan and Vinblastin 3. Phenylalanine and Ricin 4. Lysin and Abrin
35.	 Inorganic compounds like sulphates, phosphates etc Elements like C, H, O, Cl etc. Only elements essential to plants A triglyceride consists of 	42. 43.	 Triple helical nature of collagen was discovered by 1. P. Maheswari 2. G.N. Ramachandran 3. Nirenberg 4. H.G. Khorana Trihydroxy propane is
	 Three glycerols esterified to each other Three fatty acids esterified to glycerol molecule Three glycerols esterified to one fatty acid molecule Three fatty acids esterified to each other 	44.	 Palmitic acid 2. Arachidonic acid Glycerol 4. Glycine Aromatic amino acids are Glycine and Tyrosine Tryptophan and phenylalanine Tyrosine and Tryptophan
36.	Number of carbon atoms in Palmitic acid is 1. 20 2. 19 3. 18 4. 16	45.	 4. Glycine and Phenylalanine The following compound enables glucose transport into cells 1. Collagen 2. Vinblastin 3. GLUT-4 4. Concanavalin-A

46.	An α helix is the example of which type of	54.		ng are components of a
	protein structure		phospholipid?	1.6.41
	1. Primary2. Secondary		1. Cholesterol, glycer	•
	3. Tertiary 4. Quatenary		2. Fatty acids, phosph	
47.	A DNA molecule contain 120 Adenines and		3. Glycerol, aminoaci	
	120 Guanines. Find the length of DNA and		4. Phosphate group, c	cholesterol,
	hydrogen bonds respectively		monosaccharides	
	1.81.6nm and 600 hydrogen bonds	55.		ed fats, unsaturated fats
	2.816nm and 600 hydrogen bonds		contain less	
	3. 600 hydrogen bonds and 816 nm		1. Oxygen	2. Glycerol
	4.8.16nm and 600 hydrogen bonds		3. Hydrogen	4. Fatty acids
48.	The living state is a non-equillibrium steady	56.	A lipids molecule is p	
	state to be able to perform work and it is		1. Fatty acids bond to	
	achieved by		2. Aminoacids bond to	
	1. Interlinked pathways		3. Monosaccharides l	
	2. Input of energy		4. Dehydration occurs	s between fatty acids
	3. Interconversion of metabolites		and glycogen	
	4. Release of energy	57.	Lipids are composed	of
49.	In a polysaccharide the individual monosac-		1. Nucleotides	2. Amino acids
	charides are linked by		3. Monosaccharides	
	1. Ester bond 2. Hydrogen bond		4. Glycerol and fatty a	
	3. Glycosidic bond 4. Peptide bond	58.	I dentify the amino aci	id from the following in
50.	If a fragment of DNA molecule consists of		which 'R' group is - (CH_OH
	10% adenine and 100 hydrogen bonds		1. Glycine	2. Serine
	between nitrogen bases. What is its length		3. Alanine	4. All
	1. 1020_{A^0} 2. 680_{A^0}	59.	Haemoglobin has	1.7 11
	$3.\ 2040\ A^0$ $4.\ 850\ A^0$		1. Primary structure	
51.	A DNA molecule of angle 180° with 134		2. Secondary structur	e
	bonds may show		3. Tertiary structure	•
	1. 3 Pairs of A, T and 3 pairs of G, C		4. Quatenary structur	e
	2. 2 Pairs of A, T and 3 Pairs of G, C	60.	-	centration of glucose in
	3. 3 pairs of A, T and 2 pairs of G, C		normal healthy individu	-
	4. 4 Pairs of A, T and 2 Pairs of G, C		1. 4-0 to 5-0 mM	2.5.0-5.5mM
52.	Estimate the angle of a DNA fragment of six		3.4.5-5.0mL	4.4.5-5.0mM
	base pairs20. Adult human haemoglobin	61.	Bio energetics deals w	
	consists of		1. Energy utilizations i	
	1.2 subunits of 2 types		2. Energy conversions	-
	2.4 subunits of one type		3. Energy productions	-
	3.4 subunits of 4 types		4. Energy conversion	-
	4. 4 subunits of 2 types	62.	In a primary structure	
53.	A characteristic of unsaturated fats is that	021	1. Right end represent	
	they		2. Left end represente	
	1. Denature as they cool	1	3. First amino acid is	•
	2. Are made up of glucose and fructose		terminal amino acid	
	3. Are made up of aminoacids and glycerol	1	4. Last amino acid is a	also called as N-
	4. Have double bonds in their carbon chains	1	terminal amino acid	
		I		244

Polysaccharides

63.	Molecule with reducing and non reducing	72.	In the primary structure of a protein
	ends is		1) Three dimensional view is observed
	1) Glucose 2) Glycogen		2) First amino acid has C – terminal end
	3) DNA 4) Lipid		and last amino acid has N – terminal end
64.	Carboxyl and amino groups are found in		3) Amino acids are arranged as a line
	1)Amino acid 2)Lipids		4) Protein chain is folded upon itself like a
	3) Polysaccharide 4) Nitrogen base		hollow woolen ball
65.	Molecule that exhibits $5^1 \longrightarrow 3^1$	73.	Protein molecule that has more than one
	polarity is		polypeptide exhibits
	1) DNA 2) RNA 3) Protein 4) 1 and 2		1) Tertiary structur 2) Primary structure
66.	Molecules that have glycosidic bonds are		3) Quaternary structure 4) Secondary structure
	1) Nucleic acids, Proteins	74.	Secondary metabolites that act as drugs are
	2) Polysaccharides, Nucleic acids		1) Morphic, codeine 2) Abrin, Ricin
	3) Monosaccharides, Proteins		3) Vinblastin, curcumin
	4) Lipids, Nucleic acids		4) Rubber, gums, cellulose
67.	'R' group in aminoacids Serine and	75.	Secondary metabolites useful to human
07.	Alanine respectively are		welfare are
	1) H, CH_2 2) CH_2OH, CH_3		1) Spices, drugs , rubber
	3) NH_2, CH_2 4) CH_3, CH_2OH		2) Carbohdyrates, proteins, nucleic acids
68.	Carbon atoms of pentose sugars involved in		3) Alkalolids, amino acids, sugars
00.	ester bond in nucleic acids is		4) Proteins, pigments, sugars
	1) 1, 9 2) 3, 9 3) 3, 9 4) 1, 1	76.	Identify the correct set with all nucleosides
69.	The aromatic aminoacid, Acidic aminoacid and		from the following
07.	aminoacid with methyl as R group respectively		1) Guanosine, thymidine, adenine
	are		2) Cytidine, uridine, guanosine
	1) Alanine, Glutamic acid Tyrosine		3) Uridine, guanine, thymidine
	2) Tryptophan, Glutamic acid and Alanine		4) Adenosine, cytidine, thymin
	3) Phenyl alanine, Alanine and valine	77.	A nucleotide consists of the following bonds
	4) Glycine, Lysine and Alanine		1) Glycosidic bond, peptide bond
70.	Monomers in proteins, nucleic acids and		2) Ester bond, covalent bond
/0.	-		3) Glycosidic bond, ester bond
	polysaccharides are made of these structural		4) Peptide bond, ester bond
	units respectively	78.	Cellulose consists of
	1) Peptides, nucleotides, monosaccharides		1) A chain of glucose molecules
	2) Amino acids, sugars, nucleotides		2) A chain of fructose molecules
	3) Amino acids, nucleotides, monosaccharides		3) Complex helices that cannot hold I_2
			4) Glycosidic bonds and ester bonds
71	4) Amino acids, nucleosides, starch	79.	The organic compounds present in acid
71.	Choose the correct set of components found		insoluble fraction are
	in a nucleotide		1) Proteins and lipids 2) Nucleic acids
	1) Homocyclic compound, penta saccharide,		3) Polysaccharides 4) 1, 2 and 3
	phosphate	80.	The compounds that have molecular
	2) Heterocyclic compound, pentose sugars,		weight above 10,000 daltons are
	phosphoric acid		1) Proteins and lipids
	3) Homocyclic compound, monosaccharide,		2) Nucleic acids and protein
	phosphoric acid		3) Lipids and polysaccharides
	4) Nitrogen bases, polysaccharide, phosphate		4) Proteins, nucleic acids and
			.,,

81.	All the organic compounds have high	89.		amino acids that are linked
	molecular weight except		by peptide bonds	
	1) Proteins 2) Lipids			2) Nucleic acid
82.	3) Nucleic acids 4) Polysaccharides Bio-micromolecules are		/	Both 1 and 2
82.		90.	Homopolymer is	
	1) Organic molecules whose molecular		1) Repeated units	
	weight is less than one thousand daltons			mber of monomers
				anched monomers
	2) All organic molecules that are	01		ow molecular weight
	present in acid insoluble pool	91.		nt protein is animal world
	3) All organic molecules that are present in acid soluble pool		IS 1) Transie	$2 \mathbf{L}_{\mathbf{r}} \mathbf{L}_{\mathbf{r}}$
			1) Trypsin	2) Inulin
	4) All organic molecules whose	02	3) Collagen	4) GLUT -4
	molecular weight is less than 2000 daltons	92.		nt protein in the whole of
83.	The biomolecule which are present in		the biosphere is 1) RUBISCO	2) Collagen
85.	acid insoluble fraction are called as		3) Trypsin	4) Inulin
	1) Biomicromolecules 2) Biomacromolecules	93.		otein that acts as hormone
	3) Micromolecules 4) Macromolecule	, , , , , , , , , , , , , , , , , , , ,	1) Collagen	2) Trypsin
84.	The polymeric substances in acid		3) Insulin	4) RUBISCO
	insoluble fraction are	94.	/	ccharide consisting of only
	1) All organic molecule except proteins		one type of mono	
	2) All organic molecules except nucleic		1) Callose	2) Pectose
	acids		3) Cellulose	4) Galactose
	3)All organic molecules except lipids	95.	/	e of monosaccharide
	4) All organic molecules except		present in cellulos	
	polysaccharides		1) Fructose	2) Glucose
85.	The molecular weight of lipids		3) Sucrose	4) Pectose
	1) do not exceed 800 daltons	96.	Store house of en	ergy in plant tissues is
	2) above 1000 daltons		1) Proteins	2) Glycogen
	3) above 10,000 daltons		3) Starch	4) Inulin
	4) less than 800 daltons			
86.	The organic molecule of small molecular weight	97.		ergy in animal tissues is
	present in structures like cell membrane and		1) Protein	2) Glycogen
	other membrane is		3) Starch	4) Inulin
	1) protein 2) polysaccharides	98.	Inulin is a polyme	
07	3) nucleic acids 4) lipids		1) Glucose	2) Fructose
87.	Among the organic molecules of acid insoluble		3) Mannose	4) Ribose
	pool the following compounds are not strictly	99.		ton fibre, plant cell wall
	macromolecules		1.	vsaccharide present in
	1) proteins 2) nucleic acids		1) Cellulose	2) Hemi cellulose
88.	3) lipids 4) polysaccharides The percentage of water of the total cellular	100	, 1	Pectin
00.	mass is	100.	1) Nucleoside	k of nucleic acid is 2) Nucleotide
	1) $10-50\%$ 2) $5-7\%$		3) Sugar	4) Nitrogen base
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5) Sugal	4) Millogen base
	5770 - 5070 $- 5070$			

101. A heterocyclic compound + monosaccharide + phosphoric acid constitute 1) Nucleoside 2) Nucleotide 3) Polysaccharide 4) 1 and 2 The total number of nitrogen base (types) 102. in nucleic acid are 4)8 1) 5 2)4 3)6 Purines in nucleic acids are 103. 1) Adenine and Guanine 2) Thymine and Cytosine 3) Adenine and Thymine 4) Guanine and Cytosine 104. Pyrimidines are 1) Adenine and Thymine 2) Guanine and Cytosine 3) Cytosine and Adenine 4) Thymine, Cytosine, Uracil 105. The nitrogen base present in DNA but absent in RNA 1)Adenine 2) Guanine 4) Cytosine 3) Thymine The positional information in a protein can 106. be given by 1) Primary structures 2) Secondary structures 3) Tertiary structures 4) Quaternary structure 107. Long protein chain folded itself like a hollow woollen ball like is 1) Primary 2) Secondary 3) Tertiary 4) Quaternary structure Adult human haemoglobin consisting 108. of 2 sub units of α types and 2 sub units of β type that explains 1) Primary 2) Secondary 3) Tertiary 4) Quaternary A peptide bond of amino acid is formed 109. in between 1) Amino group of one amino acid 2) Carboxyl group of one amino acid to amino group of other amino acid 3) Between 2 amino groups of 2 amino acids 4) Between 2 carboxylic group of 2 amino acids

110. C	hose the correct feature	about	
	biomacromolecules		
	1) Molecular weight is less than one thousand		
	Daltons		
	2) Found in acid insolut	ole fraction	
	3) Includes lipids which	n are polymers	
	4) Found in plant ashes		
111.	In a nucleic acid phos	sphate moiety links to	
	and	carbon of the sugar of	
	succeeding nucleotide		
	1) 3^{rd} and 5^{th} carbon		
	3) 2^{nd} and 4^{th} carbon	4) 3^{rd} and 4^{th} carbon	
112.	The bond between the		
	hydroxyl group of sugar	ris	
	1) Hydrogen bond	2) Ester bond	
	3) Peptide bond 4) Ph		
113.	Double helical model o	f DNA was	
	given by		
	1) Watson and Crick	· •	
	3) Pauling 4) Will		
114.	This constitutes the bac	kbone of DNA	
	molecule		
	1) Sugar phosphate – s	ugar chain	
	2) Nitrogen bases		
	3) Nucleotide	4) Nucleoside	
115.			
	maximum number of h	ydrogen bonds present	
	in each coil		
117	1)20, 20 2)20,30 3)3		
116.	The number of hydroge	-	
	between adenine and th	ymine, guanine and	
	cytosine are	2 12	
	1)2 and 3	2)3 and 3	
117	3) 3 and 2 The local inclusion	4) 2 and 2	
117.	The breaking and making		
	chemical reactions. The	ese two process	
	together called	2) Catabalian	
	1)Anabolism	2) Catabolism	
110	3) Metabolism 4) Bi		
118.	The catalyst which has		
	given metabolic conver		
	1) Lipids 2) Polysa 2) Proteins 4) Nucl		
119.	3) Proteins 4) Nucle The protein that show of		
117.	1) Lipids	2) Polysaccharides	
	3) Nucleotides	4) Proteins	

120.	1 2	127.	Т
	skeletal muscles explains		w
	1) glucose become lactic acid		I.
	2) acetic acid become cholesterol		p
	3) glucose become pyruvic acid 4)		Ī
	glucose become ethyl alcohol		cł
121.	1 2		Π
	as endergonic process		cł
	1)Anabolism 2)Catabolism		1.
100	3) Metabolism 4) Biochemical pathway		3
122.	0	128.	С
	skeletal muscles explain		bi
	1) Anabolism 2) Catabolism		A
123.	3) Metabolism 4) Biochemical pathway In process like biosynthesis, osmotic and mechanical		ce
123.	work the energy that is utilized is		В
	1) chemical energy 2) radiant energy		p
	3) bond energy 4) hot energy		С
124.			00
121.	in a living system is		D
	1) ATP 2) ADP 3) GDP 4) GTP		a1
	-,		1. D
	TYPE - II	129.	D T
125.	Find out the correct statement from the follow-	127.	A
	ing		B
	I. Most abundant protein in animal world is		D
	RuBISCO		С
	II. Some proteins act as a intercellular ground		
	substance		D
	III. Most abundant protein in entire biosphere		
	is collagen		1.
	IV. Some proteins act as receptors	130.	St
	1. I and II correct 2. II and III correct		co
126	3. II and IV correct 4.I,II,III and IV correct		I.]
120.	Identify the correct expressions from the following statements (Recording elemental		Π
	following statements. (Regarding elemental analysis of living tissue)		W
	I. The weight of a fresh vegetable = wet weight		Π
	I. Wet weight of a living tissue-all the water =		V
	Dry weight of the tissue		Ν
	III. The weight of Ash=Weight of inorganic		st
	constituents except water		1.
	IV. Weight of organic constituents = Dry weight	131.	ai S
	- weight of Ash	131.	S fc
	1. I and II only 2. I, II and III only		I.
	3. I and IV only 4. I, II, III and IV		т. П

The most exciting aspect of chemistry deals						
with						
I. Isolation of thousands of chemical com-						
pounds from living organism						
II. Determination of the structure of isolated						
chemical compounds						
III. Determination of synthetic mechanisms of						
chemical compounds of living organisms						
1. Except I 2. Except II						
1. Except I2. Except II3. I and II only4. I, II and III						
Correct statements regarding reductionist						
biology are						
A. It enables us to describe the various pro-						
cesses in molecular terms						
B. It will tell us what types of organic com-						
pounds are present in living organisms						
C. It can explain the unusual processes that						
occur during any diseased condition						
D. It is a physico chemical approach to study						
and understand living organisms						
1. D only 2. A and D only3. A, B and						
Donly 4. A, B, C and D						
The anabolic pathways of the following are						
A. Conversion of glucose to lactic acid						
B. Conversion of acetic acid to						
cholesterol						
C. Conversion of glucose to CO ₂ and						
H ₂ O						
D. Formation of sucrose from CO_2 and						
H ₂ O ²						
$1. A, B^2$ 2. C, D 3. A, C 4. B, D						
Study the following statements and identify the						
correct statements :						
I.Living state is non-equilibrium steady state						
II. The system at equillibrium cannot perorm						
work						
III. The living process is a constant effort to pre-						
vent the system falling into equillibrium						
IV. Without metabolism there cannot be a living						
state						
1. III and IV only 2. I, III and IV only 3. II						
and III only 4. I, II, III and IV						
Select the set of correct statement from the						
following:						
I. Biomolecules have turn over						
II. Every metabolic reaction is a catalysed						
n. Every metabolic reaction is a catalysed						

reaction

III. Living state is an equillibrium steady state to be able to perform work

IV. Living state and metabolism are synonymous

1.All 2. Except II 3. Except IV

4. Except III

132. Find the correct statement

1. Biomacromolecules are found in the acid soluble fraction

2. The compounds found in the acid soluble pool have a common feature ie; molecular weight ranging from 18 to 800 daltons

3. Acid insoluble pool represents cytoplasmic composition only

4. Acid soluble pool is due to macromolecules from cytoplasm and cell organelles

133. Read the following statements :

a) Different froms of DNA named after english aplhabets

B) Different proteins have different number of aminoacids

C) Different metabolic reactions are catalysed by different enzymes

D) Different nucleotides of DNA have different sugars

1. Except D all are wrong

- 2. A and B only correct
- 3. All are correct 4. D only wrong
- 134. Find the incorrect statement from the following:
 - 1. Aminoacids are substituted methanes

2. Chemical and physical properties of aminoacids essentially depends on their amino, carboxyl and the R-functional groups

3. When a tissue is analysed for its chemical composition, sulphates and phosphates are observed only in the acid soluble fraction

4. Relative abundance of carbon and hydrogen with respect to other elements is higher in any living orgaism than in earths crust

135. Identidy the incorrect statement I. No uncatalysed metaqbolic conversions in living system

II. Living state is a non-equilibrium steady state to be able to perform work

III. Peptide bond formation and glycoside bond formations are dehydration reactions Iv. Ester bonds present between nucleotide pairs of opposite strands of DNA 1. Only III 2. I, III and IV 3. Only IV 4. Only II 136. Identify the correct statement 1. In a metabolic pathway in which glucose is converted into lactic acid occurs in eight metabolic steps 2. In a DNA molecdule two strands of polynucleotides are parallel and complimentary to each other 3. The back bone of DNA is formed by sugarphosphate-nucleotide chain 4. In a cell living process is a constant effort to prevent falling into equillibrium 137. Correct statements regarding reductionist biology are A. It enables us to describe various processes in molecular terms B. It will tell us what types of organic compounds are present in living organisms C. It explain the unusual processes that occur during any diseased condition D. It is a physico chemical approach to study and understand living organisms 1. D only 2. A and D only 3. A, B and D only 4. A, B, C and D 138. Identify the true statement I. Majority of metabolic reactions occur in isolation but are not always linked to some other reactions II. Living state is non-equillibrium steady state III. Biomolecules of a cell have a turn over IV. Back bone of DNA is formed by the alternate linkages between sugar and nitrogen bases 1. I, II, III, IV 2. II and III 3. II and IV 4. I, II and IV 139. Non-nitrogenous biomolecules among the following are I. Polyasaccharides II. Nucleic acids **III.** Proteins IV. Lipids 1. I only 2. I and II only 3. I and IV only 4. I, III and IV

		JLLC	
	A complex polysaccharide chitin is found in I. Plant cell wall II. Exoskeletons of arthropods III. Cell wall of fungi IV. Bacterial cell wall 1. I, II, III, IV 2. II and IV only 3. II and III only 4. I only Identify the correct statement with respect to proteins 1. It is a component of the retentate 2. They are homopolymers 3. Consists of branched chains of amino acids	146.	 At each step The rise per Identify a true s helical molecul Each strands Both strands Back bone is nitrogen base Bases are per
142.	 4. Each protein contains 21 types of amino acids Identify the correct expression from the following statements : 1. All the aminoacids found in the cell are proteinaceous 	147.	Match the fol aminoacids : List - I A. Hydroxym group B. Acidic C. Neutral D. Aromatic
143.	 Most of the cellular aminoacids are proteinaceous Most of the cellualr aminoacids are nonproteinaceous Aminoacids are neither acidic (or) neutral Find the incorrect statement : Aminoacids are linked by peptide bonds by dehydration In a polysaccharide the individual monosacharides are linked by glycosidic bond The bond between phosphate and hydroxyl group of sugar in a DNA molecule is an ester bond The bond between purine of one strand to 	148.	The correct n A 1. IV 2. IV 3. IV 4. IV
144.	 the pyrimidine of other strand of DNA is ester bond Identify the incorrect statement from the following: 1. Photosynthesis is an anabolic process 2. Respiration is a good exacpmple for catabolism 3. Anabolic pathways always energy 4. Energy currenc liberated of path of the cell is 		The correct n A 1 III 2. III 3. II 4. III
145.	ATP Identify the incorrect statement with respect to DNA double helical structure 1. Show secondary structure 2. The pitch of each helix is 34A ⁰		

2. The pitch of each helix is $34A^0$

- p of ascent the strand turns 36°
- r base pair would be 3.4A^o
- statement regarding a double ule of DNA
 - l is identical
 - Is are parallel to each other
 - is formed by the sugar phosphate
 - erpendicular to axis

TYPE - III

147.	Match the following lists with reference to						
	amin	oacids :					
	List - I			List	List - II		
	A.H	ydroxyme	thyl	I. Val	I. Valine		
	group						
	B. Acidic			II. Cy	II. Cytidilic acid		
	C. Neutral			III. T	III. Tyrosine		
	D. Aromatic			IV. S	IV. Serine		
				V. Gl	utamic aci	d	
	The correct match is :						
		А	В	С	D		
	1.	IV	V	Ι	III		
	2.	IV	V	Ι	II		
	3.	IV	V	II	Ι		
	4.	IV	Ι	II	III		
148.	Study the following lists :						
	List - I		List - II				
	A. Morphine		I. Toxin				
	B. GLUT-4		II. Drug				
	C. Curcumin		III. Alkaloid				
	D. Ricin		IV. Sensory receptor				
			V. Glucose transport				
			(Prot	ein)			
	The correct match is :						
		А	В	С	D		
	1	III	V	II	IV		
	2.	III	V	II	Ι		
	3.	II	III	Ι	IV		
	4.	III	Ι	II	IV		

149.	Match the follo	owing lis	sts :		152.	Matc List	h the fol	lowing t List		
	List - I List - II			Elen	nent	% w	eight of	f Earth's		
	(Protein strue	cture)	re) (Shape)					crust	0	
	A. Quatenary				I. Hydrogen 1. 46					
	B. Primary		II. Ho	ollow		II. Oz	xygen	2.27	.7	
			WO	olen ball		III. S	ulphur	3. 2.	1	
	C. Secondary		III. C	oiled spring		IV. Si	ilicon	4. 0.1	14	
	D. Tertiary		IV. C	ube				5.0.0)3	
			V. Pla	ate		The o	correct n	natch is	:	
	The correct ma	atch is :					Ι	II	III	IV
	А	В	С	D		1.	1	4	5	3
	1. V	Ι	III	II		2.	3	1	4	2
	2. IV	III	V	Ι		3.	5	3	2	4
	3. V	III	IV	Ι		4.	4	1	5	2
	4. IV	I	II	V	153.		y the ta			
150.	Study the follo	owing an	id ident	ify the correct		List		List		
	match :		.			Com	ponent		total c	ellular
	List - I		List				• 1	mas	S	
	Proteinaceou	15	R-Group			I. Lip		1.1		
	amino acids		T TT	1			ucleic	2.2		
	A. Serine	т	•	drogen			ids	2 5	7	
	B. Glycine II. Hydroxy methyl			III. Protein3. 5-7IV. Ions4. 70-9						
	C. Alanine		II. Met	hyl group		IV. IC	ons			
	The correct ma		C			The		5.10		
	A 1. III	B I	C II			The	correct n			Π <i>I</i>
	1. III 2. II	ı III	II I			1	I	II 5	III 2	IV 1
	2. II 3. I	III II	ı III			1. 2.	2 2	5 3	3 5	1
	5. I 4. II	II I	III III			2. 3.	2 3	2 2	5	1 1
151.	Study the follo			hoose the		3. 4.	5	2	1	4
131.	correctg match	-	si, and c	lioose the	154.		h the fol			7
	List - I	List -	П		154.	List		lowing t	List	- 11
	Protein	Funci				(Pro				iction)
	A. Insulin			ception			nino acid	l		ridine
	B. Collagen	II. Ho	-	- prom			ucleosid			ycerol
	C. Receptor III. Biocatalyst intercel			III. Carbohydrate		3. Ribose				
	lular					5		lenylic acid		
	D. Trypsin	IV. En	zyme				2			anine
	51			bstance		The c	correct n	natch is		
	The correct ma	atch is :					Ι	II	III	IV
	А	В	С	D		1.	3	1	2	4
	1. II	V	III	IV		2.	5	1	3	4
	2. II	IV	Ι	V		3.	5	4	3	2
	3. III	V	Ι	IV		4.	5	1	3	2
	4. II	V	Ι	III						

155.	Mate	h the fol	lowingta	bles :		1	TYPE -	IV
1001	List - I List - II		158. FInd out the correct matches from the					
		ponent	S	Bone		folllow	ring table :	
		ninoacid		1. Gl	ycosidic	Element	% weight of	% weight of
				bond	S			Human body
	II. M	lonosacc	chardies	2.Pho	osphodiester	I. Carbon	0.03	18.5
				bond	S	II. Nitrogen	Very little	3.3
	III. N	litrogen	bases	3. Pe	ptide bonds	III. Sodium	2.8	0.2
	IV. N	lucleotic	les 4. Est	er bond	1	IV. Calcium	1.5	3.6
				-	drogen	V. Magnesium		0.1
				bond	S	1. Except-IV		-
	The		natch is :			3. Except-III		-
		Ι	II	III	IV		fy the correct ma	-
	1.	3	5	1	2	List - I	List - II	List - III
	2.	3	2	5	1	A. Rubber	Latex	Polymeric
	3.	3	1	2	4			Secondary Metabolites
150	4.	3	1	5	2	B. Gums	Latex	Polymeric
156.			loiwng ta		п	D. Ouilis	Latex	Secondary
	List			List				Metabolites
		pounds nino acid		Туре 1. 8	S	C. Cellulose	Polysaccha-	Peptide bonds
		itrogen l		1. 8 2. 5		C. Centulose	rides	i epilde bollds
		urines	Jases	2. <i>3</i> 3. 3		D. Curcumin	Drug	Secondary
			es 4.21	5.5			8	Metabolite
	1	ymmann	05 1. 21	5.2		1. A,B	2. A,B,C	3. A,D 4. B,C,D
	The	correct n	natch is :	0			fy the correct ma	
		Ι	Π	III	IV	List - I	List - II	List - III
	1.	2	1	4	5	A. DNA	Phosphodies-	Nucleotide
	2.	2	4	1	3		ter bonds	Polymer
	3.	4	2	5	3	B. RNA	Hydrogen	Nucleotide
	4.	4	2	1	5		bonds	polymer
157.	Mate	h the fol	loiwng:			C. Starch	Glycosidic	Heteropolymer
	List			List	- II		bonds	
		tore hou		1. Gl	ycogen	D. Inulin	Glycosidic	Homopolymer
	-	gy in plaı					bonds	
		tore hou		2. Ho	mopolymer	1. Onl	•	2. Only A, C, D
		gy in anir				3. Onl	•	4. Only B,D
		ant cell v	wall	3. Ch	itin		fy incorrect mate	
	mate		11	4 01		List - I	List - II Carbon	List - III Number of
	D. Fi	ungi cell	wall		ucose	Fatty Acids	Carbon Number	Double bonds
	T1		1	5. Sta	arch			
	Ine		natch is :	C	D	A. Arachidic	C_{20}	0
	1.	A 1	В 2	C 4	D 5	B. Palmitoleic	Acid C_{20}	1
	1. 2.	5	1	3	2	C. Arachidoni	÷	4
	3.	5	3	2	1			
	4.	5	1	2	3	D. Palmitic Ac	C_{20}	1

1. Only 3. Only 162. Identif		2. Only B 4. Only D
List - I	List - II	List - III
A. Pentoses	$(C_5H_8O_4)n$	Xylans
B. Hexoses	$(C_6H_{10}O_5)n$	Glucans
C. Chitin	Fungal	Specialized
	Cellulose	Compounds
D. Hexoses	Fructans	Inulin
1. ABCD	2. AD	
3. BCD	4. Only	/ D

TYPE - V

163.	The most abundant elemetns in protoplasm					
	(Uttarakhand PMT2	2007;BC Pune 2008)				
	1. Nitrogen, carbon, o	xygen				
	2. Carbon, hydrogen, oxygen					
	3. Carbon, sodium, hy	drogen				
	4. Carbon, phosphoru	s, hydrogen				
164.	Secondary metabolite	e is (DPMT 2006)				
	1. Sugar	2. Glucose				
	3. Antibiotics	4. All of these				
165.	The simple polyhydro:	xy ketone molecule				
	containing 3-7 carbons is a					
	(Kera	ula PMT 2006)				
	1. Dipeptide	2. Polypeptide				
	3. Disaccharide 4. Pol	ysaccharide				
166.	Which one is the swee	e				
	(MPPMT 2007 JIPN	AER 2008; JAR				
	PMT 2008)					
	1. Sucrose	2. Glucose				
	3. Fructose	4. Maltose				
167.	,					
	1. Aldohexose	2. Ketohexose				
	3. ALdopentose 4.	-				
168.	Example of hexose sug	0				
	1. Mannose 2. Gal					
	3. Arabinose 4. Bot					
169.		ng sugar (Orissa JEE				
	2004)					
	1. Glucose	2. Sucrose				
	3. Galactose	4. Mannose				

JLLC	OLLS					
170.	8					
	(RPMT 2002; Orissa JEE 2007)					
	1. Glucose	2. Sucrose				
	3. Galactose	4. Mannose				
171.	Sucrose, a common tal	ble sugar is composed				
	(PMT 2008)					
	1. glucose+fructose					
	2. glucose+galactose					
	3. fructose+galactose	4. None of these				
172.	Which of the following	sugar is not found in				
	plant (JEE-	-				
	1. Sucrose	2. Glucose				
	3. Lactose	4. Fructose				
173.	Which sugar is present	in milk (KCET-				
	2010)					
	1.Glucose	2. Lactose				
	3. Cellulose	4. Glycogen				
174.	The types of linkage present in carbohydrates					
	is (MPT-2007)					
	1. Amide 2. Pept					
	3. Glycosidic 4. Pho					
175.						
	biomolecules on earth, are produced by					
	(CBSE-2005)					
	1. Some bacteria, algae					
	2. Fungi, algae and green plant cells					
	3. All bacteria, fungi and algae					
170	4. Viruses, fungi and bacteria					
176.						
	kinds of molecules					
	(AIPMT-2004)	• • 1				
	1. Carbohydrates and lipids					
	2. Nucleic acids and proteins					
	 Phospholipids and proteins Proteins and carbohydrates 					
177.		•				
1//.	Example of a monouns (PMT-2004)	Saturated fatty acturs				
	(1 W1-2004) 1. Oleic acid	2. Palmitic acid				
	3. Linilenic acid 4. A					
178.	A fatty acid is unsatura					
170.	2002)					
	1. Contains hydrogen					
	2. Contains double bor	nd				
	3. Contains an acidic g					
	4. One or more double					

179.	A triglyceride molecule has (KERALA PMT-2003)	
	1. Three fatty acids with two glycerol mol-	
	ecules	
	 One fatty acid with one glycerol molecule Three fatty acids with one glycerol mol- 	
	ecule	
	4. Two fatty acids with two glycerol molecule	
	5. One fatty acid with one glycerol molecule	
180.	Which of the following is an essential liquid	
	(AFMC 2001)	
	1. Fats 2. Oils	
	3. Steroids 4. Phospholipid	
181.	Lipids are insoluble in water because they are	
	(CBSE-2002)	
	1. Neural 2. Hydrophilic	
	3. Hydrophobic 4. Zwitter ions	
182.	Phospholipid is (MANIPAL-2008)	
	1. One fatty acid and three glycerol	
	2. Phosphoric acid, two fatty acid and one	
	glycerol	
	3. Phosphoric acid, one fatty acid and three	
	glycerol	
	4. Phosphoric acid, three fatty acids and one	
102	glycerol	
183.	Which of the following is the simplest amino	
	acid (JIPMER-2007)	
	1. Glycine 2. Tyrosine 2. Tyrosine 4. Asymptotic site	
184.	3. Tyrosine 4. Asparagine	
104.	8	
	optically active (BHU-2005) 1. Valine 2. Glycine	
	3. Leucine 4. Isoleucine	
185.		
105.	(AMU-2002)	
	1.Lysine 2.Arginine	
	3. Thymine 4. Tryptophan	
186.	Which amino acid is required for synthesis of	
	haemoglobin? (PBPMT-2000)	
	1. Glu 2. His 3. Lys 4. All of these	
187.	Sugar and amino acids are (MHCET-	
	2007)	
	1. Inoculum 2. Feed stock	
	3. Primary metabolites	
	4. Secondary metabolites	

188.	The differences between one amino acid and				
	another are found in the (AMU-2002)				
	1. R-group 2. Amino agroup				
	3. Peptide bond 4. Carboxyl group				
189.	An element playing important role in nitrogen				
	fixation is (CBSE-2010)				
	1. Zinc 2. Copper				
	3. Manganese 4. Molybdenum				
190.					
	(CBSE-2001)				
	1. Lipid 2. Protein				
	3. Steroid4. Cellulose				
191.	Chemical nature of cellulose is				
	1. Polypeptide 2. Disacharide				
	3. Polyncleotide 4. Polysaccharide				
192.	Chitin is a (JKCMEE-2007)				
	1. Lipid 2. Protein				
	3. Polysaccharide 4. Sphingomyelin				
193.	The basic unit of chitin is (JIPMER-				
	2004)				
	1. Glucose 2. Fructose				
	3. Galactose 4. N-acetyl glucosamine				
194.	1 9				
	(CBSE-2004)				
	1. Glucose 2. Fructose				
	3. Galactose 4. N-acetyl glu-				
	cosamine				
195.					
	1. Lipid 2. Carbohydrate				
100	3. Fibrous protein 4. Globular protein				
196.	DNA and RNA differ in (BHU-2003)				
	1. N-base and sugars				
	2. Sugar and phosphate groups				
	3. Number of C-atoms in sugars				
107	4. N-bases and phosphate groups				
197.					
	ated fatty acid.				
	Reason (R) : There are present one of more double bonds between carbon atoms in				
	unsaturated fatty acids				
100	(AIIMS-2007)				
198.	Carbohydrates are commonly found as starch				
	in plant storage organs. Which of the follow- ing five proparties of starch (Λ E) make it				
	ing five proparteis of starch (A-E) make it				
	useful as a storage material?				

(CBSE-2008) A. Easily translocated

	B. Chemically			
	C. Easily diges	sted by animals		
	D. Osmotically	yinactive		† B \
	1. A and E	2. B and D		
	3. B and C	4. A, C and E		Substrate
199.	Molecules that	t bear charged groups of		
		ity are knowns as (DUMAT-		A Substrate
	2007)			Product
	1. Cations	2. Anions		Reaction>
	3. Zwitterions	4. Negative ions		
200.		hydrates and proteins are		1) endothermic reaction with energy A in the
200.	stored in the b			presence of enzyme and B in the absence of
	1. Fats	2. Starch		enzyme
		s 4. Monosaccharide		2) exothermic reaction with energy A in the
201	-			presence of enzyme and B in the absence of
201.		ollowng biomolecules does		enzyme
	have a phosph			3) Endothermic reaction with energy A in the
		[CBSE Aipmt - 2015]		absence of enzyme and B in the presence of
		n a diglyceride		enzyme
		arides in a polysaccharide		4) Exothermic reaction with energy A in the
		s in a polypeptide		absence of enzyme and B in the presence of
	/	ls in a nucleotide		enzyme
202.		exoskeleton of arthropods is	206.	Which one of the following statements is
	formed by the	polymerisation of		wrong [Neet - 2016, Phase-1]
		[CBSE Aipmt - 2015]		1) cellulose is a polysaccharide
	1) keratin sulp	hate and chondroitin sulphate		2) uracil is a pyrimidine
	2) D-glucosan	nine		3) glycine is a sulphur containing amino acid
	3) N-acetyl glu	acosamine		4) sucrose is a disaccharide
	4) ipoglycans		207.	A typical fat molecules is made up of
203.	A non-protein	aceous enzyme is		[Neet - 2016, Phase-1]
		[Neet - 2016, Phase-2]		1) one glycerol and three fatty acid molecules
	1)lysozyme	2) ribozyme		2) one glycerol and one fatty acid molecule
	3) ligase	4) deoxyribonuclease		3) three glycerol and three fatty acid mol-
204.	Which of the f	ollowing is the least likely to be		ecules
	involved in stat	bilising the three-dimensional		4) three glycerol molecules and one fatty acid
	folding of most	proteins		molecule
	C	[Neet - 2016, Phase-2]	208.	Which of the following are not polymeric
	1) hydrogen b		200.	[Neet - 2017]
	2) electrostatio			1) nucleic acid 2) proteins
	3) hydrophobi			3) polysaccharides 4) lipids
	4) ester bonds		209.	Which one of the following statements is
205.	,	ollwoing describes the given	207.	correct, with reference to enzymes
2001		y [Neet - 2016, Phase-2]		[Neet - 2017]
	5 april conteen			
				1) apoenzyme = holoenzyme + coenzyme
				2) holoenzyme = apoenzyme + coenzyme 2) $accentration = apoenzyme + beloenzyme$
				3) coenzyme = apoenzyme + holoenzyme

4) holoenzyme = coenzyme + cofactor 210. The two functional groups characteristic of sugars are [NEET - 2018] 1) hydroxyl and methyl 2) carbonyl and methyl 3) carbonyl and phosphate 4) carbonyl and hydroxyl 211. Which of the following glucose transporters is insulin - dependent [NEET - 2019] 1) GLUT IV 2) GLUT I 3) GLUT II 4) GLUT III 212. Consider the following statements [NEET - 2019] A) Coenzyme or metal ion that is tightly bound to enzyme protein is called prosthetic group B) A complete catalytic active enzyme with its bound prosthetic group is called apoenzyme Select the correct option 1) A is false but B is true 2) both A and B are true 3) A is true but B is false 4) both A and B are false 213. Concanavalin A is [NEET - 2019] 1) a pigment 2) an alkaloid 3) an essential oil 4) a lectin "Ramachandran plot" is used to confirm the 214. [NEET - 2019] structure of 2) proteins 1) RNA 3) triacylglycerides 4) DNA 215. Prosthetic groups differ from co-enzymes in [Odisha NEET - 2019] that 1) they require metal ions for their activity 2) they (prosthetic groups) are tightly bound to apoenzymes 3) their association with apoenzymes is transient 4) they can serve as co-factors in a number of enzyme-catalyzed reactions Which of the following organic compounds is 216. the main constituent of lecithin [Odisha NEET - 2019] 1) arachidonic acid 2) phospholipid 3) cholesterol 4) phosphoprotein

MODEL TEST - I

MODEL TEST - I						
1.1	2.2	3.3	4.4	5.4		
6.3	7.2	8.2	9.1	10.3		
11.3	12.1	13.1	14.4	15.3		
16.3	17.3					
	MC	DDEL T	TEST - I	Ι		
18) 3	19) 1	20) 2	21) 4	4 22) 4		
23) 2	24) 1	25) 2	26) 1	1 27) 4		
QUESTION BANK						
	TYP	E - I				
1) 3	2) 4	3) 2	4) 3	5)4		
6) 4	7) 1	8) 4	9) 3	10) 4		
11) 3	12) 2	13) 4	14) 4	15) 4		
16) 3	17) 2	/	19) 1	20) 4		
21) 4	22) 3	23) 4	24) 2	25) 2		
26) 3	27) 2	28) 4	29) 3	30) 2		
31) 4	32) 1	33) 2	34) 2	35) 2		
36) 4	37) 2	38) 4	39) 3	40) 3		
41) 3	42) 2	43) 3	44) 3	45) 3		
46) 2	47) 1	48) 2	49) 3	50) 4		
51) 2	52) 4	53) 4	54) 2	55) 3		
56) 4	57) 4	58) 2	59) 4	60) 4		
61) 2	62) 1	63) 2	64) 1	65) 4		
66) 2	67) 2	68) 3	69) 2	70) 3		
71) 2	72) 3	73) 3	74) 3	75) 1		
76) 2	77) 3	78) 1	79) 4	80) 4		
81) 2	82) 1	83) 2	84) 3	85) 1		
86) 4	87) 3	88) 3	89) 3	90) 1		
91) 3	92) 1	93) 3	94) 3	95) 2		
96) 3	97) 2	98) 2	99) 1	100) 2		
	102) 1	103) 1	104) 4			
	107) 3					
	112) 2					
	117) 3			120) 1		
121) 1	122) 3					
		YPE - 1				
	126) 4			,		
	131) 4					
135) 3	136) 4	137) 4	138) 2	139) 3		

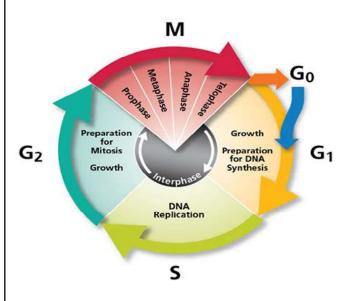
135) 3 136) 4 137) 4 138) 2 139) 3 140) 3 141) 1 142) 3 143) 4 144) 3 145) 4 146) 4

TYPE - III

147) 1 148) 2 149) 1 150) 1 151) 4 152) 4 153) 2 154) 4 155) 4 156) 3 157) 4

TYPE - IV

158) 1	159) 3	160) 2	161) 4	162) 1
	T	YPE - Y	V	
163) 2	164) 3	165) 3	166) 3	167) 2
168) 4	169) 2	170) 2	171) 1	172) 1
173) 2	174) 3	175) 1	176) 3	177) 2
178) 2	179) 3	180) 2	181) 3	182) 2
183) 1	184) 2	185) 3	186) 2	187) 3
188) 1	189) 4	190) 4	191) 4	192) 3
193) 4	194) 4	195) 3	196) 1	197) 4
198) 2	199) 3	200) 1	201) 4	202) 2
203) 2	204) 4	205) 2	206) 3	207) 1
208) 4	209) 2	210) 4	211)1	212) 4
213) 4	214) 2	215) 2	216) 2	


SYNOPSIS

- All the organisms including the largest plant and the largest animal start their life from a single cell.
- Growth and reproduction are characters or features of cells and the living.
- Plants and animals do grow by cell division, cell elongation and cell differentiation but not in all their parts and all their life. All cells in a plant do not divide all the time but meristematic cells divide all through their life in higher plants. They are located at growing region i.e root tip and shootip. All nucleated living plant cells under defined conditions regain the power of division. Animals do not have meristematic tissues.
- All cells reproduce by division. Each parent cell divides to form two daughter cells. Hence cells double by every division. If ' n' is number of divisions n-1 is total divisions.
- Newly formed cells grow and divide again and form cell population.ie..group of cells derived from a single parent cell.
- Growth and division cycles make a single cell to form a structure made of millions of cells.

CELL CYCLE

- DNA replication and cell growth takes place during cell division.
- The total genetic material or haploid set of chromosomes of a species is called genome.
- The coordination of cell growth,DNA replication and cell division results in progeny or daughter cells containing intact genome.
- The sequence of events by which a cell duplicates its genome, synthesises the other constituents of the cells and eventually divides to form two daughter cells is termed as cell cycle.
- Cell growth is a continuous process but DNA synthesis is confined to a single stage.[S]
- The replicated chromosomes [DNA] are then distributed to daughter nuclei by a series of events [Prophase to Telophase] during division which are under genetic control.

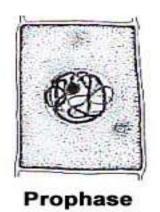
- Human cell in culture is typically eukaryotic and divides approximately once in 24 hours.
- The time required for one division is called generation time. It is 90 minutes in Yeast

PHASES OF CELL CYCLE

- The cell cycle is divided into inter phase and division phase or mitotic phase. In the former the cell spends 95% of the time and in the later one hour of the 24hrs average duration of cell cycle.
- The 'M' phase starts by karyokinesis [nuclear division] and ends by cytokinesis [cytoplasmic division].

INTERPHASE

- The cell prepares for division in interphase by growth and DNA replication. As there is no actual division of cell this is called resting phase or non apparent division phase.
- \triangleright G₁,S, and G₂ are the three stages of interphase.
- Interval between mitosis and DNA replication is called interphase.
- Active metabolism, continuous growth and DNA synthesis are features of interphase.
- > Time period between G_1 and G_2 is called 's' or synthetic phase.


- Synthesis of DNA ie 2cDNA increase to 4c DNA,no increase in chromosome number ,no change in percentage of nucleotides,unaltered ploidy are the characters of 's' phase.
- Start of DNA replication in nucleus and centrioles duplication in cytoplasm occur simultaneously in animal cells.
- ➢ In adult animals many cells do not appear to show division but they divide to replace dead or injured cells only. The cells that do not divide exit from G₁ and enter G₀ stage and remain metabolically active but divide when required by the organism.
- In animals diploid somatic cells only divide but in plants both diploid [root tip,shootip etc;] and haploid cells[microspore and megaspore higher plants and all cells in Spirogyra] divide in the life cycle.Gamete formation in gametophyte and sporophyte formation from zygote takes place by mitosis.

M-PHASE

- In 'M' phase or mitotic phase chromosome number does not change in daughter cells so it is also called equational division.
- Onion root tip cell[2n]contains 14 chromosomes .The same number occurs in G₁,S,G₂,Pand M stages. In anaphase the chromosome number equals to 4n.
- When DNA content of root tip cell after 'M' phase is 2c the DNA content is 2c in G₁ 4c after 'S' and G₂.

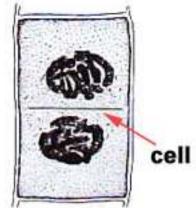
PROPHASĚ

- > It occurs after 'S' and G_2 phases.
- Each chromosome contains two chromosomes.
- > .Initiation of spindle takes place.
- > .Duplicated centrioles move to opposite poles.
- E.R,Golgi complex, Nucleolii, Nuclear envelope are absent

METAPHASE.

- Morphology of chromosomes is easily studied due to completion of condensation.
- In the initial stages chromosomes are scattered due to complete disintegration of nuclearmembrane.
- Each chromosome contains two sister chromatids attached at one centromere which has kinetochore on either side.
- Kinetochores are sites of attachment of spindlefibres.
- The chromosomes attached to spindle fibres move to the centre of the cell and form equitorialplate.
- The plane of alignment of the chromosomes at metaphase with centromeres of all of them in one line is called eqitorial plate. This is a key feature of the stage.
- In each chromosome at equatorial plate, one chromatid is connected by its kinetochore to spindle fibres from one pole and its sister chromatid is connected by its kinetochore to spindlefibre from opposite pole.

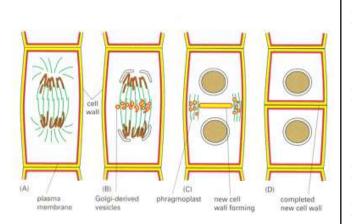
ANAPHASE


- The centromere of chromosome splits and chromatids separate and move to opposite poles.
- > The chromatids are now called chromosomes.
- The cell contains double the number of chromosomes.
- The centromere of chromosomes is towards poles and arms are towards equator.

TELOPHASE

Chromosomes at respective poles decondense and loose their individuality and tend to collect in a mass.

- Nuclear envelope assembly occurs around chromosomes.
- Nucleus ,Golgicomplex and Endoplasmic reticulum reappear.


cell plate

Telophase

CYTOKINESIS

- Division of cytoplasm into daughter cells is called cytokinesis.
- In animal cell daughter cells arise by a furrow and its deepening in the plasmamembrane.
- In plants cytokinesis takes place by cellplate method because plant cell is covered by Cellwall.
- Cellplate is the starting structure of cellwall and it represents middlelamella.
- Cellplate arises at the centre of cell and it forms cellwall by centrifugal growth.
- E.R and Golgicomplex play role in cellwall formation.
- The cytokinesis ends by distribution of cell organells between daughter cells.

Free nucelar division

 No cytokinesis after karyokinesis leads to freenuclear condition or Syncytium.
 Eg; Liquid endosperm of coconut and initial stages of embryosac development

Significane of Mitosis

- It causes growth in multicellular organisms. So it occurs usually in the development of diploid plant or animal from zygote. Some times it occurs in the development of haploid body in organisms.Eg;Gametophyte development in plants from spore and haploid insects from gametes. Eg;Male honey-bee.
- It restores the nucleocytoplasmic ratio disturbed by growth of cell.
- It maintains identical genetic complement in all the body cells either haploid or diploid because all the cells derived by mitosis have same number and types of chromosomes.
- In cell repair it replaces aged or injured cells. So has a role in wear and tear and wound healing process.EgConstant replacement of cells in the gut and bloodcells.
- It occurs in apical and lateral meristems in plants and continues growth.

MEIOSIS

- The body of organisms is diploid. It contains specilized cells for reproduction.
- The specilized diploid reproductive cells undergo division that reduces chromosome num-

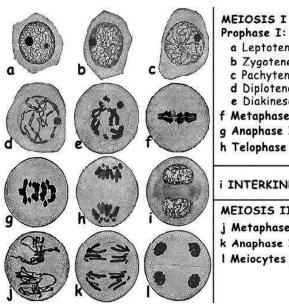
ber by half and results in haploid gametes.

- This division in which diploid (sporophytic) cells with two sets of chromosomes form haploid (gametophytic) cells with one set of chromosomes is called reduction division or Meiosis.
- The haploid gametes by fertilization or union of gametes form diploid zygote. Hence Meiosis converts sporophytic phase to gametophytic phase and fetilization gets back spophytic phase.
- Meiosis occurs during gametogenesis in plants and animals.
- Meiosis involves two cycles of karyokinesis and cytokinesis accompanied by one time DNA replication and one time division of centromere. The two cycles are designated as Meiosis and Meiosis-II
- Meiosis-I begins by replication of chromosome into two sister chromatids at 'S' phase after DNA replication.
- Meiois involves pairing of homologous chromosomes or synopsis and crossing over leading to genetic recombinations.
- Four haploid cells are formed from one mother cell.
- > The cell undergoing meiosis is called Meiocyte.

MEIOSIS-I (Heterotypic division)

- Longer and complex phase.
- Leptotene, Zygotene, Pachytene, Diplotene, Diakinesis are its phases.
- Results in two haploid daughter cell from a diploid cell so reduction division.

LEPTOTENE


- Neat packing of chromosomes continues thoughtout the phase.
- Chromosomes become visible under microscope.

ZYGOTENE

- Pairing of homologous chromosomes or synapsis takes place.
- Each pair is called bivalent and their number equals to haploid number.
- Synapsis involves formation of synaptenimal

complex.

 \geq Each chromosome contains two chromatids hence bivalent is called tetrad (four strand stage).

Prophase I: a Leptotene **b** Zygotene c Pachytene

- d Diplotene e Diakinese
- f Metaphase I
- g Anaphase I
- h Telophase I

INTERKINESIS

MEIOSIS II j Metaphase II k Anaphase II | Meiocytes (4)

PACHYTENE

- \geq Prolonged stage.
- \geq Bivalents clearly appear as tetrads.
- \triangleright Exchange of genetic material takes place between nonsister chromatids and this is called crossing over.
- \triangleright Besides centromeres non sister chromatids are linked or attached at chiasma.

DEPLOTENE

- Repulsion leads to breakage or dissolution of \geq synaptonemal complex.
- \geq Homologous chromosomes of the bivalents separate from each other but attached at sites of crossing over.
- \triangleright In oocytes of vertebrates this stage lasts for months or years.

DIAKINESIS

- \triangleright Final stage.
- \geq Terminalization takes place.
- \triangleright The sliding of chiasma to ends of chromasomes is called terminalization.
- \geq The condensation of chromosomes completes.

The nucleous and nuclear membrane disappear.

METAPHASE-I

- \triangleright The bivalents align on equatorial plate (chromosomal congression).
- Microtubules from opposite poles of the spindle \triangleright attach to the pair of homologous chromosomes.

ANAPHASE-I

- \triangleright No division of centromere.
- \triangleright Homologous chromosomes are pulled to opposite poles (Disjunction).
- \triangleright The sister chromatids remain attached to centromere.
- \triangleright Chromosome number at each pole is half that of parent cell.

TELOPHASE-I

- \triangleright Nuclear membrane and nucleolus reappear. Two daughter nuclei occur in the mother cell.
- \triangleright Cytokinesis separates two daughter cells. This is called diad of cells. They are haploid (n).

INTERKINESIS

- \triangleright It is the stage between two nucelar divisions.
- DNA is not synthesized in this stage. \geq
- \triangleright It is short lived.
- \triangleright Though chromosomes uncoil and show dispersion yet it is not like the complete disperson observed in Interphase.
- \triangleright It is followed by simpler phrophase-I.

MEIOSIS-II (Homeotypic division)

- This is equational division. \triangleright
- \triangleright It occurs in two daughter nuceli.
- Two spindles are formed in this stage. \triangleright

PROPHASE-II

- \triangleright It occurs after division of cytoplasm and usually before complete elongation of chromosome.
- Nuclear membrane disappears and changes are \triangleright similar to Mitosis.

METAPHASE-II

 \geq Chromosomes arrange at the equatiorial plate.

Microtubules of opposite poles attach to kinetochores of sister chromatids.

ANAPHASE-II

The centromere of each chromosome splits and sister chromatids move to opposite poles.

TELOPHASE-II

 Nuclear membrane, nucleolus reappear and decondensation of chromosomes takes place.
 Four haploid nuclei appear.

CYTOKINESIS

Division of cytoplasm results in four haploid cells. This is called tetrad.

Significance

- It protects same chromosome number accross generations in sexually reproducing organisms.
- It maintains one set of chromosomes in gametes.
- It increases genetic variability an account of crossing over leading to recombinations which lead to variations helpful for evolution.

CHROMOSOME NUMBERS IN

MEIOCYTES (DIPLOID, 2N) AND GAMETES (HAPLOID, N) OF SOME ORGANISMS.

r		
Organism	Chromosome	Chromosome
	num berin	num berin
	m eiocyte(2n)	gam ete(n)
Human beings	4 6	2 3
House fly	1 2	6
Rat	4 2	2 1
Dog	78	39
Cat	38	19
Fruit fly	8	4
Ophioglossum (a	1260	630
fern)		
Apple	3 4	17
Rice	2 4	12
Maize	20	10
Potato	4 8	2 4
Butterfly	380	190
Onion	16	8
Haplopappus	4	2
gracilis		

MODEL TEST - I

1.	Cells dividing all thro	ough their life are present in
	1) Parenchyma	2) Collenchyma
	3) Meristem	4) Complex tissues
2	Meristems are locate	ed at/in
	1) Node and interno	de
	2) Stem tip and root	t tip
	3) Fruit and seed	
	4) Bract and scale le	eaf
3	Enucleated living cel	l cannot show
	1) Cell divison	2) de-differentiation
	3) Re-diffirentiation	4) All the above
4	A population of cells	s develop from
	1) two cells	2) single cell
	3) many cells	4) five cells
5.	Cell division includes	· · · · · · · · · · · · · · · · · · ·
	1) Both DNA replication	ation and growth of cell
	, 1	t no DNA replication
		but no growth of cell
		lication nor growth of cell
6.		romosomes represents
	1) Gene	2) Genome
	3) Germ plasm	4) Idiogram
7.	The sequence of ever	nts by which a cell grows,
		ne and divides into two
	daughter cells is calle	
	1) Interphase	2) Division phase
	3) Cell cycle	4) Cell growth
8.	Time required by hu	uman cells in cutlure and
	yeast cells for one di	
	. 1	
	1) 24 hrs and $1\frac{1}{2}$ h	rs
	2	
	2) $1 - hr and 24 h$	
	2) $1\frac{1}{2}$ hrs and 24 h	rs
	3) 9 minutes and 24	
	4) 24 hrs and 2 hou	
9.	Division of nucleus i	
		2) Karyokinesis
	3) Cytokinesis	
10.	<i>,</i> •	G_1 phase the percentage
10.		-
	of the same in S pha	
	1) 20% 3) 10%	2) 40% 4) 30%
1	3) 10%	דן 3070

	СП-			D CELL DI VIS	IUN
11	The sequence of stag	ges in interphase	23.	In animal cells duplica	tion of centriole and move-
	1) G_1, S, G_2	2) G_2, S, G_1		ment of them to op respectively in	pposite poles take place
	3) G_1, G_2, S	4) S, G_1, G_2		1) S phase and prop	hase
12	Centrioles duplicatio			2) S phase and prop	
	1) Animal cells			3) Anaphase and pro	
	· ·	4) All eukaryotic cells		4) Metaphase and ar	-
13		· •	24	· -	• .
15		en cell with draws from	24.		somes in G_1 phase, after e upto metaphase in onion
		2) G_2 stage		root tip cell respectiv	1 1
	3) G_1 stage			1) 16,16,24	•
14	Mitosis does not occ			3) 16,16,32	4) 12,16,32
	1) Animals	_)	25.	What phase comes a	after G_2
1.7	3) Prokaryotes			1) Prophase	-
15.	Haploid vegetative co			3) Anaphase	· -
	1) Chlorella	•	26.		al condensation begins in
1.0	3) Spirogyra	,		1) Metaphase	2) Prophase
16.	-	ns 20 chormosomes daugh-		3) Anaphase	, -
		om it contain how many	27.	· -	y of mitotic spindle takes
	chromosomes each?	2		place is	J 1
	1) 40	2) 60		1) Metaphase	2) Anaphase
17.	3) 20 2C DNA becomes 4	4) 10		3) Telophase	
1/.			28.	· •	ving is seen at the end of
	1) G_1 2) G_0	2		prophase	-
18.	Replication of DNA	enzymes are active in		1) Golgi complex	
	1) G_1	2) G_0		2) Endoplasmic reticu	ılum
	3) S	4) G_2		3) Nucleolus	
	,		20	4) Cell membrane	1
19.	If 6000 nucleotides a	tre in G_1 phase number of	29.		e beginning of metaphase
	nucleotides in S phas			are scattered in the c	
	1) 1200	2) 12000		1) Cell organelles ar	
	3) 6000	4) 9000		2) Nuclear envelop i3) Cell membrane is	
20.	In adult animals cells			4) Ribosomes are ab	
	1) Growth	2) replacement of cells	30.	Sites of attachment o	
	3) cell elongation		50.	1) Kinetochore	2) Centromere
	4) increasing DNA c	ontent		3) Telomere	4) Arms
			31.	/	omosomes complete in
	MODEL 1			1) Prophase	2) Metaphase
21.	Shortest phase in cel	l cycle		3) Anaphase	4) Telophase
	1) S	2) G_1	32.		tids of Allium seen in
	3) G_2	4) M phase		metaphase of onion 1 1) 16	root tip cell 2) 32
22.	How many chromat	ids are present in a chro-		3) 64	4) 96
	mosome in prophase			- ,	,
	1) 1 2) 2	3) 4 4) 8			
			I		

33.	Metaphase is characterised by	45.	Zygote arises by		
55.	1) Equitorial plate		1) Mitosis	2) Meiosis	
	2) Two chromatids in a chromosome		3) Somatogamy	4) Fertilization	
	3) Two centromeres in each chromosome	46.	Meiosis converts	i) i ortinization	
	4) Two kinetochores in each chromatid	-10.		gametonhyte	
34.	Chromosomes move centripetally during		 Gametophyte to gametophyte Sporophyte to gametophyte 		
Э т .	1) Prophase2) Metaphase		3) Gametophyte to ga		
	3) Anaphase 4) Telophase		4) Vegetative cell to		
35.		47.	4) vegetative cen to Meiosis involves	b reproductive cens	
55.	Centromere divides during	4/.			
	1) Interphase 2) S phase		· •	yokinesis and two cycles of	
26	3) Anaphase 4) Telophase		cytokinesis	1	
36.	Chromosomes move to the poles in			ryokinesis and one cycle of	
	1) Prophase 2) Anaphase		cytokinesis		
~ -	3) Interphase 4) Interkinesis		· · ·	vokinesis and two cycles of	
37.	Chromosome identity is lost during		cytokinesis		
	1) Prophase2) Metaphase		-	aryokinesis and two times	
	3) Anaphase 4) Telophase		division of centrom		
38.	Changes are opposite to prophase in	48.		loes DNA replicate in the	
	1) Anaphase 2) Telophase		two cycle of karyok		
	3) Interphase 4) Metaphase		1) 1	2) 2	
39.	Precurssor of cell wall		3) 3	4) 4	
	1) Cell plate 2) Spindle	49.	In meiosis chromos	omes replicate in	
	3) Centriole 4) Centrosome		1) Prophase	2) Anaphase	
40.	Syncytium arises due to		3) S phase	4) Telophase	
	1) No karyokinesis 2) No cytokinesis	50.	Sister chromatids in	n meiosis occur first in	
	3) No spindle formation		1) Leptotene	2) Zygotene	
	4) No protoplasm		3) Pachytene	4) Interphase	
41.	Genetic compliment identical to parent is ob-	51.	Which one of the f	ollowing does not occur in	
	tained by		meiosis?		
	1) Meiosis 2) Mitosis		1) Synapsis	2) Chiasma	
	3) both meiosis and mitosis		3) Recombination of	of genes	
	4) Free nucelar division only		4) Somatogamy	0	
42.	Growth disturbs the ratio between	52.	Number of cells for	ormed from one mother in	
	1) Cell wall and protoplasm		Meiosis		
	2) Nucleus and protoplasm		1) 2	2) 4	
	3) Nucleus and cytoplasm		3) 6	4) 8	
	4) Cell organelles to cytoplasm	53.	Cell undergoing me	piosis is called	
			1) Coenocyte	2) Syncytium	
	MODEL TEST III		3) Meiocyte	4) Collocyte	
	MODEL TEST - III	54.	•	n Meiosis arise after	
43.	The type of cell division reducing the chromo-		1) Meiosis-I	2) Telophase-I	
	some number by half		3) Anaphase-I	4) Prophase-I	
	1) Amitosis 2) Mitosis	55.	Synapsis occurs du	/ 1	
	3) Meiosis 4) Somatic division		1) Leptotene	2) Zygotene	
44.	Meiosis occurs in		3) Pachytene	4) Deplotene	
	1) All types of cells 2) Diploid somatic cell			1) Deprovene	
	3) Haploid reproductive cell				
	4) Diploid reproductive cell	I		265	
				205	

56.	Synapsis occurs betw	ween	68.	Genetic variability is	increased by
001	1) Homoglous chron			1) Somatic division	
	2) Non homologous			3) Amitosis	4) Reduction division
	, -	and non homologous chro-	69.	Prophase-II occurs in	n howmany cells?
	mosomes	8		1) 1 2) 2	3) 4 4) 3
	4) Sex chromosome	s only	70.	Homologous chrome	osomes move to opposite
57.	Tetrad contains how	-		poles in	
	1) 2	2) 4		1) Metaphase-I	2) Anaphase-I
	3) 6	4) 8		3) Metaphase-II	4) Anaphase-II
58.	Synaptinemal compl	/	71.	How many spindles	occur in Meiosis?
	1) Leptotene	2) Zygotene		1) 1	2) 2
	3) Pachytene	4) Deplotene		3) 3	4) 4
59.	Largest subphase		72.	Four haploid nuclei	occur at the end of
	1) M phase	2) Leptotene		1) Prophase-I	2) Anaphase-I
	3) Pachytene	4) Deplotene		3) Telophase-II	4) Anaphase-II
60.	Crossing over result	, 1	73.	Sister chromatids me	ove to opposite poles in
	1) Parental combinat			1) Prophase	2) Metaphase-II
	2) Recombinations			3) Anaphase-II	4) Telophase
	3) Mutation	4) Abressions	74.	Centromere divides i	n
61.	Synaptenimal compl	ex breaks in		1) Anaphase - I	2) Anaphase-II
	1) Zygotene	2) Meiosis-II		3) Metaphase-I	4) Metaphase-II
	3) Deplotene	4) Pachytene	75.	Same chromosome n	umber accross generations
62.	, 1	that lasts for months and		is maintained by	
	years in vertebrates			1) Mitosis	2) Meiosis
	1) Leptotene	2) Zygotene		3) Somatic division	
	3) Pachytene	4) Deplotene		4) Equational division	n.
63.	Terminalization is a t	feature of			
	1) Zygotene	2) Pachytene		OUESTIC	ON BANK
	3) Diakinesis	4) Leptotene		•	
64.	Completion of conde	ensation of chromosomes,		TYPI	
	breakdown of nuclea	r membrane, spindle initia-	76.		s of equational divisions are
	tion are characters o	f		•	onion root tip to form 128
	1) Metaphase-II	2) Anaphase-I		cells?	
	3) Diakinesis	4) Deplotene		1) 64	2) 128
				3) 7	4) 127
	MODEL 1	TEST - IV	77	Cells in G_0 phase of c	
65.	Centromere doesnot			1) Suspend cell cycle	
	1) Mitosis	2) Meiosis-I	70	3) Exit cell cycle	4) Terminate cell cycle
	3) Meiosis-II	4) Somatic division	78.		as much DNA as another
66.	/	er appears to be reduced to		similar cell, the most	
	half for the first time			1) It is secreting	2) It is dividing
	1) Prophase-I	2) Metaphase-I	70	3) it is respiring	4) It is moving
	3) Anaphase-II	4) Anaphase-I	79.	-	which nucleolus and nuclear
67.	Meiosis-II) ·F 2 - 2			and chromosomes become
		n 2) Reduction division		distinct is:	\mathbf{O} \mathbf{A} 1
	3) Amitosis	4) Endomitosis		1) Prophase	2) Anaphase
	-)	,		3) Telophase	4) Interphase

80.	The growth of multicellular organisms takes place	92.	Nuclear envelope and nucleolus disappear during
	by		1) Telophase 2) Metaphase
	1) Cell division 2) Cell elongation		3) Prophase 4) Anaphase
	3) Cell differentiation	93.	In Metaphasic plate
	4) The combination of 1,2,3		1) Chromatids of the chromosomes are arranged
81.	Cell division in the organisms result in the		in one line
	1) Growth of the organisms being stopped		2) Centromeres of the chromosomes are
	2) Increase in the number of cells		arranged in one line
	3) Death of the cells		3) Chromatids and centromeres of the
	4) Fusion of cells with one another		chromosomes are arranged in one line
82.	In multicellular organisms all the cells present in		4) Centromeres of the chromosomes float in the
	the body of organism divide by		cytoplasm freely
	1) One type of cell division	94.	Ideal stage for counting chromosomes in mitosis is
	2) Different types of cell division		1) Metaphase 2) Zygotene
	3) Cannot say 4) Meiosis only		3) Diplotene 4) Diakinasis
83.	The intermediate period present between the two	95.	The region of chromosomes to which spindle fibres
	division phases is called		are attached
	1) Prophase 2) Telophase		1) Centriole 2) Chromosomes
	3) Interphase 4) Metaphase		3) Kinetocore 4) Chromocentre
84.	In cell cycle new cell organelles are formed in	96.	In metaphase chromosomes are arranged on
	1) Prophase 2) Telophase		metaphasic plate with the help of
	3) Anaphase 4) Interphase		1) Cytoskeleton 2) Spindle fibres
85.	How many sub phases are present in Interphase		3) Nucleus
	1) 4 2) 3		4) Chromosomes are arranged automatically on
	3) 2 4) 1		cell plate
86.	In the cell cycle	97.	During Anaphase, movement of daughter
	1) Interphase is followed by division phase		chromosomes towards the poles is due to
	2) division phase is followed by Interphase		1) Pressure developed in the centromere
	3) Interphase, division phase both start at a time		2) Contraction of spindle fibres
	4) Interphase, division phase alternate with each other		3) Repulsion between the chromosomes
87.	DNA is duplicated in		4) Contraction of chromatid arms
	1) G-I phase 2) S-Phase	98.	In Anaphase, the chromosomes attain different
	3) G-II phase		shapes. It is due to the
	4) G-I and G-II phases		1) Contraction of spindle fibres
88.	Histone proteins are not synthesized in		2) Pressure developed in the centromere
	1) G_1 phase 2) S- phase		3) Position of centromere
	3) G_2 phase 3) $G_1 - G_2$		4) Movement of chromosomes towards the poles
89.	The sequence of events in a cell cycle	99.	The number of chromatids present in a
	1) $S-G_1-G_2-M$ 2) $S-M-G_1-G_2$		chromosome during anaphase of mitosis
	3) $G_1 - \dot{S} - G_2 - M$ 4) $M - G_1 - \dot{G}_2 - \tilde{S}$		1) 1 2) 2
90.	The best region to observe mitosis in plants		3) 4 4) Many
	1)Anther 2)Root apex	100.	Division of centromere and movement of daughter
	3) Stem 4) Embryo		chromosomes to opposite poles occur during
91.	In Prophase of Mitosis, these are formed		1) Prophase 2) Telophase
	1) Centromere 2) Chromatids		3) Metaphase 4) Anaphase
	3) Centromere & Chromatids		
	4) Daughter chromosomes		

		1		
101	. Duplicated chromosomes tend to travel to the	110.	-	some shall be present in a
	poles in		-	c anaphase if its egg cell has
	1)Anaphase 2)telophase		ten chromosome?	
	3) Metaphase 4) Prophase		1) 10 (Ten)	2) 20 (Twenty)
102	. The movement of chromosomes is		3) 30 (Thirty)	4) 40 (Forty
	1) Independent of spindle fibres	111.	Genetic information	is transferred from zygote to
	2) Dependent upon the association of spindle		all body cell by	
	fibres		1) Meiosis	2)Amitosis
	3) Due to cytoplasmic streaming		3) Endomitosis	4) Mitosis
	4) Due to excess of ATP generated by	112.	If you are provided w	ith root-tips of onion in your
	mitochondria		class and are asked t	
103	. During mitosis, metaphase differs from anaphase			n of the following stages can
	in having		you most convenient	ly look into
	1) Same number of chromosomes, half number		1) Telophase	2)Anaphase
	of chromatids		3) Prophase	4) Metaphase
	2) Half number of chromosomes, half number of			
	chromatids		TYP	E - II
	3) Half number of chromosomes, same number	113.	During meiosis redu	ction of chromosome num-
	of chromatids		-	ce in which of the following
	4) Same number of chromosomesand double the		stages?	
	number of chromatids		1) Prophase I	2) Anaphase I
104	. Pick out the wrong pair		3) Metaphase I	, -
	1) Anaphase-division of centromere	114	· •	osis occurs at the time of:
	2) Metaphase-chromosomes clearly appear		1) Bud formation	
	3) Prophase-Spiralization		2) Formation of male	e and female gamete
	4) Telophase-chromosomes becomes thin, long		3) Pollen grains or m	
105	. How many mitotic divisions occur in a cell of root		4) seed germination	1
	tip to form 256 cells	115		antageous because it brings
	1) 8 2) 64	_	about:	0 0
	3) 255 4) 128		1) Variation	2) Linkage
106	. Number of mitotic cell divisions for formation of		3) Inbreeding	4) Stability
	2 cells	116.	A cell undergoing me	, ,
	1) One 2) Two		1)Androcyte	2) Zygote
	3) Infinite 4) Three		3) Meiocyte	4) Zoospore
107	Which division maintains genetic simililarity	117.	Zygotic meiosis is the	, <u> </u>
	1) Mitosis 2) Meiosis		1) Capsella	2) Spirogyra
	3) Amitosis 4) Reduction division		3) Fern	4) Angiosperms
108	. In which stage of cell division, number of	118.	Homologous chromo	
	chromosomes are best counted?		1) Are from different	
	1) Prophase 2) Metaphase		2) Are from same par	
	3) Telophase 4) Interphase		3) Form pair during n	
109	. In which order, cytokinesis occurs in plants?		4) Exhibit cross over	
	1)Centripetal 2)Centrifugal		,	1
	3) Oblique 4) Equatorial			

128. Each chromosomal pair has a distinct morphology
with regard to
1) Relative length of arms and position of
centromere
2) Relative length of chromosomes but the position
of the centromere does not matter
3) Position of centromere but length of the
chromosome is not important
4) The number of active genes present there
129. In meiosis tetrads of chromatids are found in
1) Prophase-I 2) Prophase-II
3) Interphase 4) Metaphase -II
130. Due to the occurrence of which phenomenon in
Meiosis, evolution of organisms takes place
1) Synapsis 2) spiralization
3) Crossing over 4) Teminalization
131. Crossing over involves
1) Deletion of chromosomes
2) Duplication of chromosomes
3) Exchange of genetic material
4) Segregation of homologous chromosomes
132. Crossing over occurs during
1) Pachytene 2) Diplotene
3) Zygotene 4) Leptotene
133. Exchange of chromosome segment between
maternal and paternal chromatids during meiosis
is called
1) Linkage2) Crossing over3) Diakinesis4) Synapsis
3) Diakinesis4) Synapsis134. During prophase-I homologous chromosomes
pair with each other to form bivalents. Each
bivalent is an association of
1) Two chromatids and one centromere
2) Two chromatids and two centromeres
3) Four chromatids and four centromeres
4) four chromatids and two centromeres
135. The stage in meiosis I where the homologous
chromosomes divide is
1) Anaphase-II 2) Diplotene
3) Diakinesis 4) Pachytene
136. Disappearance of attractive forces between
homologous chromosomes occurs in
1) Zygotene 2) Pachytene
3) Diplotene 4) Diakinasis
137. Homologous chromosomes exchange segment
with block of genes during
1) Pachytene 2) Zygotene

269

3) Diplotene 4) Lepotene	147. Meiosis does not occurs in?
138. During anaphase-I, which one of the following	1) Ovule 2) Anther
separate from each other and reach opposite poles	3) Microsporangia 4) Shoot tip
1) Chromosomes 2) Chromatids	148. Which of the two events restore the normal
3) Chromonemata 4) Centromeres	number of chromosomes in life cycle
139. Chromosome number in meiosis is halved during	1) Mitosis and Meiosis
1) Metaphase-I 2) Anaphase-I	2) Meiosis and fertilization
3) Prophase-I 4) Telophase-I	3) Fertilisation and mitosis
140. The total no.of nuclear divisions in Meiosis	
	4) Only meiosis
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	149. A cell is bound to divide, if it has entered
3) 4 4) 3	1) G_1 - Phase 2) G_2 - phase
141. In a tetraploid cell Meiosis occurs. what is the	3) Prophase 4) S – phase
chromosomal condition of daughter nuclei formed	150. Which of the following not occurs in Anaphase $-I$
after Meiosis-I is	1) Segregation of homologous chromosomes
1)Diploid 2)Haploid	2) Contraction in spindle
3) Tetraploid 4) Polyploid	3) Poleward movement of chromosomes
142. Meiosis-I and Meiosis-II are not similar with one	4) Division of centromere
another because	151 Homologous chromosomes shows maximum
1) In both, Prophase, Metaphase, Anaphase,	attraction during
Telophase will not occur	1) Leptotene 2) Zygotene
2) Chromosome number is not reduced	3) Pachytene 4) Diplotene
	152. In meiosis
3) In both spiralization and despiralization will not	
	1) Division of nucleus twice but replication of
4) Spindles are formed	DNA only once
143. The cell division responsible for the formation of	2) Division of nucleus twice and replication of
gametes in animal cells is	DNA twice
1) Mitosis 2) Meiosis	3) Division of nucleus once and replication of
3) Amitosis 4) Both Mitosis and Meiosis	DNA is also once
144 Meiosis involves	4) Division of nucleus once and DNA-replication
1) One division of nucleus and one division f	is twice
chromosomes	153. Gap between meiosis – I and II is called
2) Two division of nucleus and one division of	1) Interphase 2) Interkinesis
chromosomes	3) Diakinesis 4) Metakinesis
3) One division of nucleus and two divisions of	154. Many cells function properly and divide mitotically
chromosomes	though they do not have
4) Two divisions of nucleus and two division of	1) Plasma membrane 2) Cytoskeleton
chromosomes	3) Mitochondria 4) Plastids
145 Crossing over of chromatids during meiosis leads	155. At anaphase – II of meiosis each chromosome
to	contains
1) Mutation 2) Sex determination	1) 4 DNA 2) 3-DNA
3) New gene combination	3) 2-DNA 4) 1-DNA
4) Extinction of species	156. Each chromosome composed of one chromatid in
146. Nuclear envelope reappears at	1) Anaphase-I 2) Anaphase-II
1) Metaphase 2) Prophase	3) Metaphase-I 4) Metaphase-I
3) Anaphase 4) Telophase	157. Homologous chromosomes are
	I.) Uniparental II) Biparental
	III) Multiparental

					_
1) I only	2) II only	164.	What is the number	of chroma	atids present in
3) I & II only	4) III only		anaphase-I at one pole		-
158. Meiocytes are			of potato undergoes m	-	
I) Haploid cells	II) Diploid cells		1) 24	2) 96	
III) Polyploid cells	(even)		3) 48	4) 26	
1) I only	2) II only		Find out the incorrect	/	
3) I & II only	4) II and III	105.	1) Leptotene – Nucleu		ad
· · · · ·	t sequence of the following		· •	-	
subphases of propl			2) Anaphase II–Disjun		valents
A) Zygoten e	B) Diplotene		3) Pachytene–Crossi	-	• 1 4
C) Diakinesis	D) Leptotene		4) Metaphase I–Orier		ivalents
E) Pachytene	_)	166.	DNA duplication occ		
1) D-A-E-B-C	2) C-A-E-B-D		1) Mitosis only	2) Meiosi	s only
3) D-E-A-B-C	4) D-A-E-C-B		3) Meiosis-I and Mite		
160. During Terminalizat	,		4) Meiosis -II and Mi		
_	romosomes towards the poles	167.	Meiosis involves two		
· · · · · · · · · · · · · · · · · · ·	omosomes towards the poles		1) One nuclear divisio	on and one s	somatic division
occur			2) One equational and	l one somat	tic division
	promatids towards the poles		3) One reductional	division a	nd one mitotic
occur	• , 1,1 1		division		
	aisma towards the poles occur		4) One reduction di	ivision and	d one amitotic
,	omosomes towards the centre		division		
occure		168.	In which one of the fo	ollowing ch	romosomes are
-	ce of changes occuring during		divided	C	
the prophase-I of N			1) Mitosis only	2) Meiosi	s only
	stage R crossing over		3) Meiosis-I and Mito	·	5
_	erminalization [®] synapsis		4) Meiosis -II and Mi		
	Leptotene stage		If the endosperm		plant has 36
over terminalisat		1051	chromosomes what		
, <u> </u>	synapsis crossing over		chromosomes at each		
® terminalisation (1) 24	2) 12	ig i maphase i
	® synapsis ® crossing over		3) 72	2) 12 4) 48	
® spiralization® to		170	/	/	a an matanhaga
162. Sequence of stages	1		If a cell is having 12 cl		es on metaphase
1) Leptotene, Pach	ytene, Zygotene, Diakinesis,		II equatorial plate, it b		4 . 1
Diplotene			1) Oryza sativa		ana tabaccum
, . e	tene, Pachytene, Diplotene,		3) Triticum aestivum	· ·	1
Diakinesis			In a plant Meiotic div		-
3) Diplotene, Diak	inesis, Pachytene, Zygotene,		cells and Meiotic d		• •
Leptotene			mother cells occur. H	•	eeds are formed
, 1	otene, Pachytene, Diplotene,		1) 25	2) 20	
diakinesis			3) 40	4) 80	
163. Find out the correct	et sequence of events during	172.	For the formation of 1	00 seeds, he	ow many pollen
meiosis			grains are required		
1) disjunction	2) Crossing over		1) 100	2) 50	
3) Synapsis	4) terminalisation		3) 25	4) 200	
1) 3-2-1-4	2) 3-2-4-1	173.	Number of chromoso	mes in a ga	mete of tobacco
3) 2-3-1-4	4) 3-4-1-2		1) 34 2) 24	3) 44	4) 54
·				,	,

CH-11 : CELL CYCLE AND CELL DIVISIONhromosomes is 40 , the number of1) 252) 75in gametes3) 504) 100

174. If the diploid chromo	somes is 40, the number of		1) 25
chromosomes in gam			3) 50
1) 30	2) 40	185.	AcellofH
3) 20	4) 4		of mitosis.
175. The number of mei	otic and mitotic divisions		stage of
	on of 120 male gametes in		chromoson
angiosperms	8		1)1:6
1) 15, 120	2) 30, 60		3) 1 : 3
3) 15, 60	4) 30, 120	186.	Colchicine,
	reduction divisions required		
for the production of	_		1) $G_1 - ph$
1) 50	2) 25	10-	3)Anapha
3) 100	4) 75	187.	Number o
/	o undergoes meiosis, each		ovules in a
of the four resulting c			1) 125
	2) 24 chromosomes	100	3) 25
	4) 96 chromosomes	188.	If the num
	nromosomes is undergoing		what shall
	chromosomes are found on		daughter c
each metaphase plate			respectivel
1) 16	2) 8		1) 8 and 4
3) 4	4) 32	100	3) 8 and 8
/) zygotes in a tomato flower	189.	If the $n = 10$
	of meiotic divisions involved		possible in
will be			1) 32 Biva
1) 59	2) 63		3) 16 Biva
3) 109	4) 99		
,	visions shall produce 4 fertile		
eggs in Dolichos	1	190.	Match the
1)1	2) 2		List-I
3) 4	4) 8		A) Doubl
,	visions required to form 120		B) Doubl
seeds is	1		ofchrom
1) 30	2) 120		C) Doub
3) 150	4) 240		ofcells
· · · · · · · · · · · · · · · · · · ·	tic and mitotic generations		D) Doubl
	nation of 60 antipodals in a		organelle
multiovulate ovary	1		
1) 60, 180	2) 20, 60		1)
3) 60, 120	4) 40, 120		2)
	apparatii formed during		3)
-	tion of 80 microspores		4)
1) 10	2) 80		
3) 20	4) 60		
· · · · · · · · · · · · · · · · · · ·	apparatii formad during		
-	undred microspores from		
microspore mother of	-		

microspore mother cells is

	2)20	.) 100						
5.	A cell of Haplopappus	gracilis is in anaphase stage						
	of mitosis. A cell of Or	yza sativa is in Metaphase						
	stage of Meiosis-I	. What is the ratio of						
	chromosomes of these two cells							
	1)1:6	2) 1 : 4						
	3) 1 : 3	4) 1 : 2						
6.	Colchicine, a mitotic iso	on, arrests the cell division in:						
	1) G_1 - phase	2) G_2 - phase						
	3)Anaphase	4) Metaphase						
7.	Number of meiosis	required to produce 100						
	ovules in angiosperms	is						
	1) 125	2) 100						
	3) 25	4) 75						
8.	If the number of bivale	ents are 8 in metaphase – I,						
	what shall be the nur	nber of chromosomes in						
	daughter cells after m	eiosis – I and meiosis – II						
	respectively							
	1) 8 and 4	2) 4 and 4						
	3) 8 and 8	4) 16 and 8						
9.	If the $n = 16$ in plant ce	ll then how many bivalents						
	possible in metaphase	e–I of meiosis						
	1) 32 Bivalents	2) 16 Tetravelents						
	3) 16 Bivalents	4) 32 Bivalents						

TYPE - III

90.	Match the	following						
	List-I		List-II					
	A) Doubling of DNA I) Anaphase							
	B) Double the number II)Cytokinesis							
	of chromosomes							
	C) Double the number III) S-phase							
	ofcells							
	D) Doubl	ing of cell	IV) G ₂ -phase					
	organelles							
	-	Α	B	С	D			
	1)	III	Ι	II	IV			
	2)	Ι	III	IV	II			
	3)	IV	II	Ι	III			
	4)	II	IV	III	Ι			
	· ·							

191.	Find out the correct match					
	List -I List –II					
	A) Metaphase I) Shape of the chromosome					
	B)Anapha	ase II) Ex	change of c	hroma	tids	
	C) Diakin	esis III)Co	ounting of c	hromo	somes	
	D) Crossir		Terminalisa			
			tructure of			
		chr	omosomes			
		Α	B	С	D	
	1)	IV	Ι	II	III	
	2)	V	Ι	IV	II	
	3)	II	IV	V	Ι	
	4)	V	Ι	III	IV	
192.	Study the f	following Li	sts			
	List- I		List-II			
	A) Crossin	ng over	I) Diploter	ne		
	B) Synapsis II) Zygotene					
	C) Weakening of III) Leptotene					
	synaptone	mal force				
	D) Terminalisation IV) Pachytene					
			V) Diakine	esis		
		Α	B	С	D	
	1)	IV	II	Ι	V	
	2)	V	III	II	Ι	
	3)	IV	II	V	III	
	4)	III	II	IV	V	
193.	Matching t	he following	g			
	List - I		List -II			
	A)Attract	ion betweer	n I) Crossin	ig over		
	homologo	us				
	B) exchan	ge of geneti	cII) Synaps	is		
	material b	etween				
	homologo	us chromos	omes			
	C) Repuls	ion betweer	n III) Segreg	gation		
	homologo	us				
	D) Separa	tion of	IV) Diplot	ene		
	homologo	us				
		Α	В	С	D	
	1)	II	Ι	IV	III	
	2)	Ι	III	IV	II	
	3)	IV	II	Ι	III	
	4)	II	IV	III	Ι	

	CLLL		U I		
194.	Match the	following			
	List - I		List-II		
	A) Separa	ation of	I) Anaphas	se I	
	genomes				
	B) Separa	tion of	II) Anapha	se of m	nitosis
	chromatid	s			
	C) Forma	tion of	III) Metap	hase	
	spindle ap	paratus			
	D) Geneti	ic recombin	ations IV) P	'rophas	e I
		А	В	С	D
	1)	Ι	II	III	IV
	2)	Ι	III	IV	II
	3)	IV	II	Ι	III
	4)	II	IV	III	Ι
195.		following			
	List - I		List-II		
	A)Anaph		I) One spin		
	B)Anaph	ase–II	II) Separat	tion of	two
			genomes		
	C) Metap		II) Two spir		
	D) Telopł	nase-II	IV) Separa		ftwo
			chromatide		
			V) Four da	-	
		A	В	С	D
	1)	II	IV	I	III
	2)	III	I	IV	V
	3)	II	IV	III	V
	4)	III	II	V	Ι

EXERCISE - IV

196. STAGE I. S-phase II. G2-Phase **III.** Prophase IV. Metaphase Choose correct pair 1) I & II 197. **STAGE** I. Prophase II. Metaphase III. Anaphase IV. Telophase Choose correct pair 1) I & II 198. STAGE I. Leptotene II. Zygotene III. Pachytene IV. Diplotene Choose correct pair 1) I & II 199. **STAGE** I. Metaphase I II. Metaphase II III. Anaphase I IV. Anaphase II towards poles Choose correct pair 1) I & II 200. **STAGE** I. Prophase I II. Metaphase I III. Anaphase I IV. Telophase I 1) I & II

EVENT

Autocatalysis of DNA Heterocatalysis of DNA Disappearance of nuclear membrane Formation of spendle fibers

2) II & III EVENT

Condentation of chromosome Formation of spendle fibers Contraction of spindle fiber

Reappearance of nuclear membrane

2) II & III EVENT Synaptonemal complex Synopsis Crossing over Terminalization

2) II & III EVENT

Bivalents on metaphase plate Invisble chromosomes on metaphasic plate Reduction of chromosomal number to half Doubling of chromosomes

2) II & III EVENTS Crossing over Formation of bivalents Separation of genome Formation of haploid Nuclei

2) II & III

RESULT

Doubling of DNA Increased protein content. Shortening of chromosomes

Movement of chromosomes

3) III & IV 4) II & IV RESULT

Disapparance of nuclear membrane Orientation of chromosomes movement of chromosome towards center Disapparance of nucleus

3) III & IV 4) II & IV RESULT Bivalent Bivalent Genetic variation Disappearance of Synaptionemal complex

3) III & IV
4) II & IV
RESULT
Centromers are in one line.
Centromers are in one line.

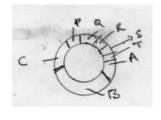
Movement of homologous chromosomes towards poles Movement of daughter chromosome


3) III & IV 4) II & IV **RESULT**

Genetic recombination Bivalents on equatorial plate Reduction of chromosomal number Fusion of chromatids Choose correct pair 3) III & IV 4) II & IV

DIAGRAMS BASED QUESTIONS

201 A stage in cell division is shown. Select the answer which gives correct identification of the stage with its characters.



 Late anaphase - Chromsomes move away from quitorial plate golgie complex not present.
 Cytokinesis - Cell plate formation mitochondria distribution between daughter cells.

3) Telophase - Endoplasmic reticulum and nucleolus not reformed yet.

4) Telophase - Nuclear envelop reforms golgi complex reformed.

202. In cell cycle if A is G₁ stage identify anaphase

1) B

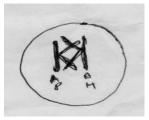
4) T

203. In the diagram, if Q is metaphase DNA is syntehsized between

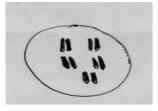
1) A and B	2) A	2) A and C			
	3) P and Q	4) R			


3) R

2) Q


and T

- 204. The cell will enter G_0 stage after
 - 1) Q 2) R
 - 3) A 4) B


205. This diagram indicates that

- 1) The chromosomes that pair during zygotene are sex chromosomes only.
- 2) Synopsis involves either autosomes or allosomes.
- 3) Synopsis involves both autosomes and allosomes.
- 4) Synopsis occurs in both mitosis and meiosis.
- 206. What is wrong with this diagram related to pachytene?

- 1) Chromosomes are not condensed.
- 2) Chiasmata are two in number in the bivalent.
- 3) Nucleolus is not represented.
- 4) Crossing over occurs in four stranded stage.
- 207. The is the stage of meiosis called zygotene. It belongs to

1) Happlopappus gracillis

- 2) Solanum tuberosum
- 3)Allium 4) None of the above

TYP	E - V		duplication of chromo	
208. Activity of recombina	ase (ligase + Endonuclease)	214.	Phase of the cell cycl	
	(EAMCET 2010)		replication is	(CPMT-95)
1) Leptotene	2) Zygotene		1) G_1 2) G_2	3) S 4) M
3) Pachytene	4) Diplotene	215.	How many microspo	re mother cells are
209. Identify wrong pair	/ 1		needed to form 100 m	icrospores (CBSE-95)
	MCET 2011)		1) 25 2) 50 3) 7	
Ũ (nearly formed in G ₂ phase.	216.	Chromatids of pachy	tene chromosomes are
	mosomes occur in S phase			SE-96)
of interphase.	niosonies ocean în 5 phase		1) chromomere	2) centriole
1	er meiosis-I are haploid.		3) chromocenter	4) centromere
IV) Terminalization of	-	217.	/	enomena of division of
,	±	217.	e ytokinebib ib the pik	(AIIMS -96)
1) II and IV	2) III and IV		1) Nucleus	2) Chromosomes
3) I and II	4) I and IV		3) Cytoplasm	4) All the above
210. Match the following.		210	, . .	/
List - I	List - II	218.		and maternal chromatid
A) G_2 phase	I) Fusion of micro		material during cell div	· · · · ·
	tubules to form spindle		1) crossing over	2) synopsis
	aparatus		3) dyed formation \hat{a}	4) bivalent formation
B) Prometaphase	II) Production of	219.	Centromere is a part	
	energy required for		1) centrosome	2) chromosome
	spindle formation.		3) E.R.	4) ribosome
C)Anaphase	III) Recombination of	220.	During meiosis	(JIPMER-97)
, <u>-</u>	genetic material		1) Cytokinesis takes	place
D) Pachytene	IV) Contraction of		2) Cytokinesis do no	t occur
, J	spindle		3) Cytokinesis may a	nd may not occur
	V) Reappearance of		4) None of the above	2
	plasmasome.	221.	Chromosomes appea	ar as thin long threads
1) A-II, B-I, C-IV, D	-		during	(AFMC -97)
2) A-I, B-II, C-III, I			1) Zygotene	2) Leptotene
3) A-III, B-IV, C-I, 1			3) Pachytene	4) Prophase.
4) A-I, B-IV, C-II, D		222.	· ·	eappears in (CBSE-97)
			1)Anaphase	2) Metaphase
	unique to (AFMC-1994)		3) Telophase	4) Prophase
1) Spyrogyra	2) Chlamydomonos	223.	· 1	in which nucleolus and
3) Pteris	4) both 1 and 2	223.	U U	appear and chromosomes
_	ccurs during (C:PMT-94)		become distinct is	(AFMC-98)
1) Interphase	2) Prophase	1		
3) Metaphase	4) Anaphase		1) Zygotene	2) Pachytene
213. Complete process			3) Diplotene	4) Diakinesis
	(CPMT-1995)			A is a pre-requisite for a
1) one cytoplasmic	division wth only one			o division. During the cell
chromosome duplica			cycle the DNA replicate	
2) two cytoplasmic	divisions with one		l) S-phase	2) G_1 -Phase
duplication of chron	nosome.		G_2 -phase	4) M-phase
3) two cytoplasmic	divisions with duplication			r cells are not similar to
of chromosome	-		hat of parent because o	. ,
4) one cytoplasmic	division with two	1	l) Crossing over	2) Synapsis
, , , <u>,</u>				276

3) Both a and b	4) None of the above	235. Which stages of cell division do the following
226. Which of the following	g stage during meiosis is	processes (A) and (B) takesplace respectively
concerned with DNA re	eplication? (2003)	A - Spindle formation B - Nucleolus formation
1) Interphase	2) Prophase	(2010)
3) Metaphase	4) Anaphase	1) Metaphase - Telophase
227. Crossing over helps in :	, 1	2) Telophase - Metaphase
1) Pure line selection	2) Inducing mutation	3) Late Anaphase - Prophase
3) Inducing polyploidy	2) inducing induction	4) Prophase - Anaphase
4) Recombination betw	icon the cones	/ 1 1
	-	236. Given below is a schematic break-up of the
228. Zygotic meiosis is foun		phases/stages of cell cycle. Which one of the
1) Fern	2) Fucus	following is the correct indication of the stage/
3) Funaria	4) Chlamydomonas	phase in the cell cycle (2009)
AIIN	AS	1) C-Karyokinesis 2) D-synthetic phase
220 11/1 : 1 : 6/1 : 6/1	••••••••	3) A-cytokinesis 4) B-metaphase
229. Which one of the follo		237. Synapsis occur's between (2009)
	size and number of	1) mRNA and ribosomes
chromosomes in a cell '		2) Spindle fibres and centromere
1) Interphase	2) Prophase	3) Two homologous chromosome
3) Metaphase	4) Telophase	
230.(A): Reduction divisio	on occurs in anaphase so	4) A male and a female gemete
there is no need of	meiosis.	238.(A): The quiescent centre act as a reservoir of
(R): Meiosis-II occurs	to separate homologous	relatively resistant cells which constitute a
chromosomes.	(2009)	permanent source of active initials.
231 (A): Interphase of cell	. ,	(R): The cells of the inactive region of quiescent
formative phase.		centre become active when the previous
±	e new cells are produced	active initials get damaged. (2007)
	cells, through meiosis	a) Both A and R are true and R is the correct
division.	(2007)	explanation to A.
232. The quiescent centre in		b) Both A and R are true but R is not the correct
252. The quiescent centre in		explanation to A.
1) C'ta fanatana a ffa	(2003)	-
	od which is utilized during	c) A is true but R is false
maturation.	1	d) A is false and R is false
2) Reservoir of growth		239. At what stage of the cell cycle are histone proteins
	ment of damaged cells of	synthesized in a eukaryotic cell? (2005)
the meristem		1) During entire prophase
4) Region for absorption		2) During telophase 3) During S-phase
233. Spindle fibers of mitotic	c cell are madeup of	4) During G ₂ stage of prophase
	(2001)	240. In the somatic cell cycle : (2004)
1) Tubulin	2)Actin	1) In G_1 phase DNA content is double the amount
3) Myosin	4) Collegen	of DNA present in the original cell
· •	, <u>-</u>	
AIPN	11	2) DNA replication takes place in S-phase
234. During mitosis ER a	and nucleolus begin to	3) A short interphase in followed by a long mitotic
disappear in	(2010)	phase
1) Late prophase	2) Early metaphase	4) G_2 phase follows mitotic phase
3) Late metaphase	4) Early prophase	241. If you are provided with root-tips of onion in your
c, _are memphase	·) propriedo	class and are asked to count the chromosomes,
		which of the fallowing stages and way most

which of the following stages can you most

conveniently look into?	(2004)		
1) Metaphase 2) Telophase	(2004)	250. In meiosis division is	
3) Anaphase 4) Prophase		(2005)	1 . 1
242. The cells of the quiescent centre are charac	eterized	1) Ist reductional and 2r	-
by	(2003)	2) Ist equational and 2nd	
1) Having light cytoplasm and small nuclei	` '	3) Both reductional	4) Both equational
2) Dividing regularly to add to the corpus		251. Which typical stage is know	-
3) Dividing regularly to add to the tunica		(1) Matarihaan	(2003)
4) Having dense cytoplasm and prominen	t nuclei	1) Metaphase	2) G_1 -phase
243. Mitotic spindle is mainly composed of pro		3) S-phase	4) G_2 -phase
	(2002)	252. When paternal and m	
1)Tubulin 2)Myosin	()	change their material v division this event is call	
3)Actomyosin 4) Myoglobin		1) Synapsis	2) Crossing over
244. In grasses what happens in microspore	mother	3) Bivalent-forming	· •
cell for the formation of mature pollengrai		253. Mitotic spindle is main	
1 0	(2001)	proteins ?	(2002)
1) One meoitic and two mitotic divisions	` ,	1)Actin	2) Myosin
2) One meotic and one mitotic division		3)Actomyosin	4) Myoglobin
3) One meitoic division		254. Clevage is a unique form	
4) One meitoic division		in that	(2001)
245. The replication of DNA is a pre-requisi	te for a	1) The plasma membrai	
eukaryotic cell to undergo division. During		not separate	0
cycle, the DNA replicates in :	(2000)	2) No spindle develops	to guide the cells
1) S-phase 2) G_1 - phase		3) There is no growth of	
3) G_2 - phase 4) M - phase		4) The nucleus does not	
JIPMER		,	1 1
246. How many times mitotic divisions are nee	eded for		
	009)		
	32		
247. At what stage of the cell cycle are histone			
u	(2007)		
1) During entire prophase 2) During telop	` '		
3) During S-phase	_		
4) During G_2 stage of prophase			
248. Quiescent centre is the zone of	(2006)		
1) Least mitotic activity in the root apex			
2) Least mitotic activity in the shoot apex			
3) Maximum mitotic activity in the root ap	bex		
4) Maximum mitotic activity in the shoot a	apxe		
249. Abnormal growth of the tumor in cancer is	s due to		
-	(2005)		
1)Abnormal mitotic division			
2) Accumulation of body fluid			
3) Abnormal meiotic division			
4) Metastasis			

KEY						125) 2 126) 2 127) 2 128) 1 129) 4 130) 3
]	MODI	EL TE	EST- I	ſ	131) 3 132) 1 133) 2 134) 4 135) 1 136) 3
1) 2			A A	F \ 1		137) 1 138) 1 139) 2 140) 4 141) 2 142) 2
1) 3	2) 2	3) 4	4) 2	5) 1	6) 2 12) 2	143) 2 144) 2 145) 3 146) 4 147) 4 148) 2
7)3	8) 1 14) 3	9) 2 15) 3	10) 3 16) 3	11) 1 17) 3	12) 2 18) 3	149) 1 150) 4 151) 2 152) 1 153) 2 154) 4
13) 3 19) 2	14) 3 20) 2	15) 5	10) 5	17)3	18) 5	155) 4 156) 2 157) 2 158) 4 159) 1 160) 3
19)2	20)2					161) 3 162) 4 163) 2 164) 1 165) 2 166) 3
		MODI	el te	ST- II		167) 3 168) 4 169) 2 170) 2 171) 2 172) 1
31) <i>4</i>	1 2) 2	7 2) 1	24) 2	25) 1	10.1	173) 2 174) 3 175) 1 176) 2 177) 2 178) 2
21) 4 27) 4	22) 2 28) 4	23) 1 29) 2	24) 2 30) 1	,	26) 2 32) 2	179) 2 180) 3 181) 3 182) 2 183) 3 184) 2
27)4 33)1	,	29) 2 35) 3	36) 2	,	,	185) 3 186) 4 187) 2 188) 3 189) 3
,	,	41) 2	,	57)4	50) 2	
		,-	,-			
]	MODE	L TE	ST- II	[TEST - 3 190) 1 191) 2 192) 3 193) 1 194) 1 195) 3
43) 3	,	45) 4	,	,	48) 1	
49) 3	50) 2	,	52) 2	53) 3	54) 1	TEST - 4 196) 1 197) 2 198) 2 199) 3 200) 1
55) 2	56) 1	57) 2	58) 2	59) 3	60) 2	190, 1197, 2190, 2199, 5200, 1
61) 3	62) 4	63) 3	64) 3			DIAGRAM BASED QUESTIONS
]	MODE	L TE	ST- IV	7	201) 4 202) 3 203) 2 204) 3 205) 2 206) 3 207) 4
65) 2	66)4	67) 1	68) 4	69) 2	70) 2	TEST - 5
71) 3	72) 3	73) 3	74) 2	75) 2	,	208) 3 209) 1 210) 1 211) 4 212) 1 213) 2
		T	POT	1		214) 3 215) 1 216) 4 217) 3 218) 1 219) 2
		1	EST -	T		220) 1 221) 2 222) 3 223) 1 224) 1 225) 1
76) 3	77) 4	78) 2	79) 1	80) 4	81) 2	226) 1 227) 4 228) 4 229) 3 230) 4 231) 4
82) 1	83) 3	84) 4	85) 2	86) 1	87) 2	232) 3 233) 1 234) 1 235) 1 236) 2 237) 3
88) 3	89) 3	90) 2	91) 2	92) 3	93) 2	238) 1 239) 3 240) 2 241) 1 242) 4 243) 1
94) 1	95) 3	96) 2	97) 2	98)3	99)1	244) 3 245) 1 246) 1 247) 3 248) 1 249) 1
100)4	101) 1	102) 2	103) 4	104) 3	105) 3	250) 1 251) 3 252) 2 253) 1 254) 3
106) 1	107) 1	108) 2	109)2	110)4	111)4	2007 1 2017 0 2027 2 2007 1 2047 0
112) 4				_		
			EST -			
113) 2	114) 3	115) 1	116) 3	117) 2	118) 1	
119) 1	120) 2	121) 2	122) 4	123) 2	124) 3	

INTRODUCTION

- KATHERINE ESAU reported in her publications that the curly top virus spreads through a plant via the food conducting phloem tissue.
- Dr Esau's plant anatomy took a dynamic, developmental approach designed to enhance one's understanding of plant structural and had enormus impact world wide.
- She also published 'The anatomy of seed plants' which is refferd to as webster's of plant biology.
- Peter Raven(director of Anatomy and morphology, Missouri Botanical Garden) remembered that Easu 'absoultely dominated' the field of plant biology.
- Histology is the study of different tissues in the plant body.
- Anatomy is the branch which deals with the study of gross internal structure of plant organs as observed after section cutting. Study of this branch started in 1671.

TISSUE

Tissue is a group of similar or dissimilar cells having a common origin and usually performing a similar function.

Types of Tissues

Tissues may be classified into two groups based on wheather the cells being formed are capable of dividing or not. viz,.

A. Meristematic tissues

B. Permanent tissues

12.1.1 A. MERISTEMATIC TISSUES (MERISTEMS)

- Growth in plants is largely restricted to specialised regions of active cell division called meristems.
- The term meristem has been derived from a Greek word meristos - which means divided or having cell division activity, so meristem is a group of cells which has power of continuous division.
- > Plants have different kinds of meristems
- Apical meristem : It is found at the apex of growing points of root and shoot. It divides continuously and brings about growth in length of shoot and root. The apical meristem includes promeristem as well as primary meristem.

Eg.:<u>Root apical merstem</u> occupies the tip of a root while the <u>shoot apical meristem</u> occupies the distant most region of the stem axis.

- During the formation of leaves and elongation of stem, some cells ' left behind' from shoot apical meristem, constitute the axillary bud. Such buds are present in the axils of leaves and are capable of forming a branch or a flower.
- Intercalary meristem : The meristem which occurs between mature tissues is known as intercalary meristem. It is present at the base of internodes and sheathing leaf bases of grasses and regenarate parts removed by the grazing herbivores.
- Both apical meristems and intercalary meristems are primary meristems because they appear early in the life of a plant and contribute to the formation of the primary plant body.
- ► Lateral meristem : The meristems that occur in the mature regions of roots and shoots of many plants, particularly those that produce woody axis and appear later than primary meristem is called lateral meristem or secondary meristems. They are cylindrical meristems. They are located parallel to the long axis of the plant organs. Their activity results in increasing the diameter of the plant organs. These are responsible for producing the secondary tissues.

Eg.; Fascicular vascular cambium, interfascicular cambium and Cork cambium.

- All secondary meristems are lateral meristems but all lateral meristmes are not secondary.
- Eg.; Procambium is primary lateral meristem and inter fascicular cambium and cork cambium are secondary lateral meristems.

Permanent tissues

- Permanent Tissues: Following divisions of cells in both primary and secondary meristems, the newly formed cells become structurally and functionally specialised and lose the abilty to divide. such cells are termed permanent or mature cells and constitute the permanent tissues in which the cells have become structurally and functionally specialized and lose ability to divide.
- It is formed due to division and differentiation from meristematic tissue. The cells of this tissue may be living or dead, thin-walled or thickwalled. The thin walled tissues are generally living where as the thick-walled tissues may be living or dead.
- During the formation of the primary plant body, specific regions of the apical meristem produce dermal tissues, ground tissues and vascular tissues.

SIMPLE TISSUES

- Permanent tissues having all cells similar in structure and function are called simple tissues.These are of three types :
 - (i) Parenchyma
 - (iii) Sclerenchyma

(i) Parenchyma

(Para = Parallel, Chyma = Chains)

Parenchyma forms major component within organs.Parenchyma is considered as the precursor of all other living tissues. It is also the most primitive tissue from phylogenetic point of view.

(ii)Collenchyma

- The cells of the parenchyma are generally isodiametric. They may be spherical, oval, round, polygonal or elongated in shape. Their walls thin and made up of cellulose. They may either be closely packed or have small intercellular spaces.
- Parenchyma performs various functions like photosynthesis, storage and secretion.

(ii) Collenchyma

(Colla = glow, chyma = chains)

Collenchyma is found as layers below epidermis in many herbaceous dicot stems, petioles an younger regions of woody stems. Collenchyma is absent in roots and monocot stems and leaves.

- It is found either as a homogenous layer or in patches. It consists of cells which are much thickened the corners due to a deposition of cellulose, hemicellulose and pectin.
- Collenchyma cells may be oval, spherical or polygonal and often contain chloroplasts.
- > These cells assimilate food when they contain chloroplasts. Intercellular spaces are absent.
- They provide mechanical support to the growing parts of the plant such as young stem and petiole of a leaf.
- (iii) Sclerenchyma (Greek : Scleros = hard)
- They are dead cells and without protoplasts and act as purely mechanical tissue. The cells are long, narrow and pointed at both ends. The cell walls are thick, lignified and have few or numerous simple pits.
- On the basis of variation in form, structure, origin and development sclerenchyma may be either Fibres or Sclereids.
- Fibres or sclerenchymatous fibre cells are long, narrow and thick walls, pointed at both ends and lignified and generally occur in groups in various parts of the plant.
- Sclereids: The sclereids are spherical, oval or cylindrical, highly thickened dead cells with very narrow cavities (lumen). These are commonly found in the fruit walls of nuts, pulp of fruits like guava, pear and sapota, seed coats of legumes and leaves of tea.
- Sclerenchyma provides mechanical support to organs.

COMPLEX TISSUES

- > They are those permanent tissues which are **made up of more than one type of cells and these work together as a unit.**.
- The complex tissues are made up of living and non-living cells which perform different functions. The complex tissues act as single units. The complex tissues are also known as vascular tissues.
- They are of two types: Xylem and Phloem. XYLEM (or) HYDROME
- The function of xylem is to conduct water a n d mineral salts upwards from the root to the leaf through stem and to give mechanical strength to

the plant body.

- First formed xylem Protoxylem later formed xylem Metaxylem
- ➢ In stems, the protoxylem lies towards the centre (pith) and the metaxylem lies towards the periphery of the organ. This type of primary xylem is called Endrach.
- > In roots, the protoxylem lies towards the periphery and the metaxylem lies towards the centre. Such an arrangement of primary xylem is called **Exarch**.
- It is a conducting tissue and is composed of four different kinds of elements:
 - 1) Tracheids 2)Vessels
 - 3) Xylem fibres 4)Xylem Parenchyma

1) Tracheids

- A single tracheid is highly elongated or tube like cell with hard, thick and lignified walls and with tapering ends. These are dead with out protoplasm.
- In flowering plants, tracheids and vessels are the main transporting elements.
- Secondary wall layers possess thickenings which vary in form.
- Tracheids are most primitive water conductive components. Tracheids are present in all vascular plants (or tracheophytes)
- > Tracheids occur alone in the wood of gymnosperms, whereas in the wood of angiosperms they occur with the vessels.

2) <u>Vessels</u>

- A vessel is a long, cylindrical, tube-like Structure made up of many cells called vessel members. Each has lignified walls and a wide central cavity. The cells are dead and without protoplast.
- > Presence of vessels is a characteristic feature of angiosperms.
- Vessel members are interconnected through perforations in their common walls.
- **Gymnosperms lack vessels in their xylem**.

Vessels also have various types of thickenings similar to tracheids. Vessels are present in almost all angiosperms but also found in some Pteridophytes and Gymnosperms. Few angiosperms lack Vessels.

3) Xylem fibres

- Sclerenchymatous cells associated with xylem are called xylem fibres. They are long, narrow, thick and lignified cells; usually pointed at both ends and have obliterated central lumens. These may be either septate or aseptate. They are dead cells.
- 4) Xylem parenchyma:
- The parenchymatous cells found in xylem are living, isodiametric and thin walled. Their cell wall is made up of cellulose. Xylem parenchyma cells are more common in primary xylem than secondary xylem.
- > They store **food material in the form of starch or fat** and other substances like **tannins**. Radial conduction of water occurs by the ray parenchymatous cells.

Phloem or Bast or Leptome

- Phloem is another type of conducting tissue like xylem which is responsible for conduction of food material from leaves to other parts of plants.
- The phloem formed from the procambium is called primary phloem that consists of narrow sieve tubes and is referred to as protophloem and that formed from vascular cambium is called secondary phloem and has bigger tubes and is referred to as metaphloem.
- > The phloem is composed of four elements:
 - (i) Sieve tube elements
 - (ii) Companion cells
 - (iii) Phloem parenchyma
 - (iv) Phloem fibres

(i) <u>Sieve tube elements:</u>

- Sieve tubes are tube-like structures, composed of elongated cells, arranged in longitudinal series and associated with companion cells.
- Their walls are thin and made of cellulose. In (282)

a mature sieve tube the nucleus is **absent** but **peripheral cytoplasm** as well as **large vacuole is present.**

- The uniqueness of the sieve tube is that although without nucleus, it is living and the nucleus of the companion cell controls its functional activities.
- The end walls are perforated in a sieve like manner to form the sieve plates.
- Gymnosperms have albuminous cells and sieve cells. They lack sieve tubes and companion cells..
 <u>Sieve cells</u>
- Sieve cells are living cells, having both cytoplasm and nucleus when they are young but lack nucleus at merturity.
- (ii) Companion cells:
- > These are **specialised parenchyma cells** which are closely associated with the sieve tube elements in their **origin, position** and **function**.
- The sieve tube element and companion cells are connected by a **pit field** present between their common longitudinal walls.
- Companion cells help in maintaing pressure gradient in the sieve tubes.
- The companion cell has dense cytoplasm and prominent nucleus. Its nucleus also controls the metabolic activities of the sieve tube.
- Companion cells are characteristic feature of angiosperms; they are absent in gymnosperms & pteridophytes.

(iii) <u>Phloem parenchyma:</u>

- > These are living parenchymatous cells which are elongated, tapering cylindrical cells.
- The cells have dense cytoplasm and nucleus.
 The cell-wall is composed of cellulose and has pits through which most of the plasmodesmatal connections exist between the cells.
- > Phloem parenchyma store food material and

other substances like resins, latex and mucilage.

Phloem parenchyma is absent in most of the monocots.

(iv) Phloem fibres (Bast fibres) :

- These are much elongated, unbranched (rarely branched) and have pointed, needle-like apices.
- They are sclerenchymatous cells. Their cell wall is quite thick with simple or slightly bordered pits. At maturity these fibres lose their protoplast and become dead.
- These are generally absent in primary phloem but are found in the secondary phloem
- Phloem fibres of jute, flax and hemp are used commercially.

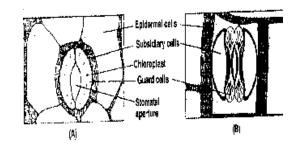
Plants	Tracheids	Vessels	Sieve tubes	Companion cells	Sieve cells	Abuninous cells
Pteridophyts	\checkmark	Х	Х	Х	\checkmark	Х
Gymnosperms	\checkmark	Х	Х	Х	\checkmark	\checkmark
Angiosperms	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х

(Note : Exceptions are there in plants)

<u>The Tissue system</u>

Tissues vary depending on their location in the plant body. Their structure and fuction would also dependent on location.

<u>Types of Tissue Systems:</u>


- On the basis of structure and function there are three types of tissue systems.
 - A. The epidermal tissue system.
 - B. The ground or fundamental tissue system.
 - $C. \ \ The vascular/conducting tissue system.$

A.The Epidermal tissue system :

Epidermis:

- Epidermis (epi : upon; derma : skin) is the outer most layer of the primary plant body, which has direct contact with external environment.
- It comprises of epidermal cells, stomata and the epidermal appendages the trichomes and hairs.

- > Epidermis is made up of elongated, compactly arranged cells, which form a continuous layer.
- Epidermis is usually single layered. Epidermis may also be multilayered as in the aerial roots of Orchids and leaves of *Nerium* and *Ficus*.
- Epidermal cells are parenchymatous with a small amount of cytoplasm lining the cell wall and large vacuole.
- The outer wall of epidermis is thick and usually covered by a cuticle formed by the deposition of a waxy material secreted in the epidermal cells.Cuticle prevents the loss of water.
- The cuticle is thickest in the xerophytic plants. Cuticle is absent in root.
- Some epidermal cells of certain monocots (grasses, maize, sugarcane) are comparatively large, vacuolated and thin-walled. These are called bulliform or motorcells. These cells store water and help in closing and opening or rolling of leaves. <u>Stomata:</u>
- Stomata are very small openings found in t h e epidermis of green aerial parts of the plant especially the leaves. They regulate the process of transpiration and gaseous exchange.
- Pore of each stoma is surrounded by two kidney shaped (= semilunar) cells, called guard cells. The guard cells are living and contain chloroplasts. The inner walls (to wards stomatal pore) are thicker than the outer walls. The guard cells regulate the opening and closing of the stomata.
- Guard cells are kidney shaped in dicots and are dumb bell shaped in monocots.
- Sometimes, a few epidermal cells, in the vicinity of the guard cells become specialised in their shape and size and are known as subsidiary cells or accessory cells.
- > The stomatal aperture, guard cells and the surrounding subsidiary are together called **stomatal apparatus.**

structure of Stomata

The epidermal appendages:

- ➢ In many plants epidermis bears outgrowths which are multicellular and are called **trichomes** or **hairs** which vary markedly in their shape, structure and function. They may be branched or unbranched and soft or stiff.
- > These multi cellular trichomes of stem help in checking excess loss of water (reduction of water loss). Trichomes may be sometimes secretory.
- <u>Root hairs</u>: The epidermis of roots bears root hairs in the specialized region - the root hair zone. The root hairs are unicellular and are formed due to the elongation of the epidermal cells
- These are not protuberances or appendages. It plays an important role in **anchoring** the plant body in the soil besides absorbing **water** and **mineral solution** from it. They are enlargements of special epiblema cells called **trichoblasts**.

Ground or Fundamental tissue systems:

- It constitutes the interior of organs except vascular tissue system. Ground tissue system of the leaves is called **mesophyll**.
- > The ground tissue system forms the **main bulk of the plant body**. It includes all the tissues **except epidermis** and **vascular bundles**.
- The primary function of this tissue system is storage and manufacture of food material.
- This system has different kinds of tissues such as parenchyma,collenchyma and sclerenchyma; of these, parenchyma is most abundant and carries out a variety of functions.
- In the leaves, the ground tissue consists of thin walled chloroplast containing cells and is called Mesophyll.
- Parenchymatous cells are usually present in c or tex, pericycle, pith and medullary rays, in the primary stems and roots.

In monocotyledonous stem (with scattered vascular bundles) the ground tissue is not differentiated into cortex, pericycle and pith.

Vascular tissue system:

- Central column of axis (root and stem) is called stele. All tissues on the inner side of the endodermis such as pericycle, vascular bundle and pith constitute the stele.
- The vascular bundle is having xylem, phloem and cambium (if present).
- Xylem may be exarch or endarch. In roots,xylem is exarch or centripetal, i.e.; protoxy lem or first formed xylem is towards periphery. In stem, xylem is endarch or centrifugal, i.e.; protoxylem is towards centre (pith).
- When xylem and phloem are conjoint (jointed), they are regarded as conjoint vascular bundle.
- If the cambium is present in between the xylem and phloem are said to be open vascular bundle (e.g.; dicots). They have the ability to form secondary xylem and secondary phloem.
- If the cambium is absent in between the xylem and phloem are said to be closed vascular bundle (e.g; monocots). They donot form secondary tissues.

Types of vascular bundle:

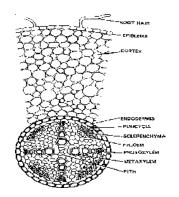
- According to the arrangement of xylem and phloem vascular bundles are of three types:
 1) Radial 2) Conjoint 3) Concentric
- 1)Radial: When xylem and phloem are arranged in an alternate manner on different radii, such vascular bundles are called radial.

Eg.Roots of all plants contain radial vascular bundle.

- Conjoint: When xylem and phloem are present on the same radius, this type of vascular bundles are known as conjoint.Conjoint vascular bundles are the characteristic feature of stems and leaves. Depending upon the mutual relationship of xylem and phloem, these are divided into two types:
- (i) Collateral: When xylem and phloem lie together on the same radius, xylem being internal and phloem external, such vascular bundles are called collateral which are may be closed or open.Eg. vascular bundles in the stems of gymnosperms and angiosperms.

(ii) Bicollateral: These are two patches of phloem one on each side of xylem. In such a vascular bundles there are two strips of cambium one on each side of xylem. Only outer cambium is functional.

Eg.Bicollateral vascular bundles are found in families of Cucurbitaceae, Solanaceae, Apocyanaceae etc.


Anatomy of dicotyledonous and monocotyledonous plants

Dicotyledonous Root:

- A thin T. S. of gram (*Cicer arietinum*) root shows the following structure:
- ➤ (i) Epiblema : This is also known as the piliferous layer. It is characteristically single layered, comprising tubular living components. Cuticle and stomata are absent. The outer walls of some cells protrude in the form of unicellular root hairs. These hairs perform in absorption of water from the soil.
- (ii) Cortex: Cortex consists of many layers of thinwalled parenchymatous cells with plenty of intercellular spaces. In some cases, the epiblema soon dies off; a few outer layers of the cortex become cutinized and form the exodermis.
- (iii) Endodermis : The innermost layer of cortex is the endodermis which completely surrounds the stele. It comprises a single layer of barrelshaped cells without inter cellular-spaces.
- The tangential as well as radial walls of the endodrmal cells have a deposition of water impermeable,waxy material suberin in the form of casparian strips.
- > (iv) Pericycle : It is made up of thick-walled parenchymatous cells. Lateral root originates from the pericycle. Thus lateral roots are endogenous in origin. Initiation of vascular cambium during secondary growth takes place in pericycle cells.
- (v) <u>Vascular tissues:</u> These are always arranged in a ring and are radial. Theprotoxylem is always away from the centre and metaxylem towards the centre. This condition of xylem is called exarch. The

number of vascular bundles in dicot is 2-4 (diarch to tetrarch).

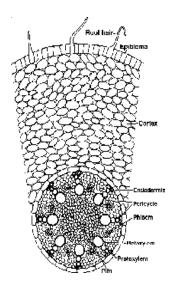
- (vi)Conjunctive tissue : The parenchyma lying inbetween xylem and phloem strands forms the conjunctive tissue. Vascular cambium is formed from the conjunctive tissue during the secondary growth.
- (vii) Pith: It occupies a small area in the centre of the root and consists of parenchymatous cells.
- All the tissues on the innerside of the endodermis such as pericycle,vascular bundles and pith constitute the stele.

Detailed structure of a portion of T.S. of *Cicer* root INTERNAL STRUCTURE OF MONOCOTYLEDONOUS ROOT:

- > In a T.S. of the **maize** (*Zea mays*) **root** the following structures are seen:
 - (i) **Epiblema :** It is the outermost layer of the root with large number of unicellular hair.
 - (ii) Cortex : Below the epiblema is present

multilayered parenchymatous tissue with intercellular spaces. It is cortex.

(iii) Endodermis : The innermost layer of the cortex is the endodermis. Endodermal cells are barrel shaped, having casparian strips.


(iv) Pericycle : It is uniseriate and is made up of Parenchyma.

(v) Vascular bundle : Vascular bundles are

polyarch, radial and exarch. Phloem parenchyma absent.

(vi) Conjunctive tissue : It is made up of parenchymatous cells inbetween the xylem and phloem.

(vii)Pith : Large, made up of loosely arranged parenchymatous cells with abundant starch grains.(viii) Monocotyledonous roots do not undergo any secondary growth.

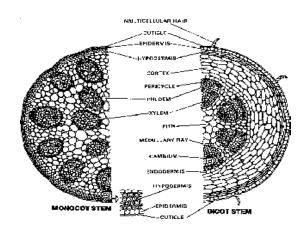
Detailed structure of a portion of T.S. of Maize root

Internal Structure of Dicotyledonous Stems

- The transverse section of the young sunflower (*Helianthus annus*) stem shows the following structure:
- (i) Epidermis : Epidermis is the outermost layer of stem. It is made up of single layer of cells and lack of chloroplast.
- Multicellular hair trichomes and stomata are found on epidermis. A thin layer of cuticle is present on the outside
- > (ii)Cortex:It can be divided into three sub zones:
- a) Hypodermis : It is present just below the epidermis.It is thick multicellular layer.This layer is composed of collenchyma. It provides mechnical strength to young stem.
- b) General cortex : This lies internal to the hypodermis and consists of a few layers round and thin walled, parenchymatous cells. There are

distinct intercellular spaces in it. Storage of food is the main function of the cortex.

- ▷ c) Endodermis : It is innermost layer of the cortex. The cells of endodermis are barrel shaped and without intercellular spaces. The cells of endodermis are rich in starch grains and the layer is also reffered to as the starch sheath.
- (iii) Pericycle: This layer situated inbetween the endodermis and vascular bundles (below the endodermis and above the vascular bundle). The pericycle is a heterogenous layer made up of both parenchymatous and sclerenchymatous cells. Sclerenchyma forms semi-lunar patches above the vascular bundles.
- (iv) Vascular bundles : The vascular bundles are arranged in a ring (Eustele) internal to the endodermis. The 'ring' arrangement is characteristic of dicot stem. Each vascular bundle is conjoint, collateral, endarch and open.
- (v) Medullary rays : A few layers of big, polygonal cells lying in between two vascular bundles are the medullary rays.they help in lateral conduction.
- (vi) Pith (medulla): It extends from below the vascular bundles up to the centre and is composed of rounded or polygonal, thinwalled cells with abundant intercellular space in between them. These cells store food material and water.


Internal Structure of Monocotyledonous

Stem:

- The internal structure of the young Maize (Zea mays) stem, which is a monocot shows the following details in a transverse section:
- (i) Epidermis: This is single outermost layer with a thick cuticle.
- (ii) Hypodermis: This is formed of sclerenchymatous cells, usually 2-3 layers thick; lying below the epidermis.
- (iii)Ground tissue : The entire mass of parenchymatous cells next to hypodermis form ground tissue.Like the dicot stem, it is not differentiated into cortex, endodermis and pericycle. The vascular bundles remain scattered in the paren-

chymatous ground tissue

- (iv) Vascular bundles: Many vascular bundles are scattered in the ground tissue. (Atactostele) Each vascular bundle is surrounded by a sheath of sclerenchymatous bundle sheath hence vascular bundles are called fibro vasular bundles.
- The vascular bundles are conjoint, collateral, endarch and closed. They are numerous, smaller and densely arranged towards the periphery but larger and loosely arranged towards the centre of the stem.
- Phloem parenchyma is absent in monocot stem. A lysigenous cavity (water containing cavity), formed by the break down of inner protoxylem vessel and the nearby cells.
- (v)Pith and stele: Atactostele is found in monocotyledons. This is highly developed stele. Undifferentiated pith is present in monocotyledon stems.

structure of dicot & monocot stems <u>Internal Structure of Leaf</u>

- > Leaves are of two types
 - I.**Dorsiventral leaf :** They are present in dicots. They are more green on adaxial surface and less green on abaxial surface.Its dorsal and ventral surfaces are distinct both morphologically and anatomically.

E.g. Mango, Ficus.

 II. Isobilateral leaf: They are present in monocots. They are equally green on both surfaces. Their dorsal and ventral surfaces are not distinct.
 Eg., Wheat, Maize

Dorsiventral (Dicot) Leaf :

- > The transverse section of a **Mango leaf** shows the following structures:
- (i) Upper epidermis (adaxial epidermis) : This is the outermost layer made of unilayered parenchymatous cells attached to one another. The outer wall of the cells are cuticularized. Stomata and chloroplasts are very few or absent
- (ii) Lower epidermis (abaxial epidermis) : It is a single layer of parenchymatous cells with a thin cuticle. It contains numerous stomata. Chloroplasts are present only in guard cells. The lower epidermis helps in the exchange of gases.
- The abaxial epidermis generally bears more stomata than the adaxial epidermis. the latter may even lack stomata.
- (iii)Mesophyll: The tissue in between the upper and lower epidermis is called mesophyll. It posesses chloroplasts and carries out photosynthesis. This is divided into two regions:

1) Palisade tissue:

The cells of this tissue are elongated. They are arranged vertically and parallel to each other. These cells have chloroplasts and they take part in photosynthesis.


2)Spongy parenchyma:

- It is found below the palisade tissue. The cells of spongy parenchyma are almost spherical or oval and are irregularly arranged and extend upto lower epidermis.
- The cells also have chloroplasts, and are with intercellular spaces and air cavities between them. Intercellular spaces help in diffusion of gases.

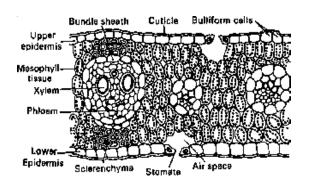
3)Vascular bundles:

- Size of vascular bundles are dependent on the size of veins. The veins vary in thickness in the recticulate venation of the dicot leaves.
- Vascular bundles can be seen in veins and midrib. The vascular bundle of midrib is largest. Vascular bundles are collateral and closed. Around each vascular bundle is present a sheath of parenchymatous cells called bundle sheath.
- Each vascular bundle consists of xylem lying towards the upper epidermis and phloem towards

the lower epidermis.

dicot leaf <u>Internal structure of isobilateral leaf</u> (<u>Monocot leaf</u>)

> (i) Epidermis:


Epidermis present on both adaxial side and abaxial side and covered by cuticle stomata are present on both the surfaces of the epidermis; and they have equal number of stomata.

➢ In grasses, certain adaxial epidermal cells along the veins modify themselves into large, empty, colourless cells. these are called bulliform cells or motor cells. The leaf surface is exposed when these cells are turgid and they make the leaves curl inwards to minimise water loss when they are flaccid.

> (ii) Mesophyll

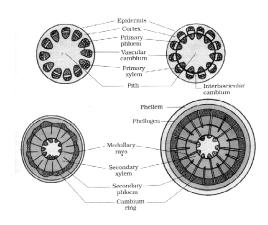
The mesophyll is **not differentiated** into palisade and spongy parenchyma. These cells are almost **spherical** and enclose small intercellular spaces and are irregularly arranged. These cells contain chloroplasts.

(iii)Vascular bundles : The parallel venation in monocot leaves is reflected in near similar sizes of vascular bundles (except in main veins).

monocot leaf

SECONDARY GROWTH

- "Secondary growth is increase in girth or diameter of axis (root and stem) of the plant by formation of secondary tissue by activity of lateral meristem (vascular cambium and cork cambium)."
- Secondary growth generally seen in roots and stems of Gymnosperms and dicots.


SECONDARY GROWTH IN DICOT STEM

A.Secondary growth by Vascular cambium

- The vascular bundles in dicot stem are conjoint, collateral and open and are arranged in a ring. The cambium present between xylem and phloem in vascular bundles is called fascicular or intrafascicular cambium.
- Some cells of medullary rays (i.e.between vascular bundles) also become meristematic and this is called interfascicular cambium.
- Both these cambia collectively constitute a complete ring of vascular cambium or intrastelar cambium.

Activity of the cambialring

- The ring of vascular cambium or true cambium cuts off cells both on outer side and innerside. The cells cut off on outer side are secondary phloem and on inner side are secondary xylem.
- > The cambium is generally more active on the inner side than the outer side.
- Amount of secondary xylem cut off is more than secondary phloem and thus with the formation of secondary tissue, increase in girth or diameter occurs, which is thus called secondary growth.

- Fig. Secondary Growth in DICOT STEM : Stages Intransuerse View
- > The structure of secondary xylem and secondary phloem is similar to that of primary xylem and primary phloem. With the increase in secondary tissue, the primary xylem and primary phloem get crushed due to the continuous formation of secondary xylem. The primary xylem however remains more or less intact in or around the centre.
- At some place, the cambium does not form secondary xylem and secondary phloem but form parenchymatous cells instead of xylem and phloem. Thus these cells form continuous strips from secondary xylem to secondary phloem and are called **secondary medullary rays**. These rays are arranged **radially** and pass through secondary xylem and secondary phloem. Primary and secondary medullary rays conduct food, water and minerals from centre to periphery.

Spring wood and Autumnwood

- There is a marked difference in activity of cambium with change in season. It is under the control of many physiological and environmental factors. In spring, the activity of cambium is more and hence the wood elements are larger in size with wide lumen. Moreover, the amount is more and the secondary xylem or wood formed during spring is called a spring wood or early wood.
- The activity of cambium is less during winter or autumn and the wood elements are smaller in size with narrow lumen. Moreover, it is lesser in

289

amount, since cambium is less active and the wood formed during winter or autumn is called **winter** or **autumn wood** or **late wood**.

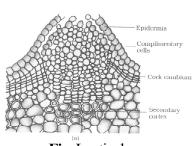
- The spring wood is lighter in colour and has lower density, whereas the autumn wood is darker and has a higher density.
- Spring wood and Autumn wood of an year constitute annual ring.
- The number of annual rings present at the base of stem can indicate the age of tree.
- The age of tree can be determined by counting annual rings in oldest or basal portion of tree trunk. Calculation of age of the tree by counting annual rings is called **Dendrochronology** or **Growth ring analysis.**

Heart wood and Sap wood

> In perennial woody trees, the central portion of stem is darker in colour. Further it is hard and tough due to deposition of resins, oils, aromatic substances and essential oils, tannins, gums and formation of tyloses. This central hard, tough and darker region constitutes heart wood or duramen. These substances make it hard, durable and resistant to the attacks of micro-organisms and insects. This region comprises of dead elements with highly lignified walls. The conduction function of heart wood stops due to formation of tyloses in vessels and hence heart wood is mechanical in function. The heart wood is generally used for **making furniture**. The outer or peripheral portion of the secondary xylem is lighter in colour and is known as, sap wood or alburnum.

Secondary Growth by Cork Cambium

- In many woody plants further increase in girth takes place by formation of new tissues in extrastelar regions. These new tissues are called periderm.Periderm is made up of three tissues
- (i)Phellogen (=cork cambium) : It is a secondary lateral meristem that may arise from permanent living cells of hypodermis or outer cortex. It is composed of a single layer of meristematic cells. In transverse section the cells appear almost rectangular and radially flattened.


Its cell divide in a tangential plane, cutting cells towards its inner as well as outer face.

- (ii) Phellem (=cork): These cells are formed as a result of tangential and periclinal divisions of phellogen cells towards the outer face. These cells are compactly arranged and have thin cellulose walls in the beginning. As they mature, there is a gradual loss of living matter and cells get elongated radially, vertically or tangentially. The cell walls become thick because of development of fatty substance called suberin. Suberin is impervious to water.
- (iii) Phelloderm (=secondary cortex) :Layers of thin walled cells cut off towards the inner side of the phellogen form phelloderm. The cells of this layer are living and possess cellulose cell wall. In some species these cells may contain chloroplasts and starch. This is also called secondary cortex.Phellogen, phellem and phelloderm are collectively known as periderm Bark

Bark is defined **all the tissues, outside vascular cambium**, so it also includes secondary phloem. Bark = Periderm + Cortex + Pericycle + Primary and secondary phloem. Bark refers to tissue types namely periderm and secondary phloem. Bark that is formed in early season is called **early or** soft bark. Bark which is formed later or at the end of season season is called **late** or **hard bark**.

Lenticels

Lenticels are openings formed in the bark through which exchange of gases takes place. At certain regions, the phellogen cuts off closely arranged parenchymatous cells on the outer side instead of cork cells. These parenchymatous cells (complementary cells) soon rupture the epidermis, forming a lense - shaped openings called lenticels. Lenticels permit the exchange of gases between the outer atmosphere and the internal tissue of the stem. these occur in most woody trees.

Fig. Lenticel SECONDARY GROWTH IN DICOT ROOT

- Secondary growth is essential in roots to provide strength to the growing aerial parts of the plants and fulfill the requirement of water and minerals.
- > Secondary growth is **not found in monocot roots**.
- It occurs due to the activity of vascular cambium and cork cambium.

Activity of Vascular Cambium

- The parenchymatous cells on the inner side of the phloem become meristematic and gives rise to a strip of cambium. The parenchymatous cells lying in between xylem and phloem bundles also become meristematic.
- After this, the portion of the pericycle lying opposite the protoxylem becomes meristematic and forms a strip of cambium. Thus, a wavy cambium is formed extending over the xylem and down the phloem.
- The vascular cambium produced in dicot roots entirely secondary in origin.
- The vascular cambium in root is dual in origin because it is produced from two sources.
 (i) Partly from the conjuctive parenchyma cells and
 (ii) Partly from the cells of pericycle.
- It begins to cut off new cells on both sides but more on the inside. As a result of increased formation of new cells on the inner side the cambium and phloem are pushed outwards. The wavy cambium soon becomes circular.
- The whole of the cambium ring behaves in the same way as in the stem, giving rise to the secondary xylem on the inside and secondary phloem on the outside. The cambium forms distinct radial bands of parenchyma against the protoxylem. These are the primary medullary rays.
- Some medullary rays are also formed by the cambium along the inner edge of the phloem and are called secondary medullary rays.

- The amount of secondary phloem is much less than the secondary xylem.
- > The primary phloem gets crushed.

Activity of Cork Cambium

- > The cork cambium may develop either from the **pericycle** or the **phloem**.
- The cork cambium produces a few brownish layers of cork (phellem) on the outside and the secondary cortex (phelloderm) on the inside.

MODEL TEST - I

- 1. Plant Anatomy is the study of
 - 1) Tissues only 2) Gross internal details
 - 3) Cell only 4) Cellorganelles
- Which of the following is not a primary meristem
 Procambium
 Apical meristem
 - 3) Cork cambium
 - 4) Intercalary meristem
- 3. The secondary meristem formed from medullary ray cells is
 - 1) Intra-fascicular cambium
 - 2) Cork cambium
 - 3) Intercalary meristem
 - 4) Interfascicular cambium
- 4. The meristem that help in the linear growth of stem and leaves is
 - 1) Intercalary meristem
 - 2) Inter fascicular cambium
 - 3) Lateral meristem 4) Cork cambium
- 5. The meristem found in growing points of root, stem and branches is
 - 1) Apical meristem 2) Plate meristems
 - 3) Intercalary meristems
 - 4) Intra-fascicular meristem
- 6. A secondary lateral meristem in plants
 - 1) Intra fascicular cambium
 - 2) Cork cambium
 - 3) Sub-apical meristem 4) Apical meristem
- 7. Cylindrical meristems are
 - 1) All lateral meristems 2) All apical meristems
 - 3) Secondary meristems 4) Primary meristems

	CH: 12 : HI	STOLOGY AND ANAT
8.	Meristems that regener by the grazing herbivore	rates plant parts removed es is
	1) Vascular cambium	2) Cork cambium
	3) Apical meristem	4) Intercalary meristem
9.	The secondary lateral	meristem that produces
	secondary xylem and se	condary phloem is
	1) Vascular cambium	2) Cork cambium
	3) Fascicular cambium	4) Procambium
10.	Curly top virus spread th	U U
	, ,	2) Phloem
	3) Epidermal cells	· •
11.	Axillary buds capable of	-
	1) Bracnh only	, .
	3) Leaf	4) 1 or 2
12.	Books of Katherine Esa	
	1) Plant Anatomy 2) A	
	3) Hybridization in plant	ts 4) Both 1 and 2
	MODEL T	EST - II
13.	Simple living mechanica	l tissue is
	1) Parenchyma	2) Sclerenchyma
	3) Collenchyma	4) Xylem
14.	A simple tissue commor	nly found in the pulp
	of fruits like guava and	pear is
	1) Parenchyma	2) Collenchyma
	3) (1) & (2)	4) Sclereids
15.	A simple tissue absent in r	oots and monocot stems is
	1) Parenchyma	2)Collenchyma
	3) Sclerenchyma	4) Chlorenchyma
16.	Tissues that give mechan	nical strength are
	1) Collenchyma	2) Sclerenchyma
	3) Parenchyma	4) Both 1 and 2
17.	Collenchyma can b	e differentiated from
	parenchyma by	
	1) Living protoplasm	
	2) Pecto-cellulosic de	posits at corners

- 2) Pecto-cellulosic deposits at corners
- 3) Cellulosic wall 4) No protoplasm
- 18. Parenchymatous tissue is the seat of
 - 1) Photosynthesis
 - 2) Storage of food materials
 - 3) Secretion and excretion

- 4) All of the above
- 19. Collenchyma differs from sclerenchyma
 - 1) Retaining protoplasm at maturity
 - 2) Having thick walls
 - 3) Having wide lumen
 - 4) Being meristematic
- 20. The cells or tissues of plants which have lost the power of division are called
 - 1) Permanent tissue 2) Promeristem tissue
 - 3) Protoderm tissue 4) Meristematic tissue
- 21. Collenchyma tissue is present in
 - 1) Dicot stem 2) Monocot stem
 - 3) Dicot root 4) Monocot leaf
- 22. The chief function of collenchyma is1) Storage 2) Mechanical3) Assimilation 4) None of these
- 23. Collenchyma is present in
 1) Herbaceous monocots 2) Herbaceous dicots
 3) All herbaceous plants
 4) Pteridophytes and monocots

MODEL TEST - III

- 24. Collection of different types of cells that helps in common performance1) Tissue2) Simple tissue
 - 3) Complex tissue 4) None of these
- 25. The two components of phloem that originates from a common meristematic cell are
 - 1) Phloem fibres and phloem parenchyma
 - 2) Sieve tubes and companion cells
 - 3) Sieve tubes and sieve cells
 - 4) Companion cells and Phloem parenchyma
- 26. The specialised cells in the epidermis of Monocot leaves that help in rolling and unrolling of leaves are
 1) Epithem cells 2) Complementary cells
 3) Bulliform cells 4) Trichoblast cells
- 27. The only cells in the epidermis with chloroplasts
 1) Trichoblast cells
 2) Bulliform cells
 3) Guard cells
 4) Subsidiary cells
- 28. Kidney shaped guard cells are found in the stomata of1) Helianthus 2) Wheat3) Oryza 4) Zea

29.	The layer of cortical tissue sy surround the stele in roots is		40.	Semi-lunar patch of sch is found in	erenchymatous pericycle
	1) Pericycle 2)) Hypodermis		1) Roots of Helianthus	2) Stem of Helianthus
	3) Endodermis 4)) Medulla		3) Leaf of Zeamays	4) Leaf of Cucurbits
30.	The special feature of Cucurbi	itaceae, Solanaceae is	41.	The layer in anatomy	of Dicot stem which is
	1) Presence of radial vascula	ar bundles		regarded as starch shear	th
	2) Presence of bicollateral va	ascular bundles		1) Pericycle	2) General cortex
	3) Presence of collateral vas	cular bundles		3) Endodermis	4) Conjunctive tissue
	4) Presence of concentric va	scular bundles	42.	The most advanced char	acter is monocot stem is
31.	Phloem cells lack nucleus at	maturity are		1) Presence of sclerench	ymatous hypodermis
) Seive cells		2) Presence of Atactost	ele
	3) Companian cells 4) Both 1 and 2		3) Presence of closed, v	ascular bundles
32.	Complex tissue that conducts			4) Absence of medulla,	medullary rays
	1) Xylem 2) Phloen		43.	The hypodermal layer is	collenchymatous in
	3) Sclerenchyma 4) Chloren	nchyma		1) Stems of Zea	2) Roots of Helianthus
33.	Complex tissue that conducts	s organic solutes is		3) Stems of Cucurbita	4) Leaves of Zea
	1) Xylem 2) Phloen	n	44.	In the leaves of which pl	ants the dorsal and ventral
	3) Sclerenchyma 4) Chloren	nchyma			oth morphologically and
34.	Function of sieve tubes are c	controlled by		anatomically	
	· · · · · · · · · · · · · · · · · · ·) Phloem fibres		1) Wheat and Maize	. –
)Phloem parenchyma		3) Mango and Wheat	4) Ficus and Maize
35.	Mesophyll cells come under		45.	71	
	1) Epidermal tissue systems			1)Eustele	2) Atactostele
	2) Vascular tissue systems		10	3) Siphanostele	4) Protostele
	3) Fundamental tissue system	ms 4)All of these	46.	Radial vascular bundles 1) Roots	2) Stems
				3)All parts	4) Leaves
	MODEL TEST	- IV	17	Homogenous mesophyl	/
36.	The tissue in monocot root the	at gives rise to lateral	т/.	1) Helianthus leaf	2) Maize leaf
	roots is			3) Mango leaf	4) Hibiscus leaf
	· · · · · · · · · · · · · · · · · · ·	Pericycle	48.		· · · · · · · · · · · · · · · · · · ·
	, , , , , , , , , , , , , , , , , , , ,	Exodermis		1) Endodermis	2) Epidermis
37.	A conspicuous medulla is see			3) Hypodermis	4) Pericycle
	1) Dicot stem, Monocot stem		49.	/ •1	, ,
	2) Monocot root, Monocot s		17.	1) Endodermis	2) Epidermis
	3) Dicot stem, Monocot room			3) Hypodermis	4) Pericycle
• •	4) Dicot root, Monocot stem		50.		· •
38.	Casparian bads are chemical	•	50.		
	/ /	Subarised		1) Dicot stem	2) Monocot stem
20	· · · · · · · · · · · · · · · · · · ·	ignified		3) Dicot root	4) Both 2 and 3
37.	Presence of caparian bands is 1) Endodermis 2) F	ericycle			
	, , , , , , , , , , , , , , , , , , , ,	Exodermis			
	5) wieduniary rays 4) E				293

	MODEL T	EST - V	60.	Lense shaped strctures exchange are	of cork helps in gaseous
51.	The meristem that is p	artly primary and partly		1) Stomata	2) guard cells
	secondary in nature in d	icot stem is		3) Lenticels	4) Motor cells
	1) Vascular cambium	2) Cork cambium		-)	.)
	3) Inter fascicular cambi	um		QUESTION	NBANK
	4) Lateral meristem			TEST	-1
52.	The uniformly thick reg stem is	gion in a secondary dicot	61.	The persisting embry body is called	onic tissue in the plant
	1) Heart wood	2) Spring wood		1) Parenchyma	2) Collenchyma
	3)Autumn wood	4) Sap wood		3) Permanent tissues	4) Meristem
53.		ich two secondary xylem	62.	The derivatives of ap	ical meristems are
	components forms an ar	-		1) Secondary tissues	2) Primary tissues
	1) Sapwood and autum	n wood		3) Phellogen	4) Phellum
	2) Early wood and late	wood	63.	Axillary buds are der	ived from
	3) Heart wood and sprin	ng wood		1) Shoot apical meris	tems
	4) Autumn wood and all	ournum		2) Root apical merist	ems
54.		sterm formed by the		3) Lateral meristems	
	dedifferentiation of corti			4) Intercalary meriste	ems
	1) Interfascicular cambin		64.	The primary merister	ns that is derived from
	2) Intrafascicuclar camb			shoot apical merister	ns found in between two
	3) Cork cambium	4) Secondary cortex		permanent tissues is	called
55.	The innermost layer of l			1) Lateral meristems	
	1) Phelloderm	2) Phellorgan		2) Intercalary meriste	ems
	3) Vascular cambium			3) Secondary meriste	ems 4) Phellogen
	4) Secondary phloem	1 . 1 . 1	65.	Identify the mismatch	from the following
56.	cambium constitutes	rmed out side the vascular		1) Fascicular cambiu meristems	m – primary
	1) Bark	2) Periderm		2) Phellogen – Embry	vonic meristems
	3) Cork	4) Phellogen		3) Vascular cambiun	
57.	Loosely arranged, non- cells in lenticels are	submerised parenchyma		Interfascicular cambi	a
	1) Epithem cells	2) Complementary cells		4) Apical meristems -	•
	3) Transfusion cells	4) Subsidiary cells	66.		ind tissues and vascular
58.	Tissues involved in form	ation of vascular cambium		tissues are derived fr	om
	in dicot root is			1)Apical meristems	
	1) Pericycle	2) Conjuctive tissue		2) Lateral meristems	
	3) Xylem	4) Both 1 and 2		3) Phellogen	
59.	Wood with less density			4) Interfascicular carr	ıbium
	1) Spring wood	2) Late wood			
	3) dark wood	4) Autumn wood			

67.	A group of permanent	cells which are similar	76.	The chemical compo	osition of cellwalls of	
	in their structure and fi	unction are called		living mechanical tis		
	1) Simple tissues			1) Cellulose, Hemic		
	2) Complex tissues			2) Cellulose, chitin a		
	3) Special type of tissu	ues		3) Cellulose, pectin	-	
	4) Mechanical tissues			4) Chitin, cellulose and cutin		
68.	Dissimilar permanent t	issues collectively	77.	Food assimilatory s		
	performing a common	function is called		1) Parenchyma	2)Collenchyma	
	1) Simple tissues			3) Sclerenchyma	4) 1 & 2	
	2)Special type of tissu	es	78.		ing are called cylindrical	
	3) Complex tissues			meristems?		
	4) All of these			1)All primary meris	tems	
69.	Number of types of ce	lls present in a simple		2) All apical meriste		
	tissue			3)All lateral merister		
	1) Many	2) Two		4) Only intercalary		
	3) One	4) Four	79.		completely absent in	
70.	The common most sin	ple tissue found in		1) Thallophytes and	Bryophytes	
	plants is			2) Thallophytes and	dpteridophytes	
	1) Parenchyma	2) Collenchyma		3) Phanerogons and	d Cryptogams	
	3) Sclerenchyma	4) Laticiferous tissue		4) Thallophytes alo	ne	
71.	The photosynthetic sir	nple tissues are	80.	Perforation plates an	e associates with	
	1) Parenchyma	2) Collenchyma		1) Tracheary element	ts 2) Xylem vessels	
	3) Sclerenchyma	4) 1 & 2		3) Tracheids	4) Xylem parenchyma	
72.	The living mechanical	tissue is	81.	The main water transp	oorting chanalised	
	1)Collenchyma	2) Sclerenchyma		elements present in xy	elem are	
	3) Parenchyma	4) Xylem		1) Tracheids	2) Vessels	
73.	In which of the followi			3) Parenchyma	4) 1 & 2	
	-	of cellwalls is unevenly	82.	The only living tissue	found in water	
	distributed?			transporting complex	tissue	
	1) Parenchyma	2) Sclerenchyma		1) Xylem fibres 2) Xy	ylem parenchyma	
	3) Collenchyma	4) Sclereids		3) Vessel members		
74.	The very young stems	-		4) Tracheary elements	5	
	leaves and peduncles	-	83.	In tracheophytes, gen	erally occurrence of	
	external extream wind	l velocity due to		vessels in xylem is the	characteristic	
	presence of			feature of		
	1) Living mechanical th			1) All angiosperms 2)	Most of the angiosperms	
	2) Dead mechanical tis			3)All gymnosperms		
75	3) Parenchyma	4) Phloem		4) Most of the Gymne	osperms and	
75.	The number of types of presence in the cellwal			Pteridophytes		
	1) 2 2) 4 3) 1	4) 3				
	1 <i>j 2 2</i> j 7 3j 1	1,5				

	CII. 12 . IIIS I O	LUGI ANDANAI		F FLOWERING I LAINIS	
84.	Devolopment of Endarch x	ylem is the	92.	Which of the following meristems he	elps in
	characteristic feature of			linear growth of the stems of grasse	s?
	1) Roots	2) Stems		1) Intercalary meristems	
	3) Leaves	4) 1 & 2		2) Apical meristems	
85.	Development of Exarch xy	lem is the		3) Fascicular cambium	
	characteristic feature of			4) 1 & 2	
	1) Stems	2) Roots	93.	Generally the primary phloem is dev	oid of
	3) Leaves	4) Seeds		1) Sieve cells 2) Sieve tub	
86.	The oldest xylem in primary	y xylem is		3) Phloem parenchyma4) Phloem fi	bres
		2) Protoxylem	94.	Commercial fibres such as Flax fibr	
	3) Xylem element facing to	owards the pericycle		hemp fibres are structurally compos	sed of
	of the root	4) 2 & 3		1) Sclerenchyma fibres 2) Sclere	
87.	The living phloem elements	s bearing primordial		3) Tracheary elements 4) Sieve ele	ments
	utricle along with vacuole a	and devoid of	95.	A group of fundamental tissues that	behave as
	nucleus are			a functional unit is called	
	1) Companion cells and Alt	buminous cells		1) Special tissue 2) Tissue sy	rstem
	2) Matured sieve cells and	sieve tubes		3) Secretary tissues 4) Glandul	artissues
	3) Phloem parenchyma		96.	The structure and function of a tissu	e
	4) Phloem fibres			depends on their	
88.	In angiosperms the function	ns of sieve tubes are		1) Position in plant body 2) Location	n in the
	regulated by			plant body	
	1) The nucleus of albumino	ous cells		3) Origin in the plant body	
	2) The nucleus of companie	on cells		4) 1 & 2	
	3) The nucleus of phloem p	oarenchyma	97.	Three types of tissue system classifie	cation
	4) The nucleus phloem fibr	e		was proposed based on their	
89.	The intercellular connecti	ions present between		1) Shape and size of the tissue	
	sieve tubes and companio	on cells are		2) Structure and location in the plan	ıt body
	1) Pits			3) Physiological function of the tissu	le
	2) Pit fields			4) Nutritional function of the tissue	
	3) Sieve plates		98.	The autotrophic cells generally press	ent in
	4) Perforation plates			stomatal apparatus are	
90.	The Sclerenchymatous tis	ssue present in		1) Subsidiary cells 2) Guard ce	lls
	phloem is			3) Accessary cell 4) Helping of	cells
	1) Phloem parenchyma		99.	Identify the right match from the follo	owing
	2) Bast fibres			1) Hypodermis – Epidermal tissue s	ystem
	3) Sieve tube members			2) Pericycle – Vascular tissue syster	n
	4) Albuminous tissue			3) Endodermis – Epidermal tissue s	ystem
91.	Apical meristems are abs	sent at the tips of		4) Medulla – Ground tissue system	
	,	2) Stem			
	3) Branch 4)Leaf			

			108.	In dicot and
100.	Which of the follows	• •	100.	tissue is com
	includes only simple	tissues?		1) Parenchyr
	1) Epidermal	2) Ground		2) Sclerench
	3) Vascular	4) 1 & 2		3) Collenchy
101.	The living mechanic	al simple tissue generally		4) Sclerench
	absent in		109.	The most im
	1) Epidermal tissue	system	109.	
	2) Ground tissue sys	stem		feature gener dicot stem is
	3) Vascular tissue sy	vstem		
	4) 1 & 3			shaped vascu
102.	The ground tissue sy	/stem of leaves		2) Large nut
	1)Xylem	2) Bundle sheath		arranged in t
	3) Mesophyll	4) 2 & 3		3) Endarch p
103.	Bicollateral vascular	r bundles are found in		bundle
	1)Hibiscus	2) Cucurbita	110	4) Occurrent
	3) Helianthus	4) Zeamays	110.	The general
104.	The ratio of xylem, p	phloem and cambial		dorsiventral
	patches present in bi	collateral vascular		1) Epistomat
	bundles respectively	vis	111	3)Amphistor
	1)1:1:1	2) 2 : 1 : 2	111.	In mesophyte
	3) 1 : 2 : 2	4) 1 : 2 : 1		leaf is genera
105.	Collateral and conjo	int vascular bundles are		1) Homogen
	found in			2) Heteroger
	1) Dicot stems	2) Monocot stems		3) Aerenchy
	3) Dicot roots	4) 1 & 2	112	4) Always co
106.	The characteristics of	of vascular bundles of	112.	The ratio of
	dicot roots are			upper epider
	1) Radial, separated	l, Exarch and polyarch		isobilateral le
	2) Radial, separated	l, endarch and polyarch		1) 1 : 2
	3) Collateral, closed	l, exarch and Tetrarch	112	3) 3 : 4
	4) Radial, Seperated	l, exarch and usually	113.	The size of the
	diarch to tetrarch			leaves from j
107.	Oval shaped vascula	ar bundles are irregularly		1) Increasing
	scattered in			3) Remains c
	1) Dicot stem	2) Monocot stem	114	4) Unevenly
	3) Dicot root	4) Monocot root	114.	The primary
				stems is pror
				1) Apical me
				2) Lateral me
				3) Fascicular

monocot stems, the hypodermal nposed of respectively ma and Collenchyma nyma and Collenchyma yma and Sclerenchyma hyma and Sclerenchyma nportant anatomical characteristic erally exists for identification of S 1) Presence of top ular bundles umber of vascular bundles the form of a ring protoxylem in each vascular ce of medulla distribution of stomata in the leaf is described as itous 2) Hypostomatous 4) Astomatous omatous tes the mesophyll in dorsiventral ally nous type enous type ma type composed of spongy parenchyma types of cells present in the rmal cells of dorsiventral and leaves respectively 2) 4 : 3 4)4:5the vascular bundle in dorsiventral proximal end to distal end is in ig order 2) Decreasing order constant throughout y thickened y vertical growth of roots of moted by eristems eristems

3) Fascicular vascular cambium

297

4) Interfascicular cambium

115.	The main purpose of secondary growth is	121.	The primary meristems	s that gives rise to
	1) To increase the diameter of the stems and		secondary xylem and s	econdary phloem is
	roots of all vascular plants		1)Phellogen	
	2) To increase the girth of the stems and		2) Fascicular vascular o	cambium
	roots of all phanerogams		3) Interfascicular camb	ium
	3) To increase the girth of the stems of the		4) Procambium	
	fruit yielding plants only	122.	Recently developed set	condary xylem and
	4) To increase the girth of the stems and		secondary phloem is pl	laced
	roots of dicots and Gymnosperms		1) Just inner and outer	sides of the vascular
116.	Vascular cambium is composed of		cambium respectively	
	1) Intrafascicular cambium and interfascicular		2) Xylem is lateral to m	etaxylem and phloem
	cambium		lateral to metaphloem	
	2) Interfascicular cambium and Phellogen		3) Xylem lateral to prot	toxylem and phloem
	3) Interfascicular cambium and Phelloderm		lateral to semiluxer per	icyclic patch
	4) Procambium and phallogen		4) Xylem elements are	placed lateral to
117.	The first step during initiation of secondary		medulla and phloem la	teral to primary phloem
	growth is	123.	During secondary grov	vth, the vascular tissue
	1) Formation of fascicular vascular cambium		that disintegrates earlie	ris
	2) Formation of interfascicular cambium		1) Primary xylem	
	3) Formation of vascular cambium		2) Primary phloem	
	4) Formation of cambial ring		3) Medulla	4) Phelloderm
118.	Primary xylem and primary phloem develops	124.	The direction of growt	h of secondary
	from		medullary rays takes p	lace by
	1) Procambium		1) Centripetally	2) Centrifugally
	2) Vascular cambium		3) Both 1 & 2	4) Radially
	3) Fascicular vascular cambium	125.	The first annual ring w	as developed in 2005
	4) All lateral meristems		and continuous yearly	till 2013. The early
119.	Secondary xylem and secondary phloem		wood of 2010 is found	between
	develops from		1) Autumn wood of 20	09 and Autumn wood
	1)All lateral meristems		of 2010	
	2) Procambium		2) Springwood of 201	0 and spring wood of
	3)Vascular cambium		2011	
	4) Only Interfascicular cambium		3) Spring wood of 201	0 and Autumn wood
120.	The matured secondary xylem is present		of 2011	
	lateral to		4) Autumn wood of 20)10 and latewood of
	1) Protoxylem		2011	
	2) Metaxylem	126.	Annual rings are well of	rganized in
	3) Central medullary parenchyma		1) Tropical trees	2) Tropical grasses
	4) Just inner to the cambium		3) Temperate trees	4) Temperate plants

127.	The applied branch of science that deals with	124	
	the study of the structure, development,	134.	The primary function of lenticels is
	counting number of annual rings and		1) Exchange of gases
	determining the age of the plants is called		2) Lenticular transpiration
	1) Dendrology 2) Dendrochronology		3) Entry and exist of microbes
	3) Phenology 4) Climatology		4) Storage of food materials in their
128.	The lighter and darker density woods		complimentary cells
	respectively	135.	During secondary growth of dicot roots,
	1) Autumn wood and spring wood		the vascular cambium originates from
	2) Spring wood and autumn wood		1) Completely primary in origin
	3) Early wood and late wood		2) Completely secondary in origin
	4) 2 & 3		3) Partially primary and partially
129.	The non-functional wood with different		secondary in origin
127.	storage materials resistant to microbes and		4) Depends on seasonal and determines
	insects and provides mechanical support to		either primary or secondary in origin
	the stem is	136.	In dicot roots, during secondary growth,
	1) Sap wood 2) Heart wood		the vascular cambium is derived from
	3) Duramen 4) 2 & 3		1) Conjunctive tissue and perycyclic tissue
130.	, , ,		by differentiation
130.	The wood present just inner to the vascular cambium is		2) Conjunctive tissue and pericycle by
			dedifferentiation
	1) Functional wood 2) Sap wood		3) Conjuctive tissue and pericycle by
101	3) Heart wood 4) 1 & 2		redifferentiation
131.	Generally the number of layers present in a		4) Medullarly tissue and pericycle by
	phallogen is		dedifferentiation
	1) 4 2) 3 - 6 2) 2 4) 1	137.	During secondary growth, initially wavy
100	3) 2 4) 1		ring type of vascular cambium is
132.	The derivatives of phellogen are		developed in
	1) Phellem towards periphery and		1) Dicot stem 2) Dicot root
	phelloderm towards the centre		3) Monocot stem 4) Monocot root
	2) Phelloderm towards periphery and	138.	Presence of pits is the character feature
	phellem towards the center	1501	of following simple tissue
	3) Both phellem and phelloderm towards		1) Parenchyma
	periphery		2)Collenchyma
	4) Both phellem and phelloderm towards		3) Sclerenchyma 4) All of these
	the centre	139.	Collenchyma can be differentiated from
133.	The bark formed in early and late seasons	157.	parenchyma by
	are called respectively		1) pecto cellulosic deposits at corners
	1) Hard bark and soft bark		2) Living protoplasm
	2) Soft bark and hard bark		
	3) Ring bark and scale bark		3) cellulosic cell wall 4) No protonlasm
	4) Hard bark and soft bast		4) No protoplasm
		1	

140.	Collateral bundles occurs in	148.	The mode of arrangement of palisade
	1) Dicot stem 2) Monocot stem	1.00	parenchyma cells in dicot leaf
	3) both dicot, monocot stem		1) Vertical rows and parallel to each other
	4) root		2) Radial rows and parallel to each other
141.	Continuous collenchymatous hypodermis ar	d	3) Radial rows and perpendicular to each other
	discontinuous sclerenchyma in the pericycle		4)Vertical rows and perpendicular to each other
	are found in	149.	In a secondary dicot stem the position of
	1) Cucurbita 2) Zea mays	149.	youngest secondary phloem is
	3) Helianthus 4) Oryza		1) Just outside to vascular cambium
142.	Dead, lignified sclerenchyma cells are prese	nt	2) just inside to primary phloem
	in the		
	1) Hypodermis of dicot leaf		3) just inside to vascular cambium
	2) Pericycle of monocot root	150	4) just outside to primary phloem
	3) Hypodermis of monocot stem	150.	Find out the correct statement with respect to
	4) Medulla of dicotstem		secondary growth
143.	Largest number of chloroplasts in the leaf is	in	1) Autumn wood of 14th Annual ring is lie
	1) Spongy tissue		immediately inside to spring wood 13th Annual ring
	2) Palisade tissue 3) Guard cells		2) Spring wood of 8th annual ring is lie immediately
	4) Bundle sheath		inside to autumn wood of 9th annual ring
144.	The meristem which occurs between mature	;	3) Autumn wood of 16th annual ring is lie
	tissues in known as		immediately outside to spring wood of 15th
	1) intercalary meristem 2) apical meristem		annual ring
	3) lateral meristem 4) all		4) spring wood 4th annual ring is lie immediately
145.	Which one contains vascular bundles in a	1.5.1	outside to autumn wood of 3rd annual ring
-	ring(Eustele)	151.	Vascular bundles are conjoint, endarch and lack
	1) Wheat 2) Lily		cambium between xylem and phloem in all, but
	3) Sunflower 4) Onion		notin 1) Maize 2) Jowar
146.	Position and nature of bulliform cells	152	3) Wheat 4) Sunflower
	1) abaxial, large, empty, colour less cells	152.	Find the correct statement from the following 1) Linear growth of the root is maintained by
	2) abaxial, small, empty, colour less cells		root apical bud
	3) adaxial, large, empty, colour full cells		2) Apical growth in monocot stems is due to
	4) adaxial, large, empty, colour less cells		intercalary meristems and Apical meristems
147.	When secondary growth is initiated in did	ot	3) All Apical and Intercalary meristems are
11/1	stem, what will happen first		primary meristems
	1) The cells of cambium divide periclinally	to	4) Axillay buds of leaves are formed by
	form xylem mother cells		lateral meristems
	2) Inter fascicular cambium joins wi	th 153.	Nature of xylem fibers is
	intrafascicular cambium		1) Thickened walls, always septate and
	3) Parenchymatous cells present betwe	n	obliterated lumen
	vascular bundles become meristematic		2) Lightly thickened walls, septate or
	4) Medulla gets obliterated		aseptate and broad lumen
	1) mound gets contended		200

	3) Highly thickened walls, septate or	159. Meristems are
	aseptate and obliterated lumen	1) group of young immature cells
	4) Highly thin walls, always aseptate and	2) group of mature differentiated cells
	broad lumen.	3) group of immature non-dividing cells
154.	Correct statements related to cells of non	4) group of mature storage cells
134.		160. Ephemeral meristems is
	living simple tissue	1) Intercalary meristem 2) Apical meristem
	1) Tissue made up of short, wider cells	3) Lateral meristem 4) All
	with thick and subarised cell walls.	161. Active cell divisions are found in
	2) Fibres are elongated cylindrical	1) Latex 2) Pith
	cells, those occurs always in isolated form.	3) Internode 4) Root and shoot tips
	3) The sclereids are spherical, oval or	162. Length of a plant increases due to the activity of
	cylindrical, slightly thickened dead cells.	1) Apical meristem
	4) Scelerenchyma provides mechanical	2) Reproductive meristem
	support to plant organs.	3) Secondary meristem
155.	Motor cells belong to	4) Lateral meristem
	1) Dermal tissue system of Monocot stem	163. Monocot stem possess
	2) Ground tissue system of Monocot leaf	1) Intercalary meristem 2) Lateral meristem
	3) Dermal tissue system of Dicot leaf	3) Apical meristem 4) 1 & 3
	4) Dermal tissue system of monocot leaf	164. Eustele is characteristic of
156.	Dicot stem has	(1) Monocots 2) Dicots (2) Pteridentation 4) Discussion
	1) Conjoint, Collateral, Open, Endarch	(3) Pteridophytes 4) Bryophytes 165. Albuminous cells occur in
	vascular bundles	1) Xylem 2) Phloem
	2) Conjoint, Collateal, Open, Exarch vascular bundles	3) Cortex
	3) Conjoint, Collateral, Closed, Endarch	4) Conjunctive parenchyma
	vascular bundles	166. Sieve tubes are suited for translocation of food
	4) Separate, Collateral, Open, Exarch vascular	because they possess
	bundles	1) Bordered pits 2) No ends walls
157.7	The major component within a plant organ	3) Broader lumen and perforated cross walls
1077	among the following is	4) No protoplasm
	1) Parenchyma 2) Collenchyma	167. Angiosperms contain
	, . , .	1) No sieve tubes 2) No vessels
150	3) Sclerenchyma 4) Xylem	3) Tracheids only 4) Tracheids and Vessels
158.	Identify the incorrect expression from the	168. Companion cells are usually seen associated
	following statements:	with
	1) All apical meristems are the primary	1) Fibres2) Tracheids3) Vessels4) Sieve tubes
	meristems	169. Xylem conducts water from
	2) All primary meristems are apical	1) Leaves to root 2) Root to leaves
	meristems	3) Tracheids to vessels
	3) All intercalary meristems are Primary	4) Fibres to tracheids
	meristems	170. In which of the following phloem occurs in two
	4) All secondary meristems are lateral	patches?
	meristems	1) Maize 2) <i>Cucurbita</i>
		3) Sunflower 4) Dracaena
		301

301

171. External protective tissues of plants or dicot stem are	183. Whose living cells provide tensile and mechanical
 Cork and pericycle Cortax and anidormia 	strength:
 Cortex and epidermis Pericycle and cortex 	1) Collenchyma 2) Sclerenchyma
4) Epidermis and cork	3) Phloem 4) Sclereids
172. Cork cells are	184. Nucleated part of phloem is
1) Dead 2) Photosynthetic	1) Phloem fibre 2) Companion cell
3) Elongated and participate in movement	3) Sieve element 4) All of the above
4) Meristematic	185. An elongated living cell attached with sieve tubes
173. Which structure is not present in the leaf of Bean plant?	is not found in:
1) Phloem 2) Stomata	1) Angiosperms 2) Gymnosperms
3) Guard cells 4) Lenticels	3) In both angiosperms and gymnosperms
174. Another term for cork tissue is	4) None of these
1) Phellogen 2) Phelloderm	186. The narrow layer of thin walled cells which separate
3) Phellum 4) Periderm	the wood from phloem in dicotyledonous plant is:
175. Largest number of chloroplasts in the leaf is in	1) Endodermis 2) Pericycle
1) Spongy tissue 2) Palisade tissue	3) Vascular cambium 4) Cork cambium
3) Guard cells 4) Bundle sheath	187. Most appropriate definition of tissue is
176. The lacuna in the vascular bundles of monocot stems is	1) They are composed of only one type of cells
1) Metaxylem	2) Only one type of cells responsible to perform one common function is called tissue
2) A mucilage cavity	3) A group of one or more types of cells
3) Water cavity	performing one common function is called
4) A large sized vessel	tissue
177. Dicot root can be identified by	4) none of the above
1) Exarch xylem	188. Which one of the following is an effective tissue of
 2) Absence of pith and endodermis 2) Presence of more than 8 radial hundles 	growing organs with sufficient elasticity
3) Presence of more than 8 radial bundles	
 Presence of more than 8 radial bundles Occurrence of 2—6 radial bundles 	growing organs with sufficient elasticity
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, 	growing organs with sufficient elasticity 1) Parenchyma 2) Collenchyma 3) Sclerenchyma 4) All the above 189. The only plant cells without nuclei among the
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is 	growing organs with sufficient elasticity 1) Parenchyma 2) Collenchyma 3) Sclerenchyma 4) All the above 189. The only plant cells without nuclei among the following are
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is 1) Sap wood 2) Heartwood 	growing organs with sufficient elasticity 1) Parenchyma 2) Collenchyma 3) Sclerenchyma 4) All the above 189. The only plant cells without nuclei among the following are 1) Cambium cells 2) Cells of pericycle
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 	growing organs with sufficient elasticity 1) Parenchyma 2) Collenchyma 3) Sclerenchyma 4) All the above 189. The only plant cells without nuclei among the following are 1) Cambium cells 2) Cells of pericycle 3) Xylem parenchyma 4) Sieve tubes
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is 1) Sap wood 2) Heartwood 	growing organs with sufficient elasticity 1) Parenchyma 2) Collenchyma 3) Sclerenchyma 4) All the above 189. The only plant cells without nuclei among the following are 1) Cambium cells 2) Cells of pericycle 3) Xylem parenchyma 4) Sieve tubes 190. Complex tissues include
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if 	growing organs with sufficient elasticity 1) Parenchyma 2) Collenchyma 3) Sclerenchyma 4) All the above 189. The only plant cells without nuclei among the following are 1) Cambium cells 2) Cells of pericycle 3) Xylem parenchyma 4) Sieve tubes 190. Complex tissues include 1) Collenchyma 2) Apical Meristem
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half the flowers 	growing organs with sufficient elasticity 1) Parenchyma 2) Collenchyma 3) Sclerenchyma 4) All the above 189. The only plant cells without nuclei among the following are 1) Cambium cells 2) Cells of pericycle 3) Xylem parenchyma 4) Sieve tubes 190. Complex tissues include 1) Collenchyma 2) Apical Meristem
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half the flowers All the leaves 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half the flowers All the leaves Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin Suberin Chitin 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith Vascular bundles in which phloem is found on both
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin Suberin Chitin 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin Suberin Chitin 181. Leaves possess thick cuticle in plants of Warm habitats 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith Vascular bundles in which phloem is found on both sides of xylem are called (In which of the following phloem occurs in two patches) Collateral Bicollateral
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin Suberin Chitin 181. Leaves possess thick cuticle in plants of Warm habitats Dry habitats Cool habitats 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith Vascular bundles in which phloem is found on both sides of xylem are called (In which of the following phloem occurs in two patches) Collateral Radial
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half the flowers All the leaves Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin Suberin Chitin 181. Leaves possess thick cuticle in plants of Warm habitats Dry habitats Cool habitats Wet habitats 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith Vascular bundles in which phloem is found on both sides of xylem are called (In which of the following phloem occurs in two patches) Collateral Radial Amphicribral
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin Suberin Chitin 181. Leaves possess thick cuticle in plants of Warm habitats Dry habitats Cool habitats Wet habitats 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above Sclerenchyma All the above The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes Complex tissues include Collenchyma Apical Meristem Conducting tissue Idioblast Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith Vascular bundles in which phloem is found on both sides of xylem are called (In which of the following phloem occurs in two patches) Collateral Radial
 3) Presence of more than 8 radial bundles 4) Occurrence of 2—6 radial bundles 178. A major part of dicot wood is filled with tannins, resins and gums. It is Sap wood Heartwood Soft wood Hard wood 179. Which would do the maximum harm to the tree if the following is lost? Bark Half the flowers All the leaves Half of the branches 180. Cork cells are impervious due to deposit of Cutin Lignin Suberin Chitin 181. Leaves possess thick cuticle in plants of Warm habitats Dry habitats Cool habitats Wet habitats 	growing organs with sufficient elasticity Parenchyma Collenchyma Sclerenchyma All the above 189. The only plant cells without nuclei among the following are Cambium cells Cells of pericycle Xylem parenchyma Sieve tubes 190. Complex tissues include Conducting tissue Apical Meristem Conducting tissue Idioblast 191. Layer of cells between endodermis and vascular bundles is called Epidermis Pericycle Hypodermis Pith 192. Vascular bundles in which phloem is found on both sides of xylem are called (In which of the following phloem occurs in two patches) Collateral Radial Amphicribral 193. Exarch and polyarch vascular bundles occur in Monocot stem Monocot root

- 194. In monocot leaf
 - 1) Bulliform cells are absent from the epidermis
 - 2) Veins form a network
 - 3) Mesophyll is well differentiated into these parts
 - 4) Mesophyll is not differentiated into palisade and spongy parenchyma
- 195. Well developed pith is found in
 - 1) Monocot stem and dicot root
 - 2) Monocot and dicot stems
 - 3) Dicot stem and dicot root
 - 4) Dicot stem and monocot root
- 196. Generally hypodermis in monocots is composed of
 - 1) Parenchyma 2) Sclerenchyma
 - 3) Collenchyma 4) Chlorenchyma
- 197. Endodermis of dicot stem is also called
 - 1) Bundle sheath 2) Starch sheath
 - 3) Mesophyll 4) Pith
- 198. Collenchymatous hypodermis is the characteristics of
 - 1) Dicot stem 2) Monocot stem
 - 3) Monocot as well as dicot stem
 - 4) Hydrophytes
- 199. In leaves the protoxylem elements
 - 1) Face towards abaxial surface
 - 2) Face towards adaxial surface
 - 3) Are surrounded by metaxylem elements
 - 4) Are scattered in the vascular bundle
- 200. In what respect, the pericycle of a root differs from that of the stem
 - 1) Sclerenchymatous in root and collenchymatous in stem
 - 2) Collenchymatous in root and parenchymatous in stem
 - 3) Parenchymatous in root and sclerenchymatous in stem
 - 4) Parenchymatous in root and collenchymatous in stem
- 201. In dicot stem, the secondary growth takes place by
 - 1) Primary cambium
 - 2) Secondary cambium
 - 3) Development of cambium in stele region
 - 4) Development of cambium in stele and in the cortical region

- 202. "Sap wood" is otherwise called
 - 1) Duramen 2) Alburnum
 - 3) Pith 4) Medullary rays
- 203. Other names of secondary cortex, cork cambium and cork are
 - 1) Phellem, phelloderm and phellogen
 - 2) Phellogen, phellem and phelloderm
 - 3) Phelloderm, phellogen and phellem
 - 4) Phellogen, phelloderm and phellem
- 204. Youngest layer of secondary xylem in wood of dicot stem is located just
 - 1) Outside the cambium
 - 2) Inside the cambium
 - 3) Outside pith 4) Inside the cortex
- 205. Tissue present in an annual ring is
 - 1) Secondary xylem and phloem
 - 2) Primary xylem and phloem
 - 3) Secondary xylem only
 - 4) Primary phloem and secondary xylem
- 206. Dendrochronology is the study of
 - 1) Height of a tree
 - 2) Diameter of a tree
 - 3) Age of a tree by counting the number of annual rings in the main stem
 - 4) None of these
- 207. In old dicot stems, a major part of the wood is filled up with tannins, resins, gums etc. This part of wood is called
 - 1) Hard wood 2) Heart wood
 - 3) Sap wood 4) Soft wood
- 208. Each annual ring has
 - 1) An inner layer and an outer layer
 - 2) A single layer of xylem elements
 - 3) Uniform layer of xylem elements
 - 4) Many layers of xylem elements
- 209. Cuticle is absent in
 - 1) Roots 2) Stem
 - 3) Leaves 4) In all aerial parts
- 210. Specialised epidermal cells with chloroplast
 - 1) Subsidiary cells 2) accessory cells
 - 3) Guard cells 4) 1 and 2
- 211. Stomatal apparatus constitute 1) Stoma & Guard cells
 - 2) Stoma and accessory cells
 - 3) Guard cells and subsidiary cells
 - 4) Stoma, guard cells and subsidiary cells

212. In grasses, the guard cells a	re	2
1) Bean - shaped 2)	Reniform	2
3) Dumb-bell shaped 4)	1 & 2	
213. If xylem and pholem are sit		2
radius of vasalar bundle, suc		2
, , ,	Collateral	
3) Bicollateral 4)		
214. The inner most layer of the		2
1) Hypodermis 2)	Endodermis	
	Epidermis	
215. In dicot root pericycle prod	uce	
1) Lateral roots 2)	Cork combium	2
3) Vascular cambium 4)	all	
216. In T.S of root the tissue pres		
and pholem is	2	2
1	Medullary rays	
3) Conjuctive tissue 4)		
217. Minimum number of vascul	•	
monocot root are		2
1) 6 2) 7 3) 8	4) 9	
218. In monocot stem peripheral	/	
are	vasculai bullules	2
	Smaller	-
, ,	Smaller	
3) Both larger & Smaller 4)		2
219. In monocot stem one of the	U	
component of pholem is ab		
· · · · · · · · · · · · · · · · · · ·	Sieve tubes	
3) Companion cells 4)		2
220. In leaf anatomy the size of		2
is dependent on the size		
/	Vein	
, , , , , , , , , , , , , , , , , , , ,	1 & 2	
221. When bulliform cells becor	ne flaccid, they make	
the leaves		2
1) Curl inwards to minimise	e water loss	
2) Curl inwards to rise wate	er loss	
3) Curl outwards to minimize	se water loss	
4) Curl outwards to rise wa	ter loss	2
222. In dicot stem vascular camb	ium is	
1) Primary meristem only		
2) Secondary meristem only	ý	2
3) Partly primary & parthy		
4) None of these	Š	
223. Identify the correct character	ers of early wood	
-	Lower density	
, e ,	1 & 2	
-)		

224. All tissues which are found exterior to the						
vascular cambium is						
1) Bark 2) Cork 3) Phellem 4) Phellogen						
225.	Apical meristems are :					
	1) Primary meristem	2) Secondary meristem				
	3) Promeristem	4) None of these				
226.	Interfascicular cambiur	n in stem is				
	1) Primary meristem					
	2) Secondary meristen	1				
	3) Promeristem	4) All of these				
227.	Phellogen is	,				
	U	2) Intercalary meristem				
	3) Lateral meristem	-				
228.	*	-				
	1) Arranged in straight					
	2) Scattered	3)Absent				
	4) None of the above	,				
229.	Sclerenchymatous hyp	odermis is present in				
	• • •	2) Monocot stem				
	/	4) None of these				
230.	/	nown as 'starch sheath'?				
2000	1) Pericycle	2) Endodermis				
	3) Epidermis	4) Hypodermis				
231.	Conjunctive tissue is p	/ •1				
2011	1) Between xylem and					
	2) Between metaxylem	-				
	3) In cortex	4) In pith				
232.	Which is not character	/ 1				
	1) Conjoint, collateral					
	2) Endarch condition					
	3) Usually chlorenchyr	na present				
	4) Hairs are unicellular					
233.	·	t around vascular bundles				
2001	in					
	1) Monocot stem	2) Dicot stem				
	3) Both 1 and 2	4) None of these				
234.	,					
2011	1) Hypostomatic	2) Epistomatic				
	3)Amophistomatic	4) None of these				
235.	Vascular cambium cuts	· · · · · · · · · · · · · · · · · · ·				
230.	1) Secondary xylem or					
	2) Secondary phloem					
	· · ·	m and secondary phloem				
	on both sides	in and becondury photon				
		inner side and secondary				
	phloem on outer side	miler side and secondary				
	Princern on outer side					

236.	. No secondary growth appears in monocot			Sapwood is synonymous with		
	stems, because			1) Outer part of secondary xylem		
	1) Vascular bundles are scattered			2) Inner part of seconda		
	2) Vascular bundles closed			3) Periderm	4) Bark	
	3) Vascular bundles enc	losed by	248.	After two years of second	/	
	sclerenchymatous	-	210.	a dicot root and stem is		
	4) None of the above			1) Unaffected complete		
237.	The cross section of a t	trunk of tree shown 50		3) Largely lost	ry 2) bloughed bli	
	annual rings, the age of			4) Converted into cork		
	1) 25 years2) 50 years			Cambium causes growt	h in	
	3) 100 years	4) 50 months	249.	1) Girth 2) Peri		
238.	Alburnum is)		3) Leaves 4) Len		
	1) Heart wood	2) Sap wood	250.	Collateral bundles occu	0	
	3) Hard wood	4) Soft wood	230.			
239.	Function of duramen is	.) 2010 11 00 0		1) Dicot stem only 2) M	•	
-071	1) Conduction	2) Mechanical		3) Dicot as well as mon	ocot stems	
	3) Both 1 and 2	4) None of these	251	4) Leaves only	·····	
240.	Periderm is made of		251.	The living mechanical t		
210.	1) Cork and secondary	cortex		1) Parenchyma	2) Collenchyma	
	2) Cork cambium, cork		252	3) Sclerenchyma	4) Chlorenchyma	
	3) Cork cambium, cork	• 1	252.	•	, when mature, are dead	
	4) Cork alone	and secondary contex		except	a) x x = 1	
241.	Bark of a tree comprise	C.		1) Tracheids	2) Vessels	
241.	_			3) Xylem parenchyma		
	1)All tissues outside vas		253.		bem on two sides, the	
	2) All tissues outside con			vascular bundle is know		
	3) Cork, secondary cor	lex		1) Endarch 2) Exarch		
242	4) Only cork			3) Bicollateral	4) Collateral	
242.	Autumn wood can be di	stinguished from spring	254.	The cork of dicots is a d		
	wood by	- ale al da		1)Phellogen	2) Vascular combium	
	1) Broad vessels and tra			3) Phloem	4) Xylem	
	2) Narrow vessels and t		255.	Branch of Botany dea	-	
242	3) Red colour	4) By cambium		organization of plants is		
243.	Sieve tubes and compar			1) Physiology	2) Ecology	
	1) Xylem	2) Phloem		3)Anatomy	4) Cytology	
044	3) Meristems	4) Cortex	256.	Bast fibres are frequentl		
244.	Cortex and pith are not o	e		1) Secondary xylem	2) Secondary pholem	
	1) Monocot stem	2) Monocot root		3) Primary phloem	4) Primary xylem	
o 4 5	3) Dicot stem	4) Dicot root	257.	Radial exarch condition	occurs in	
245.	The basic difference be	etween stem and root is		1) Leaf 2) Roo	ot	
	that stem is			3) Maize stem 4) Ferr	stem and Petiole	
	1) Endarch 2) Exarch			Phloem parenchyma is a	absent in	
	3) Mesarch 4) Polyarch			1) Dicot stem	2) Dicot leaf	
246.	Wood is common name	efor		3) Monocot stem	4) Dicot root	
	1) Vascular bundles		259.	Intercalary meristem res	ults in	
	2) Secondary xylem			1) Secondary growth	2) Primary growth	
	3) All tissues which form	n a plant body		3) Apical growth	4) Periderm formation	
	4) Phloem					

305

260.	0. Stelar region (vascular tissue, pericycle and pith)		271.	T.S. of a material exhibits conjoint collateral		
	are formed from			endarch and closed bundles scattered in a ground		
	1) Periblem	2) Plerome		tissue. What should be the material?		
	3) Dermatogen	4) Tunica		1) Monocot root	2) Dicot root	
261.	<i>,</i> ,	ytes, stomata are found		3) Monocot stem	4) Dicot stem	
	(CPMT 1990)		272.	Periderm is formed from	n	
	1) On upper surface of	leaf		1) Vascular cambium	2) Cork cambium	
	2) On lower surface of			3) Fascicular cambium		
	3) On both surface of le			4) Interfascicular cambia	ım	
	4) No where on the pla		273.	Well developed pith is f	Found in.	
262.	Meristematic activity is			1) Monocot root and m	onocot stem	
	1) Stem apex	2) Bud		2) Monocot root and di		
	3) Leaf	4) Root hair		3) Monocot stem and d	icot root	
263.	The cell functionally as	sociated with sieve tube		4) Dicot stem and dicto	t root	
	is		274.	In old dicot stems a ma		
	1) Phloem fibres	2)Phloem parenchyma		filled up with tannins, res	sins, gums, etc., this part	
	3) Companion cell	4) Collenchyma		is called.		
264.		ed by (or) the length of a		1) Heart wood	2) Sap wood	
	plant axis increases by			3) Hard wood	4) Self wood	
	1)Apical meristem	2) Lateral meristem	275.	A timber merchant told		
	3) Dermatogen	4) Plerome		wood which he was pure	-	
265.	Thickening of cell w	all, lignification and		years old tree, he told so	by inspecting the	
		chanical function are		1) Diameter of log		
	characteristics of.			2) Thickness of the hear		
	1) Sclerenchyma	2) Collenchyma		3) Number of cork laye		
	3) Chlorenchyma	4) Parenchyma	276.	In trees the growth rings	-	
266.	An elongated cell with	tapering ends is termed.		1) Primary xylem	2) Secondary xylem	
	1) Collenchyma	2) Vessel		3) Secondary phloem	·	
	3) Sclerenchyma	4) Tracheids	277.	Lenticel is a loose mas	s of cells in cork tissue	
267.	Epidermal outgrowths	are known as.		meant for.		
	1)Trichomes	2) Leaves		1) Protection 2) Respira		
	3) Stomata	4) Buds		3) Absorption of moistu	re from air	
268.	Mesophyll is well differ	entiated in.		4) Exclusion of germs		
	1) Dicot leaves	2) Monocot leaves	278.	Annual rings are the bar		
	3) Submerged hydroph	ytes.		1) Secondary cortex an		
	4) Halophytic stems			2) All secondary vascula		
269.	Which side of a bifaci	ial (dorsiventral) leaf		3) Secondary xylem and		
	possesses more stomate	a?		4) Secondary phloem an		
	1)Adaxial side	2) Abaxial side	279.	Phellogen or cork camb	-	
	3) Present on tip and ma	argins only.		1) Interfascicular cambin		
	4) None of these			2) Intrafascicular cambin		
270.	Largest amount of chlor	-	200	3) Vascular cambium	4) Cortex	
	1) Spongy tissue	2) Palisade tissue	280.	In dorsiventral leaf, the	location of phloem and	
	3) Guard cells	4) Bundle sheath cells		palisade tissue is	$(2) \wedge 1 = 1 = 1$	
				1) Adaxial side	2) Adaxial side	
				3) Adaxial and abaxial s		
				4) Abaxial and adaxial s		
					206	

306

The cylindrical growth of the stems and roots

1) I alone is correct 2) III alone is correct

Secondary tissues are produced from

I) Fascicular vascular cambium II) Interfascicular cambium

is promoted by

III) Cork cambium

3) II alone is correct

4) I, II, III & IV are correct

B) Interfascicular cambium C) Intrafascicular cambium

IV) Phellogen

A) Phellogen

 281. The youngest layer of secondary phloem in a dicot stem is Inside the primary phloem Just outside the xylem Outside vascular cambium Inside vascular cambium 282. To which question the answer is negative ? Do some epidermal cells have chloroplast Do each tissue has a characteristic position of structures Are all dicot leaves dorsiventral Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem Because it gives rise to lateral branches Because it adds bulk to a plant Because it adds bulk to a plant 284. Angiosperms have Vessels absent TryPE - II 285. Growth in higher plants is largely confined to Shoot apex only Not apex only Not apex only Not all only are correct If and III only are correct If and III only are correct If alone is correct If and III only are correct Nich of the following are examples for primary meristems Apical meristems Apical meristems Apical meristems If Embryonic meristems If Embryonic meristems If Embryonic meristems 				287.			
 1) Inside the primary phloem 2) Just outside the xylem 3) Outside vascular cambium 4) Inside vascular cambium 282. To which question the answer is negative ? 1) Do some epidermal cells have chloroplast 2) Do each tissue has a characteristic position of structures 3) Are all dicot leaves dorsiventral 4) Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem 1) Because it gives rise to lateral branches 2) Because it causes growth in girth 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have Vessels absent TYPE - II 285. Growth in higher plants is largely confined to Shoot apex only II) Root apex only II) Root apex only II) Root apex only II) Root apex only II) alone is correct II and III only are correct II and III only are correct II and III only are correct 286. Which of the following are examples for primary meristems I Apical meristems II) Intercalary meristems II) Embryonic meristems 	281.						
 2) Just outside the xylem 3) Outside vascular cambium 4) Inside vascular cambium 282. To which question the answer is negative ? 1) Do some epidermal cells have chloroplast 2) Do each tissue has a characteristic position of structures 3) Are all dicot leaves dorsiventral 4) Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem 1) Because it gives rise to lateral branches 2) Because it causes growth in girth 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have 1) Vessels absent 2) Tracheids only 3) Vessels present 4) Sieve tubes absent 285. Growth in higher plants is largely confined to I) Root apex only II) Intercalary meristems found the plant body I) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems II) Embryonic meristems 290. 							
 3) Outside vascular cambium 4) Inside vascular cambium 282. To which question the answer is negative ? Do some epidermal cells have chloroplast Do each tissue has a characteristic position of structures 3) Are all dicot leaves dorsiventral 4) Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem Because it gives rise to lateral branches Because it adds bulk to a plant Because it adds bulk to a plant 284. Angiosperms have Vessels absent TYPE - II 285. Growth in higher plants is largely confined to Shoot apex only II) Root apex only III) Root apex only IV alone is correct III and III only are correct 286. Which of the following are examples for primary meristems Apical meristems Apical meristems Apical meristems III) Embryonic meristems 							
 4) Inside vascular cambium 282. To which question the answer is negative ? Do some epidermal cells have chloroplast Do each tissue has a characteristic position of structures Are all dicot leaves dorsiventral 4) Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem Because it gives rise to lateral branches Because it gives rise to lateral branches Because it adds bulk to a plant Because it adds bulk to a plant 284. Angiosperms have Vessels absent TYPE - II 285. Growth in higher plants is largely confined to Shoot apex only II) Root apex only III) Root apex only III and III only are correct 286. Which of the following are examples for primary meristems II) Apical meristems III) Embryonic meristems 		· ·					
 282. To which question the answer is negative ? Do some epidermal cells have chloroplast Do each tissue has a characteristic position of structures Are all dicot leaves dorsiventral Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem Because it gives rise to lateral branches Because it gives rise to lateral branches Because it adds bulk to a plant Because it adds bulk to a plant 284. Angiosperms have Vessels absent TYPE - II 285. Growth in higher plants is largely confined to Shoot apex only II) Root apex only III) Root apex only III alone is correct III and III only are correct 286. Which of the following are examples for primary meristems Apical meristems III) Embryonic meristems 		/					
 1) Do some epidermal cells have chloroplast 2) Do each tissue has a characteristic position of structures 3) Are all dicot leaves dorsiventral 4) Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem 1) Because it gives rise to lateral branches 2) Because it causes growth in girth 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have Vessels absent TYPE - II 285. Growth in higher plants is largely confined to I) Root apex only II) Root apex only II) Root apex only II) alone is correct III and III only are correct 286. Which of the following are examples for primary meristems I) Apical meristems III) Embryonic meristems 	282	,					
 2) Do each tissue has a characteristic position of structures Are all dicot leaves dorsiventral Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem Because it gives rise to lateral branches Because it causes growth in girth Because it adds bulk to a plant 284. Angiosperms have Vessels absent TYPE - II 285. Growth in higher plants is largely confined to Shoot apex only II) Root apex only II) Root apex only II) Root apex only IV alone is correct I and III only are correct I and III only are correct 286. Which of the following are examples for primary meristems Apical meristems II) Embryonic meristems 	202.	-					
of structures 3) Are all dicot leaves dorsiventral 4) Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem 1) Because it gives rise to lateral branches 2) Because it causes growth in girth 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have 1) Vessels absent 2) Tracheids only 3) Vessels present 4) Sieve tubes absent TYPE - II 285. Growth in higher plants is largely confined to I) Shoot apex only II) Root apex only III) Intercalary meristems only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems II) Intercalary meristems II) Intercalary meristems II) Embryonic meristems III) Embryonic meristems III) Embryonic meristems III) Embryonic meristems III) Embryonic meristems III) Embryonic meristems III) Embryonic meristems III Pathenee III State IIII State III State III State III State III State III St							
 3) Are all dicot leaves dorsiventral 4) Does the root cortex contain sclerenchyma 283. Why is cambium considered a lateral meristem 1) Because it gives rise to lateral branches 2) Because it causes growth in girth 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have 1) Vessels absent 2) Tracheids only 3) Vessels present 4) Sieve tubes absent 285. Growth in higher plants is largely confined to I) Shoot apex only II) Root apex only II) Root apex only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems II) Embryonic meristems 		·					
 283. Why is cambium considered a lateral meristem Because it gives rise to lateral branches Because it causes growth in girth Because it increases height and diameter of a plant Because it adds bulk to a plant 284. Angiosperms have Vessels absent Tracheids only Vessels present Sieve tubes absent 285. Growth in higher plants is largely confined to Shoot apex only II) Root apex only II) Root apex only II) Root apex only II) alone is correct II and III only are correct II and III only are correct 286. Which of the following are examples for primary meristems Apical meristems Apical meristems II) Embryonic meristems 		3) Are all dicot leaves	dorsiventral	288.			
 1) Because it gives rise to lateral branches 2) Because it causes growth in girth 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have Vessels absent Tracheids only Vessels present Sieve tubes absent 285. Growth in higher plants is largely confined to Shoot apex only Shoot apex only Shoot apex only 10 Root apex only 11 Intercalary meristems only Valone is correct If and III only are correct If and III only are correct If alone is correct If alone is correct If alone is correct 286. Which of the following are examples for primary meristems Apical meristems Apical meristems Intercalary meristems Intercalary meristems 		4) Does the root cortex	contain sclerenchyma				
 2) Because it causes growth in girth 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have Vessels absent Tracheids only Vessels present Sieve tubes absent 285. Growth in higher plants is largely confined to Shoot apex only Shoot apex only Neot apex only II) Root apex only II) Root apex only II) I alone is correct II and III only are correct II and III only are correct 286. Which of the following are examples for primary meristems Apical meristems Apical meristems II) Intercalary meristems II) Embryonic meristems 	283.	•					
 3) Because it increases height and diameter of a plant 4) Because it adds bulk to a plant 284. Angiosperms have Vessels absent Tracheids only Vessels present Sieve tubes absent 285. Growth in higher plants is largely confined to Shoot apex only Shoot apex only II) Root apex only III) Intercalary meristems found the plant body I alone is correct I alone is correct I alone is correct I alone is correct 286. Which of the following are examples for primary meristems Apical meristems Apical meristems II) Intercalary meristems II) Embryonic meristems 		, .					
 plant 4) Because it adds bulk to a plant 284. Angiosperms have 1) Vessels absent 2) Tracheids only 3) Vessels present 4) Sieve tubes absent 285. Growth in higher plants is largely confined to I) Shoot apex only II) Root apex only III) Intercalary meristems only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems II) Embryonic meristems 							
 4) Because it adds bulk to a plant 284. Angiosperms have Vessels absent Tracheids only Vessels present Sieve tubes absent 289. 289. 289. 291 Tracheids only Vessels present Sieve tubes absent 289. 289. 289. 201 Tracheids only 3) Vessels present 4) Sieve tubes absent 289. 201 Tracheids only 3) Vessels present 4) Sieve tubes absent 289. 201 Tracheids only 3) Vessels present 4) Sieve tubes absent TYPE - II 285. Growth in higher plants is largely confined to I) Shoot apex only II) Intercalary meristems only IV) The sites of meristems found the plant body I) I alone is correct I) I alone is correct II Intercalary meristems II Apical meristems II Intercalary meristems III Embryonic meristems 290. 290.		,					
 284. Angiosperms have Vessels absent Tracheids only Vessels present Sieve tubes absent 289. 289. 289. 289. 289. 289. 289. 289.		1					
 1) Vessels absent 2) Tracheids only 3) Vessels present 4) Sieve tubes absent TYPE - II 285. Growth in higher plants is largely confined to I) Shoot apex only II) Root apex only III) Intercalary meristems only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems II) Embryonic meristems 	284	1					
 3) Vessels present 4) Sieve tubes absent TYPE - II 285. Growth in higher plants is largely confined to I) Shoot apex only II) Root apex only III) Intercalary meristems only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems II) Embryonic meristems 	204.		2) Tracheids only				
TYPE - II 285. Growth in higher plants is largely confined to		· · · · · · · · · · · · · · · · · · ·	, · · ·				
 285. Growth in higher plants is largely confined to I) Shoot apex only II) Root apex only III) Intercalary meristems only IV) The sites of meristems found the plant body I) I alone is correct II and III only are correct IV alone is correct I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 							
I) Shoot apex only II) Root apex only III) Intercalary meristems only IV) The sites of meristems found the plant body I) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290.		TYPE -	II				
 II) Root apex only III) Intercalary meristems only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290. 	285.	Growth in higher plan	ts is largely confined to				
meristems only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290.			I) Shoot apex only				
meristems only IV) The sites of meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290.		II) Root apex only	III) Intercalary				
meristems found the plant body 1) I alone is correct 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290.		· · ·	· •				
 I alone is correct II and III only are correct IV alone is correct IV alone is correct I, II, III & IV are correct Which of the following are examples for primary meristems Apical meristems Intercalary meristems Embryonic meristems 		•	·				
 2) II and III only are correct 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems Apical meristems Intercalary meristems III) Embryonic meristems 		-	5				
 3) IV alone is correct 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems Apical meristems Intercalary meristems Embryonic meristems 290. 		,	correct				
 4) I, II, III & IV are correct 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290. 		· · ·					
 286. Which of the following are examples for primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290. 		,					
primary meristems I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290.	286						
I) Apical meristems II) Intercalary meristems III) Embryonic meristems 290.	2000		.8				
II) Intercalary meristemsIII) Embryonic meristems290.		1 2					
III) Embryonic meristems 290.		/ 1	ms				
		, .		290			
		, •					
differentiated method		differentiated method					

1) I & II alone

3) IV alone is incorrect

4) I, II, III and IV are correct

D) De differentiated cambium of cortial tissue 1)A 2) C 3) B 4) A B C D 289. Which of the following statements are true with reference to the characteristics of dead mechanical tissues? I) These are without protoplastic cells bearing a sapvacuoles II) These are without protoplastic cells bearing lumen with lignified thickened cellwalls and generally exhibits angular shaped in their T.S. III) These are devoid of intercellular spaces and bearing a few or numerous pits on their walls IV) Sclerenchyma has two distinct types of cells such as fibres and sclereids 1) I alone is correct 2) II alone is correct 3) III & IV alone are correct 4) I alone is incorrect 290. The phloem elements present in angiosperms are I) Sieve tube elements 2) II & III alone II) Companion cells III) Phloem parenchyma IV) Phloem fibres

	1) I alone is correct						
	2) I & II alone are correct						
	3) I, II, III & IV are co	orrect					
	4) II alone is incorrect						
291.	The phloem elements	present in the naked					
	seed bearing plants						
	I) Sieve cells	II) Sieve tubes					
	III) Albuminous cells	IV) Companion cells	295.				
		2) II & IV alone					
	3) I & IV alone	4) I, II, III & IV					
292.	Study the following sta	tements and identify					
	the correct one						
	I) All monocot plants h	ave well developed					
	phloem parenchyma in	their phloem					
		ots, poorely developed					
	phloem parenchyma in	their phloem					
	III) In most of the mon	III) In most of the monocots, phloem is					
	devoid of phloem parenchyma						
	IV) In most of the mon	ocots phloem is	296.				
	devoid sieve tubes						
	1) I & II	2) II & IV					
	3) Except – III all are i	ncorrect					
	4) IV alone						
293.	The cellular componen	ts of stomatal					
	apparatus are		297.				
	A) Guard cells	B) Subsidary cells					
	C) Stomatal aperture						
	D) Epidermal layer sur	rounding the subsidiary					
	cells						
	1)A&Bonly	2) B & C only					
	3) ABC only	4) ABCD					
294.	Study the following sta	tements and select the	298.				
	correct statements						
	A) The epidermal appe	endages developed on					
	the different parts of th	e shoot system are					
	called trichomes or hai	rs B) The trichome					
	generally are multicellu	lar	299.				
	C) The trichomes may	be branched or					
	unbranched						

	D) The trichomes ma	y be soft or stiff or even						
	glandular and secretor	ry in their nature						
	E) Trichomes help in j	E) Trichomes help in preventing water loss						
	due to transpiration							
	1) A C D are correct	2) B D E are correct						
	3) A B C D E are cor	rect						
	4) A & E only are cor	rect						
5.	In which of the follow	ing epidermal tissue						
	systems stomata are a	lbsent?						
	I) Epidermal tissue sy	stem of underground						
	parts							
	II) Epidermal tissue sy	ystem of submerged						
	hydrophytes							
	III) Epidermal tissue s	system of succulent						
	xerophytes							
	IV) Epidermal tissue	system of mesophytes						
	1) I alone	2) II alone						
	3) III & IV alone	4) I & II alone						
5.	Complex tissues are a	lbsent in						
	I) Ground tissue syste	m						
	II) Epidermal tissue sy	ystem						
	III) Vascular tissue sys	stem						
	1) I alone	2) II alone						
	3) III alone	4) I & II alone						
7.	Open vascular bundle	es are generally present						
	'n							
	I) Dicot stems	II) Dicot roots						
	III) Gymnospermic st	ems						
	IV) Gymnospermic ro	pots						
	1) I alone	2) I & III alone						
	3) I, II, III & IV	4) II & IV alone						
3.	The stelar ground tiss	ue system includes						
	A) Medulla	B) Medullary rays						
	C) Pericycle	D) Endodermis						
	1) B C D	2)AB						
	3) A B C	4) A B C D						
).	•	atements with regard to						
		tion of vascular bundles						
	of dicot stem							

A) Collateral, conjoint, open, exarch and

helps in primary growth

308

		01121 0	
300.	 B) Collateral, conjoint, open, endarch and helps in secondary growth C) Radial, separated, endarch and helps in secondary growth D) Collateral, conjoint, closed, endarch and helps in secondary growth 1) A & D 2) A & B 3) Except B all are incorrect 4) D only The air tight and waterdam structure present in the anatomy of roots is I) The last layer of the cortex II) The layer of the cortex present outer to the pericycle III) The layer Impermeable to the water present outer to the stale IV) The casparian banded layer present outer to the pericycle 	305.	 1) I & II only 2) III & IV only 3) Except I all are incorrect 4) Except III all are incorrect With reference to the anatomy of monocot stem, the following all statements are true except A) The vascular bundles are collateral, conjoint and closed B) The development of vascular bundles takes place by centrifugally C) Each vascular bundles is associated with lysigenous cavity D) Each vascular bundle is enclosed by parenchymatous bundle sheath E) In phloem, phloem parenchyma is well developed 1) A B C D 2) A C 3) D E
	to the pericycle	306.	3) D E 4) B D E
	1) I alone is correct 2) III & IV only are correct	500.	Repeatedly irregularly branched vascular tissues are found in
	3) I, II, III & IV are correct		I) Isobilateral leaf
	4) IV alone is correct		II) Dorsiventral leaf
301.	Arrange the following parts in ascending		III) Zeamays leaf
	order with reference to size of the medulla		IV) Helianthus leaf
	A) Dicot root B) Monocot stem		1) I & III 2) II & IV
	C) Dicot stem D) Monocot root		3) III alone 4) IV alone
	1) B A D C 2) B D A C	307.	In grasses the opening and closing of leaf
202	3) A B C D 4) D B A C		blade is regulated by
302.	Arrange the following in decreasing order		I) Dumbbell shaped guard cells
	with reference to number of vascular bundles		II) Bulliform cells
	present in them I) Dicot stem II) Monocot stem		III) Motor cells IV) Bundle sheath
	III) Dicot root IV) Monocot root		1) Except I all are incorrect
	1) III II I IV 2) II I IV III		2) II & III alone are correct3) IV alone is correct
	3) III II I IV 4) IV II I III		4) I, II, III & IV are correct
303.	Starch layer is absent in	308.	According to non-technical term of the
	I) Dicot leaf II) Isobilateral leaf	2001	bark, the components of the bark are
	III) Helianthus leaf IV) Zeamays stem		I) Secondary phloem
	1) IV alone		II) Periderm III) Early wood
	2) Except IV all are correct		IV) Phellogen and phellum
	3) I, II, III & IV are correct		1) III & IV 2) II & III
201	4) I & II only are correct		3) I & II 4) I, II, III & IV
304.	Medullary rays are absent in	309.	Select correct statement with respect to
	I) Dicot stem II) Dicot root		trichomes in shoot system
	III) Monocot stem IV) Monocot root		a) Usually unicelled
			b) Branched or unbranched
			309

309

c) May be secretary d) Soft or stiff	1) I and II 2) II and III
e) Helps against transpiration	3) III and IV 4) I and IV
f) Part of fundamental tissue system	316. Findout the incorrect statements from the following.
1) b,c,d,e,f 2) b,c,e only	I) Intercalary meristems present in all angiosperms.
3) b,c,d,e only 4) a,b,c,e & f	II) All lateral meristems are secondary meristems.
310. Vascular bundles of monocot stem lack	
I) primary xylem II) phloem parenchyma	III) All secondary meristem are lateral in position.
III) xylem parenchyma IV) intrafascicular cambium	IV) All meristematic cells are actively dividing cells.
1) I & II 2) III & IV	1)I and IV 2)I and III 3)I and II 4)II and III 317. Findout the true statements
3) II & IV 4) II & III	I) Collenchyma is a dead mechanical tissue.
311. The anatomical parts/ tissues present in dicot	I) Angular collenchyma is commonly present in dicots.
stem but absent in monocot stem are	III) Parenchyma is a most primitive simple tissue.
A) Medulla B) Pericycle	IV) Sclerenchyma is a living mechanical tissue.
C) Phloem parenchyma	1) I and IV 2) II and III
D) Medullary rays	3) III and IV 4) II and IV
E) Fascicular cambium	318. Identify the incorrect statement from the following
1) ABCD only 2) ACE only	I) Dicot stem show atactostele.
3) ABCDE 4) ACD only	II) Polyarch xylem is present in the root of
312. Vascular bundles of Dicot stem and monocot stem are differ in	
A) Type B) Number	III) Fibrovascular bundles are present in monocot stem.
C) Location	IV) Protoxylem lacuna is a schizogenous cavity.
D) Mode of xylem growth	1) I and II 2) II and III
1) A B C D 2) ABC only	3) III and IV 4) I and IV
3) BCD only 4) BC only	319. Findout correct statement
313. Arrange the following zones of roots from apex	I) Primary xylem developed from vascular
to base	cambium.
A)Meristematic B)Maturation	II) Centrifugal xyelm is present in the stems of
C)Root cap D)Elongation	angiospermic plant.
1)B,D,A,C 2)B,D,C,A 3)C,A,B,D 4)C,A,D,B	III) Closed vascular bundles are present in leaves of dicots and monocots.
314. Parenchymatous tissue is the seat of	IV) Bicollateral vascular bundles are mainly present
I) Photosynthesis	in the family cucurbitaceae.
II) Storage of food materials	1) I, II, III 2) II, III and IV
III) Secretion	3) IV only 4) I and II
1) I and II only 2) II and III only	320. Findout incorrect statement
3) I and III only 4)I, II, III	I) Heart wood is called alburnum.
315. Findout the correct statement from the following	II) Lenticels have epithelial cells
I) In all gymnosperms vessels are present.	III) Multiple epidermis seen in leaves of Ficus.
II) Vessels are found in some pteridophytes	IV) Calyptrogen forms root cap.
III) Sieve cells occur in the phloem of	1) I, II and III2) II and III3) II, III and IV4) I only
pteridophytes.	
IV) The companion cell and the sieve tube element	
develop from the same mother cell.	
	SID.

	1			
321. Findout correct statement from the following	325.Match the following			
I) Motor cells are present on adaxial epidermis of	I. Growth rings A. Lianes			
monocot leaves	II. Growth marks B. Sec- meristem			
II) Cambium is present only with fusiform initials.	III. Pseudo - C. Temparate tree			
III) Xylem is present in leaves towards adaxial	annual rings			
epidermis.	IV. Phellogen D. Heavy leaf fall			
IV) In Smilax root has many vascular bundles.	E. Tropical trees			
1) I and II 2) II and III	The correct match is			
3) III and IV 4) IV only	I II III IV			
322. Find out incorrect statements from the following	1) C E B D			
I) Sieve tube and companion cells are present only	$\begin{array}{cccc} 2) C & E & D & B \end{array}$			
in gymnosperms.	$\begin{array}{cccc} 2 & 2 & 2 & 2 \\ 3 & E & C & D & B \end{array}$			
II) Sieve cells and albuminous cells are present	$\begin{array}{ccc} $			
only in 1st and 2nd tracheophytes.	326.Match the following lists			
III) Sieve cells are absent in all angiosperms.	List - I List - II			
IV) Ray parenchyma is seen only in secondary	A. Trichomes I. Cambium			
xylem and secondary phloem.	B. Root hair II. Leaves			
1) I only 2) II and III	C. Mesophyll III. Unicellular			
3) III and IV 4) I and IV	D. Dicotyledonous IV. Epidermal hairs			
-, , ,	The correct match is			
TYPE - III	A B C D			
323.Study the following Lists	1) III IV II I			
List - I List - II	2) IV III I II			
(EVENT) (RESULT)	3) IV III II I			
I Differentiation A. Cork cambium	4) I II III IV			
II Dedifferentiation B. Embryonic meristem	327. Match the following			
III Redifferentiation C. Tracheary elements	Xylem element Shape/character			
IV Specialization D. Secondary phloem	A. Tracheid I. Spindle shaped			
E. Permanent cells	1 1			
The correct match is	B. Vessel member II. Living element			
I II III IV I II III IV	C. Xylem fibre III. Cylindrical			
1) B A C D 2) E A D C	D. Vulam narran alterna DV Llaivaral			
3) D A E C 4) E A C D	D. Xylem parenchyma IV. Universal			
324. Study the following table	conducting elemnts			
Table - I Table - II	The correct combination is			
[part] [position]				
I. Endodermis A.Outer most layer of stele	A B C D			
A.Outer most layer of stele				
5				
II. Pericycle B.Outer most layer of cortex	1) I III IV II			
II. Pericycle B.Outer most layer of cortex	1) I III IV II			
II. PericycleB.Outer most layer of cortexIII.HypodermisC.Inner most layer of cortex	1) I III IV II 2) IV I III II			
II. PericycleB.Outer most layer of cortexIII. HypodermisC.Inner most layer of cortexIV. Secondary phloem D.Inner most layer of Bark	2) IV I III II			
II. PericycleB.Outer most layer of cortexIII.HypodermisC.Inner most layer of cortexIV. Secondary phloem D.Inner most layer of BarkE. Inner most layer of stele				
II. Pericycle B.Outer most layer of cortex III. Hypodermis C.Inner most layer of cortex IV. Secondary phloem D.Inner most layer of Bark E. Inner most layer of stele The correct match is	2) IV I III II 3) I IV III II			
II. Pericycle B.Outer most layer of cortex III.Hypodermis C.Inner most layer of cortex IV. Secondary phloem D.Inner most layer of Bark E. Inner most layer of stele The correct match is I II III IV I II III IV	2) IV I III II			
II. Pericycle B.Outer most layer of cortex III.Hypodermis C.Inner most layer of cortex IV. Secondary phloem D.Inner most layer of Bark E. Inner most layer of stele The correct match is I II III IV I II III IV 1) A C B D 2) C A D B	2) IV I III II 3) I IV III II			

311

328. N	/latch th	e follow	ring				330.Study the following listsList-IList					-II		
· • •	odermi	S	I) Non-livin	-	anica	al,	A) Apical meristems I) Promotes vertical growth in							
of Dicc B) Hyp		sof II)	simple tiss Living, nor		anical	1,							grass	ses
/ /1	cot stem	/	imple tissu			,	B) Lateral me	rister	ns I	I) Enh	ances cy	lindr	ical g	growth
C) Peri	cycle of	f III)	Living, me	chanica	al,					of s	stems ar	nd roo	ots	
Dicotstem simple tissue			C) Intercalary	mer	isten	ns III)	Primar	y mer	risten	ns that				
D)Bundle sheath of IV)Non-living,mechanical, monocot stem simple tissue						ca	n produ	ce se	cond	lary				
V) Living, mechanical,						m	eristem	5						
			simple tis	sue			D) Fascicular	vasc	ular	IV) D	erived fi	rom la	atera	1
		V	T) Dead, m	echanic	cal,		cambium			n	neristen	ıs		
simple tissue							V) Prin	nary	meris	stems				
The correct match is							produc	es de	ermal	l,				
		А	B C	D)		ground and y				vasci			
	1)	IV	I V	V			The con	rrect	mate	h is				
	2)	III	I IV	Í II			А	В	С	D	А	В	С	D
	3)	V	I II	Π	Ι		1) V	II	Ι	III	2) V	IV	Ι	III
	4)	III	IV I	V	Γ		3) V	II	Ι	II	4) IV	III	II	V
329.	Studyt	he follo	wing lists				331. Study	the f	ollov	ving li	sts	-		
List-I	5		U	L	ist-I]	I	List-I A)Xylem	I) (sys	Com stem	poner	List-II nt of epic		al tiss	sue
A) Pare	enchym	a I)	Uniformly t	hicken	ed cel	llwalls	B) Cortex II) Stelar part of dicot stem							
	• 1	··· ··	Studified 1		'1: :		C) Bulliformo	cells	III) (Comp	onent of	grou	nd tis	ssue
B)Col	lenchyn	1a 11)	Stratified la	iyers of	ligni	n				syste	m			
C) Fib	res	III) End walls	absent	t		D) Semilumar	r	IV)	Com	ponent o	ofvas	scula	r
D) Scle	ereids	IV)	Unevenly t	hicken	ed cel	llwalls	shaped sclern	chy-		tissu	e system	l		
		V)	Primary pi	fields			matouspericy	cle	V) \$	Stelar	part of	nonc	ocot s	stem
	The c	orrect n	natch is											
А	B C	D	A	АВ	С	D	Theo	corre	ect n	natch	is			
1) V		I II	2) \		Ι	II	A 1) III	B II	C I		A 2) III	B V	C I	D II
3) V	II	IV	4) Г	V	II	Ι	3) IV	III	Ι	II	4)IV	V	Ι	II

332. Study the following lists List-I	List-II		UWERING LEANIS	
A) Complimentary cells	I) Spring wood and A	utumn woo	d	
B) Heart wood	II) Lenticels			
C) Sap wood	III) Non-functional se	econdary xyl	em	
D)Annual ring	IV) Functional second	dary xylem		
	V) Periderm			
The correct match is				
ABCD1) IIIIIIVI3) IIIVVIII	2) 4) TYPE -	A B) II III) II V IV	C D V I III I	
	ULTIPLE MAT	CHING	TYPE	
333. Study the following table Tissue	e Produced by		Function	
I) Phellogen	Cortical tissue	Produces phellum and phelloderm		
II) Intrafascicular cambium	Undifferentiated pro	:	One of the forerunner tissue of secondary xylem and secondary phloem	
III) Heart wood	Non-functional mod	dified	Provides mechanical support	
	secondary xylem			
IV) Interfascicular cambium	Medullary parenchy	•	omotes cylindrical growth of the ems and roots	
The correct combination	ons are			
1) I & II 2) II	3) & III) III & IV	4) I, II, III & IV	
334. Study the following table Tissue	e Produced fro body		Site of occurrence in the plant	
I) Companion cells	Parenchyma		Phloem	
II) Primary xylem & primary phloe	m Procambium		Embryonic tissue	
III) Sclereids	Modified sim	ple tissue	Pericarp	
IV) Calyptrogen	Dermal tissu	ie	Root apex 313	

The corre	ct combinatio	ns are		
1) I & IV	2)	II & III	3) I & III	4) I, II, III & IV
335. Study the	following tab	le		
Type of Vascular	bundle foun	d in Occurence	Orientation of x	ylem and phloem
stems, roots &	leaves			elements
I) Collateral and o	pen type	Dicot stem	Exarch xylem and	d endarch phloem
II) Collateral and c	closed	Monocot stem	Endarch and encl	losed by bundle sheath
III) Collateral and	closed	Leaves	Exarch or endarc	h
IV) Radial, sepera	ted	Roots	Exarch	
The correct com	binations is			
1) I & III	2)]	I & II	3) II & IV	4) I, II, III & IV
336. List-I	List - II	List - III		
A) Meristem	P) Many	V) Lignified		
	vacuoles	cell wall		
B) Parenchyn		X) Tensile		
_) =	mechanical	strength		
	tissue	6		
C) Collenchy	ma R) Fundam-	Y) Primitive		
, ,	ental tissue	tissue		
D) Scleren-	S) Dead	Z) Proplastids		
chyma	tissue			
1) A-R,Z, B-P	,Y, C-Q,X, D-S	,V		
2) A-P,Z, B-R	,X, C-Q,Y, D-S	,V		
3) A-P,Z, B-R	,Y, C-Q,X, D-S	,V		
4) A-P,Y, B-R	,Z, C-Q,X, D-S	,V		
337. List-I	List - II	List - III		
I) Xylem	A) Mechanic strength	al P) Shoot apex		
II) Phloem	B) Food	Q) Hypodermis		
	conduction	of dicot stem		
III) Collen-	C) Growth	R) Tracheids		
chyma				
IV) Meristem	D) Water	S) Sieve cells		
	conduction			

				340.	List-I	List - II		List - III
		S, III-A,Q, IV-C,			I) Dicot root	A) Absen		f P) Protoxylem
		,S, III-A,Q, IV-C				endodern	nis	
	· · · · ·	S, III-A,Q, IV-D,			II) Dicot stem	B) Tetrach	n xyle	em Q) Sclerenchyma
		,Q, III-A,S, IV-C						medulla
338.	List-I	List - II	List - III		III) Monocot	C) Polyar	ch	R) Reduced pith
					root	xylem		
	I) Apical	A) Root tip	P) Extrastelar		IV) Monocot	D) Eustel	e	S) Medullary rays
	meristem		secondary growth		stem			
	II) Intercalary	, ,	Q) Intrastelar		1) I-B,R, II-D	,S, III-C,Q	, IV-	A,P
	meristem		secondary growth		2) I-B,R, II-D	,S, III-C,P,	IV-A	4,Q
	III) Cork	C) Stele	R) Linear growth		3) I-B,S, II-D,	R, III-C,Q	, IV-	A,P
	cambium		of stems and		4) I-D,R, II-B	,S, III-A,P	IV-0	C.Q
			leaves					
	IV) Vascular	D) Base of S	S) Primary meristem			TYPE	- V	
	cambium	internodes &				1110	- •	
		leaves of		341	. The chief wat	er conduct	ing e	elements of xylem in
		grasses			gymnosperms	sare	[CI	BSE AIPMT 2010]
	1) I-A,S, II-D,	,R, III-B,P, IV-C,	A		1) vessels		2)	fibres
	2) I-A,R, II-D	,S, III-B,Q, IV-C	,P		3) transfusion			tracheids
	3) I-A,S, II-D,	,P, III-B,R, IV-C,	Q	342		-	-	ickened conducting
	4) I-A,R, II-D,Q, III-B,P, IV-C,S			e	•	-	the protoxylem when	
339.	List-I	List - II	List - III		the root or ste	m is	-	BSE AIPMT 2009]
					1) maturing			elongating
	I) Primary	A) Axile and ray	P) Procambium		3) widening			differentiating
	xylem	parenchyma		343	. In barley stem			
	II) Primary	B) Axial	Q) Vascular		1\ 1	•		AIPMT 2009]
	phloem	parenchyma	cambium		, I			closed and scattered
	III) Second-	C) Axial	R) Vascular	244	3) open and	U		closed and radial
	ary xylem	parenchyma	cambium	344	. Palisade parei	nenyma is		
	IV) Second-	D) Axial and	S) Procambium		1) Sorghum		-	BSE AIPMT 2009] Mustard
	ary phloem	ray parenchyma			 Sorghum Soybean 			Gram
	1) I-B,Q, II-C	,S, III-A,P, IV-D,	R	3/15	· •	1 fairly old		otyledonous root is
	2) I-B,P, II-C,	S, III-A,Q, IV-D,	R	575	•	•		ledonous stem by
	3) I-B,S, II-C,	P, III-A,Q, IV-D,	R		uistillguished	nom the u	•	BSE AIPMT 2009]
	4) I-B,P, II-C,	Q, III-A,S, IV-D,	R		1) absence o	fseconda	-	-
					 absence o absence o 			
					a) presence		, r	
					4) position of		em	
					/ 1	1	-	315

346. The length of different internodes in a culm of	352. In a woody dicotyledonous tree, which of the		
sugarcane is variable because of	following parts will mainly consist of primary		
[CBSE AIPMT 2008]	tissues? [CBSE AIPMT 2004]		
 shoot apical meristem position of axillary buds 	1) Stem and root 2) All parts		
3) size of leaf lamina at the node below each	3) Shoot tips and root tips		
internode	4) Flowers, fruits and leaves		
4) intercalary meristem	353. The apical meristem of the root is present		
347. For a critical study of secondary growth in plants,	[CBSE AIPMT 2003]		
which one of the following pairs is suitable?	1) only in adventitious roots		
[CBSE AIPMT 2007]	2) in all the roots3) only in radicals		
1) Sugarcane and sunflower	4) only in tap roots5) only in tap roots		
2) Teak and pine	354. In which of the following organs, growth is sub-		
3) Deodar and fern	apical? [AIIMS 2003]		
4) Wheat and maiden hair fern	apical:[Annus 2005]1) Root2) Shoot		
348. A common structural feature of vessel elements and	3) Petiole 4) Pedicel		
sieve tube elements is [CBSE AIPMT 2006]	355. In a dicotyledonous stem, the sequence of tissues		
1) thick secondary walls	from the outside to the inside is		
2) pores on lateral walls only	[AIIMS 2003]		
3) presence of perforated end walls	1) phellem-pericycle-endodermis-phloem		
4) Binucleate condition	 2) phellem – phloem – endodermis – pericycle 		
349. In the sieve elements, which one of the following is	3) phellem – endodermis – pericycle – phloem		
the most likely function of P-proteins?	4) pericycle – phellem – endodermis – phloem		
[AIIMS 2006]			
1) Deposition of callose on sieve plates	356. Gritti flesh of guava is due to the presence of :		
2) Providing energy for active translocation	(AMU 2000)		
3) Autolytic enzymes	1) Fibres 2) Sclereids		
4) Sealing mechanism on wounding	3) Crystals 4) Seeds		
350. Vessels differ from tracheids [AFMC 2005]	357. Vascularization in plant means : (CBSE 2000)		
1) In being living	1) Formation of procambium followwed by		
2) In being derived from a single cell	formation of primary vascular bundles		
3) In having vertical row of cells with cross walls	2) Formation of proambium followed by formation of cambium		
dissolved			
4) Because they conduct water	3) formation of cambium followed by formation		
351. Companion cells in plants are associated with	of procambium		
[AIIMS 20407]	4) All of the above		
1) vessels 2) sperms	358. Cork cambium and vascular cambium are the		
3) sieve elements 4) guard cells	examples of 1) A migal manifestam		
c, see contract i, guild cons	1) Apical meristem 2) Lateral meristem		
	3) Wound meristem 4) Intercalary meristem		

359. The healing of wound in activities of :	plants takes place by the (CBSE 2000)	3
1)Apical mristem	2) Lateral meristem	3
/ 1	4) Intercalary meristem	
· •	, .	
360. Inulin and raphide crysta	(CBSE 2001)	3
products ?		5
1) Excretory	2) Inorganic	
3) Respiatory	4) Ergastic	
361. Which of the following is	0	3
1) D	(Manipal 2001, 04)	
1) Parenchyma	2) Collenchyma	
3) Sclerenchyma	4) Chlorenchyma	
362. Cork cambium is a	(JKCMEE2002)	3
1) Apical meristem	2) Promeristem	J
,	4) Intercalary meristem	
363. Vessels and fibres are fo	5	2
, e 1	2) Gymnosperms	3
3) Pteridophytes	4) All vascular plants	
364. Secondary xylem is :	(JKCMEE2002)	
1) Wood 2) Bark 3)		~
1) Wood 2) Bark 3) 365. Cotton is	Cork 4) Bast (DPMT 2001)	3
365. Cotton is 1) Epidermal tissue sap	(DPMT 2001) system	3
365. Cotton is1) Epidermal tissue sap2) Vascular tissue system	(DPMT 2001) system	3
 365. Cotton is 1) Epidermal tissue sap 2) Vascular tissue system 3) Meristem tissue 	(DPMT 2001) system n 4) Ground tissue system	
365. Cotton is1) Epidermal tissue sap2) Vascular tissue system	(DPMT 2001) system n 4) Ground tissue system	3
 365. Cotton is 1) Epidermal tissue sap 2) Vascular tissue system 3) Meristem tissue 	(DPMT 2001) system n 4) Ground tissue system	
 365. Cotton is 1) Epidermal tissue sap 2) Vascular tissue system 3) Meristem tissue 366. Sieve tube differs from 	(DPMT 2001) system a 4) Ground tissue system sieve cells because they (DPMT 2001)	
 365. Cotton is 1) Epidermal tissue sap 2) Vascular tissue system 3) Meristem tissue 366. Sieve tube differs from have 	(DPMT 2001) system a 4) Ground tissue system sieve cells because they (DPMT 2001)	
 365. Cotton is 1) Epidermal tissue sap 2) Vascular tissue system 3) Meristem tissue 366. Sieve tube differs from have 1) Sieve pores at end was 	(DPMT 2001) system a 4) Ground tissue system sieve cells because they (DPMT 2001) all 2) Nucleus	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 	(DPMT 2001) system a 4) Ground tissue system sieve cells because they (DPMT 2001) all 2) Nucleus 4) None of these	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 367. Procambium forms : 	(DPMT 2001) system a 4) Ground tissue system sieve cells because they (DPMT 2001) all 2) Nucleus 4) None of these (DPMT 2001) 2) Vascular cambium	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 367. Procambium forms : Cork cambium 	(DPMT 2001) system a 4) Ground tissue system sieve cells because they (DPMT 2001) all 2) Nucleus 4) None of these (DPMT 2001) 2) Vascular cambium 4) Ground tissue	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 367. Procambium forms : Cork cambium Vascular tissue 	(DPMT 2001) system a 4) Ground tissue system sieve cells because they (DPMT 2001) all 2) Nucleus 4) None of these (DPMT 2001) 2) Vascular cambium 4) Ground tissue	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 367. Procambium forms : Cork cambium Vascular tissue 368. Grafting is not possible 	(DPMT 2001) system 4) Ground tissue system sieve cells because they (DPMT 2001) all 2) Nucleus 4) None of these (DPMT 2001) 2) Vascular cambium 4) Ground tissue	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 367. Procambium forms : Cork cambium Vascular tissue 368. Grafting is not possible vascular bundles are : 	(DPMT 2001) system 4) Ground tissue system sieve cells because they (DPMT 2001) all 2) Nucleus 4) None of these (DPMT 2001) 2) Vascular cambium 4) Ground tissue in monocots because the (RPMT 2001)	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 367. Procambium forms : Cork cambium Vascular tissue 368. Grafting is not possible vascular bundles are : Scattered 	(DPMT 2001) system a) Ground tissue system 4) Ground tissue system (DPMT 2001) all 2) Nucleus 4) None of these (DPMT 2001) 2) Vascular cambium 4) Ground tissue in monocots because the (RPMT 2001) 2) Closed 4) With bundle sheath	3
 365. Cotton is Epidermal tissue sape Vascular tissue system Meristem tissue 366. Sieve tube differs from have Sieve pores at end wa No Cytoplasm 367. Procambium forms : Cork cambium Vascular tissue 368. Grafting is not possible vascular bundles are : Scattered Open 	(DPMT 2001) system a) Ground tissue system 4) Ground tissue system (DPMT 2001) all 2) Nucleus 4) None of these (DPMT 2001) 2) Vascular cambium 4) Ground tissue in monocots because the (RPMT 2001) 2) Closed 4) With bundle sheath	3

3) Sieve tubes of angiosperms

4) Sieve tubes of gymr	4) Sieve tubes of gymnosperms				
370. The scutellum of maize or wheat seed represents:					
	(AIPMT 2010)				
1) Cotyledon	2) Endosperm				
3) Aleuron layer	4) Plumule				
371. In which living cell o	,				
-	are found? (RPMT 2001)				
1) Sieve tubes	2) Xylem tracheids				
3) Xylem vessels	4) Medullary rays				
372. Vascular bundle in whi					
sides of xylem is :	(RPMT 2001)				
1) Collateral type					
/ /1	2) Bicollateral type				
3) Concentric type	4) Radial type				
373. Annual rings are most					
1) Tropical region	2) Temperate region				
3) Xerophytes	4) Hydrophytes				
374. In dorsiventral leaves,	-				
	(RPMT 2000)				
1)Abaxial side	2) Adaxial side				
3) Both the sides	4) Lateral side				
375. Leaves having stomat	ta on both the surfaces are				
called :	(RPMT 2000)				
1) Epistomatic	2) Hypostomatic				
3)Amphistomatic	4)Astomatic				
376. Grasses fold their leav	es due to formation of				
	(AMU 2006; JCECE)				
· · · · · · · · · · · · · · · · · · ·	2) Stomata				
3) Hydathodes	4) Transfusion tissue				
377. Bast fibre is obtained					
1) Xylem	2) Phloem				
3) Pericycle	4) Epidermis				
378. Tracheids differ from v	(RPMT 2000)				
1) Thicker cell wall	2) Bordered pits				
· · · · · · · · · · · · · · · · · · ·	4) None of these				
379. Maximum growth occ	,				

1) Spring season2) Autumn season3) Summer season4) Winter season

ı.

380. Tissue responsible for	origin of lateral roots :	4) Tracheal plugs which plug the lumen of xylem		
	(RPMT 2000)	vesselss		
1) Cortex	2) Endodermis	390. Functional xylem in a di	icot tree is : (AFMC 2001)	
3) Pericycle	4) Vascular tissue	1) Sap wood	2) Heart wood	
381. Wood is the common	name of (MPPMT 2004)	3) Hard wood	4) Autumn wood	
1) Phloem	2) Vascular cambium	391. Which of the following	cells is totipotent?	
3) Cambium	4) Secondary xylem	-	(AFMC 2001)	
382. Vascular cambium nev	-	1)Meristem	2) Sieve tube	
	(AMU 2001)	3)Collenchyma	4) Xylem vessels	
1) Banana	2) Mango	392. Cutin is secreted by	(CPMT 2002)	
3) Guava	4) Sunflower	1) Periderm	2) Hypodermis	
383. Porous wood contains		,		
1) Tracheids	2) Vessels	, 1 ,	Periderm and hypodermis	
3) Fibres	4) parenchyma	393. Quiescent centre is fou	· · · · · · · · · · · · · · · · · · ·	
384. Vascular cambium of	-	1) stem	2) Leaf	
	(AIIMS 2001)	3) Root apex	4) Shoot apex	
1)Apical meristem	2) Primary meristem	394. Amphivasal vascular b	undles are also called:	
3) Secondary merister			(CPMT 2002)	
385. Generally a monocot		1) Hydrocentric	2) Leptocentric	
1) Bicollateral and clo		3) Hedrocentric	4) None of these	
2) Collateral and close		395. Periderm includes :	(CPMT 2002)	
3) Bicollateral and op		1) Cork and cork cambium		
4) Collateral and oper 386. Epidermis and epible		2) Cork and secondary	v cortex	
560. Epidemiis and epidien	(BHU 2002)	3) Cork cambium and	secondary cortex	
1)Phellogen	2) Protoderm	4) Cork, cork cambiun	n and secondary cortex	
3) Procambium	4) Calyptrogen	396. Lightest wood is produ	•	
, ,	g is an anucleated living cell	1) Hardwickia binata		
at maturity ?	(BHU 2002)	3) Cereus giganteus	4) Cycas	
1) Vessels	2) Tracheids	397. Cells of parenchyma are	, .	
3) Sieve tube	4) All of these	of	(JIPMER 2002)	
388. Raphids are found in	,	1) Uniform thickness	2) More thick corners	
1) Pistia	2) Acacia	,	,	
3) Asparagus	4) Dahlia	3) Lignification	4) Suberization	
389. Tyloses are :	(BHU 2000)	398. Fibres are obtained fro		
•		1) Xylem, phloem and s	-	
, 1	bes 2) Laticiferous vessels	2) Xylem and sclerenchyma		
3) Specialized secreto	ry cells	3) Only sclerenchyma		
		4) Only stone cells	218	

318

399	. Starch is mainly manufa	ctured by:	I 40
		(JIPMER 2002)	
	1) Palisade mesophylls	2) Spongy mesophylls	
	3) Guard cells	4) Epidermal cells	
400	. In a vascular bundle, it	f protoxylem is towards	40
	ericycle and metaxylen	n towards the centre, the	
	condition is referred to	as: (Har. PMT 2000)	
	1) Open	2) Closed	
	3) Endarch	4) Exarch	
401	. In which of the following	g, the vascular bundles are	41
	found arranged in a ring	g? (Har. PMT 2000)	
	1) Monocot stem	2) Dicot stem	
	3) Leaves	4) Roots	
402	. Four radial vascular bun	dles are found in :	41
		(Har. PMT 2000)	
	1) Roots of dicots	2) Roots of monocots	
	3) stem of dicots	4) Dracaena stem	41
403	. Vessels are found in :	(Har. PMT 2000)	
	1)All angiosperms and s	some gymnosperms	
	2) Most of the ang	iosperms and a few	
	gymnosperms		
	3) All gymnospers and a	ll angiosperms	
	4) Only in angiosperms		
404	. The histogen forming ro	ot cap is : (AIIMS 2000)	
	1) Dermatogen	2) Pleurome	
	3) Calyptrogen	4) Periblem	
405	which of the following la	ack collenchyma?	
		(CPMT 2000)	41
	1) Dicots	2) Monocots	
	3) Cucurbits	4) All of these	
406	. A scientist who wish to s	study virus free plant part	41
	of a virus infected plant	should observe:	
		(AIIMS 2000)	
	1) Shoot apex	2) Root apex	
	3) Leaves	4) Cortex	41
407	. The limiting layer of ste	le is : (Manipal 2004)	
	1)Epidermis	2) Endodermis	
	3) Piliferous layer	4) Epiblema	
	-		

400 T / 1	• .	•	111 0	
408. Lateral	merictem	10 100	noncible to	r
TUO. Lateral		10100		т.

(MPPMT 2004)

1) Growth in length			2) G	rowth	in thick	ness
	.1 .	1		1) 0		

- 3) Growth in parenchyma 4) Growth in cortex
- 09. Vascular bundles where the phloem is found to be present on both the sides of xylem is said to be

(Kerala PMT 2004)

1) Radial	2) Conjoint
3) Collateral	4) Bicollateral

410. Intercalary meristem results in :

(Kerala PMT 2004)

1) Secondary growth	2) Primary growth
3) Apical growth	4) None of these
11. Leptome is used for :	(BHU 2006)
1) Phloem	2) Xylem

3) Fibres 4) Parenchyma

412. Which one of the following statement is correct, for "bundle sheath of monocot leaves is similar to that of monocot stem", as both of them ?

(EAMCET 2006)

1) Possess outer layer of chlorenchyma and inner layer of thick - walled cells without chloroplasts

- 2) Possess extensions made up of sclerenchyma
- 3) Resemble the endodermis in possession of casparian strips

4) Encircle the vascular bundles, which are conjoint and collateral

413. Polyarch condition is found in : (CPMT 2007)

1) Monocot roots	2) Dicot roots
------------------	----------------

- 3) Monocot stem 4) Dicot stem
- 414. Endodermis mainly helps in : (CPMT 2007)
 - 1) Preventing loss of water from stele
 - 2) Providing protection
 - 3) Maintaining rigidity 4) All of the above
- 15. Collenchyma is : (CPMT 2007)
 - 1) Living and contains protoplasm
 - 2) Dead and hollow
 - 3) Dead and filled with food reserves
 - 4) Living and contains no food reserves

319

CH: 12 : HISTOLOGY AND ANATO				Y OF FLOW EKING FI	LANIS	
416. Passage cells are thin - walled cells found in			122) In an annual ring the lic	ght coloured part is known	
(AIPMT 2007)		422	as	(DPMT 2009)		
	1) Phloem elements that serve as entry point for			1) Early wood	2) Late wood	
	substances for transpo	rt to other plant parts			,	
	2) Testa of seeds to enable emergence of growing		100	3) Heart wood	4) Sap wood	
	embryonal axis during	seed germination	423	-	sis true? (DPMT 2009)	
	3) Central region of sty	le through which the pollen		1) Vessels are unicellular and with narrow lumen		
	tube grows towards th	e ovary		2) Vessels are multicellular and with wide lumen		
	4) Endodermis of roots	facilitating rapid transport		,	ular and with wide lumen	
		to protoxylem through		4) Tracheids are multicell	ular and with narrow lumen	
	pericycle		424	4. Alburnum is otherwise	known as :	
417	7. Biologically most resis	tant plant material is			(Kerala PMT 2009)	
	(U	ttarakhand PMT 2007)		1) Periderm	2) Sap wood	
	1)Lignin	2) Cutin		3) Heart wood	4) Bark	
	3) Suberin	4) Sporopollenin	425	5. At maturity, the sieve pl	ates become impregnated	
418	3. Tyloses thickening are	seen in :		with :	(Kerala PMT 2009)	
	(BH	U2008; Manipal 2008)		1) Cellulose	2) Pectin	
	1)Collenchyma	2) Phloem		3) Suberin	4) Callose	
	3) Ray parenchyma		426	6. Anatomically, fairly old	dicot root is distinguished	
	4) Ray parenchyma an	d xylem vessels		from dicot stem by	(AIPMT 2009)	
419	O. The waxy material depo	osited in the casparian strips		1) Position of protoxylem		
		AC, Vellore 2008; Kerala	2) Absence of secondary xylem			
		PMT 2008)	3) Absence of secondary pholem			
	1) Pectin	2) Suberin		4) Presence of cortex		
	3) Cellulose	4) Lignin	427	7. Match the following	and choose the correct	
420). Closed vascular bundl	es are characterized by :		combination :	(KeralaPMT 2009)	
		(Orissa JEE 2008)		A) Endodermis	1) Companion cells	
	1) Presence of cambiu	m 2) Absence of cambium		B) Stomata	2) Lenticels	
	3) Both 1 and 2	4) None of these		C) Sieve tube	3) Palisade cells	
421	.The meristem respo	nsible for extra - stelar		D) Periderm	4) Passage cells	
	secondary growth in d			E) Mesophyll	5) Accessory cells	
		(CMC, Vellore 2008)		1) $A = 4, B = 5, C = 2$	· ·	
	1) Interfascicular camb	ium		2) $A = 5, B = 3, C = 1,$		
	2) Intrafascicular camb	ium		3) $A = 4, B = 5, C = 1.$		
	3) Intercalary meristen	1 4) Phellem		4) $A = 2, B = 5, C = 3$		
	· · ·			.,, _ 0, 0 0	,,	

428. In dicot roots, initiation f lateral roots take place in			433. Specialised epidermal cells surrounding the guard		
	:	(Kerala PMT 2011)	cells are called	[Neet - 2016]	
	1) Epidermal cells	2) Cortical cells	1) bulliform cells	2) lenticels	
	3) Endodermal cells	4) Pericycle	,	,	
429	. In some xerophytic grasses, certain adaxial		3) complementary cells 4) subsidiary cells		
		e veins modify themselves	434. The balloon-shaped structures called tyloses		
	in to large, empty, olour		[Neet - II - 2016] 1) oridinate in the lumen of vessels		
		(Kerala PMT 2011)			
	1) Bulliform cells	2)Companion cells	2) characterise the sap		
	3) Guard cells	4) Subsidiary cells		em parenchyma cells into	
	1) Position of protoxylem		vessels		
	2) Absence of secondar	ry xylem	4) are linked to the ascent of sap through xylem vessels		
	3) Absence of secondar	ry pholem			
	4) Presence of cortex		435. Cortex is the region found between		
430. Vascular bundles in monocotyledons are			[Neet - II - 2016]		
	considered closed bec	ause [Neet - 2015]	1) epiderm is and stele		
	1) there are no vessels v	with perforations	2) pericycle and endodermis		
	2) xylem is surrounded	all around by phloem	3) endodermis and pith		
	3) a bundle sheath surr	ounds each bundle	4) endodermis and vascular bundle		
	4) cambium is absent		436. Identify the wrong statement in context of		
431	. A major characteristic	c of monocot root is the	heartwood	[Neet - 2017]	
	presence of	[Neet - 2015]	1) it is higly durable		
	1) vasculature without cambium		2) it conducts water and minerals efficiently		
	1) vasculature without c	cambium		•	
	,	cambium ed betweeen phloem and	3) it conprises dead eler	ments with highly lignified	
	,	ed betweeen phloem and	3) it conprises dead eler walls	nents with highly lignified	
	2) cambium sandwich	ed betweeen phloem and	3) it conprises dead elerwalls4) organic compounds	nents with highly lignified are deposited in it	
	2) cambium sandwich xylem along the radium	ed betweeen phloem and es	3) it conprises dead eler walls	nents with highly lignified are deposited in it	
432	2) cambium sandwich xylem along the radium3) open vascular bundl4) scattered vascular bu	ed betweeen phloem and es	3) it conprises dead elerwalls4) organic compounds	nents with highly lignified are deposited in it	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com 	ed betweeen phloem and es undles	3) it conprises dead elerwalls4) organic compounds	nents with highly lignified are deposited in it g is made up of dead cells	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com the list given below an 	ed betweeen phloem and es undles ponents from (i) to (iv) in	3) it conprises dead eler walls4) organic compounds437. Which of the following	nents with highly lignified are deposited in it g is made up of dead cells [Neet - 2017]	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com the list given below an the components with ref 	ed betweeen phloem and es andles ponents from (i) to (iv) in ad tell the correct order of erence to their arrangement side in a woody dicot stem	 3) it conprises dead eler walls 4) organic compounds 437. Which of the following 1) collenchyma 	nents with highly lignified are deposited in it g is made up of dead cells [Neet - 2017] 3) phellem 4) xylem parenchyma	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com the list given below an the components with ref 	ed betweeen phloem and es undles ponents from (i) to (iv) in ad tell the correct order of Ference to their arrangement	 3) it conprises dead eler walls 4) organic compounds 437. Which of the following 1) collenchyma 3) phloem 	nents with highly lignified are deposited in it g is made up of dead cells [Neet - 2017] 3) phellem 4) xylem parenchyma	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com the list given below an the components with ref 	ed betweeen phloem and es andles ponents from (i) to (iv) in ad tell the correct order of erence to their arrangement side in a woody dicot stem	 3) it conprises dead eler walls 4) organic compounds 437. Which of the following 1) collenchyma 3) phloem 	nents with highly lignified are deposited in it g is made up of dead cells [Neet - 2017] 3) phellem 4) xylem parenchyma in the region of	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com the list given below an the components with ref from outer side to inner 	es andles ponents from (i) to (iv) in ad tell the correct order of erence to their arrangement side in a woody dicot stem [Neet - 2015]	 3) it conprises dead eler walls 4) organic compounds 437. Which of the following 1) collenchyma 3) phloem 438. Root hair develop from 	nents with highly lignified are deposited in it is made up of dead cells [Neet - 2017] 3) phellem 4) xylem parenchyma the region of [Neet - 2017] 2) root cap	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com the list given below an the components with ref from outer side to inner i) secondary cortex 	ed betweeen phloem and es andles aponents from (i) to (iv) in ad tell the correct order of Ference to their arrangement side in a woody dicot stem [Neet - 2015] ii) wood	 3) it conprises dead eler walls 4) organic compounds 437. Which of the following 1) collenchyma 3) phloem 438. Root hair develop from 1) elongation 	nents with highly lignified are deposited in it is made up of dead cells [Neet - 2017] 3) phellem 4) xylem parenchyma the region of [Neet - 2017] 2) root cap	
432	 2) cambium sandwich xylem along the radium 3) open vascular bundl 4) scattered vascular bu Read the different com the list given below an the components with ref from outer side to inner i) secondary cortex iii) secondary phloem 	ed betweeen phloem and es andles aponents from (i) to (iv) in ad tell the correct order of Ference to their arrangement side in a woody dicot stem [Neet - 2015] ii) wood	 3) it conprises dead eler walls 4) organic compounds 437. Which of the following 1) collenchyma 3) phloem 438. Root hair develop from 1) elongation 3) meristematic activity 	nents with highly lignified are deposited in it is made up of dead cells [Neet - 2017] 3) phellem 4) xylem parenchyma the region of [Neet - 2017] 2) root cap	

439. The vascular cambium normally gives rise to							
	[Neet - 2017]						
1) primary phloem	2) secondary xylem						
3) periderm	4) phelloderm						
440. Plants having little or no	secondary growth are						
	[Neet - 2018]						
1) grasses 2) deciduo	ous angiosperms						
3) conifers 4) cycads							
441. Casparian strips occur in [Neet - 2018]							
1) epidermis	2) pericycle						
3) cortex	4) endodermis						
442. Secondary xylem and phloem in dicot stem are							
produced by	[Neet - 2018]						
1) apical meristems	2) vascular cambium						
3) phellogen	4) axillary meristems						
443. Stomata in grass leaf ar	e [Neet - 2018]						
1) dumb-bell shaped	2) kidney-shaped						
3) rectangular	4) barrel-shaped						
444. Phloem in gymnosperm	s lacks [Neet-2019]						
1) both sieve tubes and c	1) both sieve tubes and companion cells						
2) albuminous cells and s	2) albuminous cells and sieve cells						
3) sieve tubes only	4) companion cells only						
445. Grass leaves curl inwards during very dry weather.							
Select the most appropriate reason from the							
following	[Neet-2019]						
1) Tyloses in vessels							
2) closure of stomata	2) closure of stomata						
3) flaccidity of bulliform	3) flaccidity of bulliform cells						
4) shrinkage of air spaces in spongy mesophyll							
446. Which of the statements given below is not true							
about formation of annual riongs in trees							
	[Neet-2019]						
1) annula rings are no	ot prominent in tres of						
temperate region	temperate region						
2) annual ring is a comb	2) annual ring is a combination of spring wood						
and autumn wood produ	and autumn wood produced in a year						

3) differential activity of cambium causes light and dark bands of tissue-early and late wood respectively

4) activity of cambium depends upon variation in climate

447. Regeneration of damaged growing grass following grazing is largely due to [Odisha Neet - 2019]
1) lateral manifestary (2) enjoy and e

1) lateral meristem 2) apical meristem

3) intercalary meristem 4) secondary meristem

448. In the dicot root the vascular cambium originates from [Odisha Neet - 2019]

1) tissue located below the phloem bundles and a portion of pericycle tissue above protoxylem

- 2) cortical region
- 3) parenchyma between endodermis and pericycle
- 4) intrafascicular and interfascicular tissue in a ring

KEY

MODEL TEST - I

2) 3	3) 4	4) 1	5) 1					
7) 3	8) 4	9) 1	10) 2					
12) 4								
11) 4 12) 4 MODEL TEST - II								
14) 4	15) 2	16) 4	17) 2					
19) 1	20) 1	21) 1	22) 2					
MODEL TEST - III								
25) 2	26) 3	27) 3	28) 1					
30) 2	31) 4	32) 1	33) 2					
35) 3								
MODEL TEST - IV								
37) 3	38) 2	39) 1	40) 2					
42) 2	43) 3	44) 2	45) 1					
47) 2	48) 1	49) 4	50) 1					
MODEL TEST - V								
52) 4	53) 2	54) 3	55) 4					
57) 2	58) 4	59) 1	60) 3					
	7) 3 12) 4 M 14) 4 19) 1 MO 25) 2 30) 2 35) 3 MO 37) 3 42) 2 47) 2 MC 52) 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

CH: 12 : HISTOLOGY AND ANATOMY OF FLOWERING PLANTS

	CI		JIOLOU						
		TETION					TEST	- II	
	Ųΰ	ESTION		•	285) 3	286) 3	287) 4	288) 4	289) 4
(1) ($\langle 0 \rangle 0$	TEST			290) 3	291) 1	292) 3	293) 1	294) 3
61) 4	62) 2	63) 1	64) 2	65) 2 70) 1	295) 4	296)4	297) 2	298) 3	299)3
66) 1	67) 1	68) 3	69) 3	70) 1	300) 3	301) 1	302) 2	303) 3	304)3
71) 4	72) 1	73) 3	74) 1	75) 4	305) 3	306) 2	302) 2 307) 2	308)3	309)3
76) 1	77) 4	78) 3	79) 1	80) 2	310) 3	311) 3	312) 2	313)4	314)4
81) 4	82) 2	83) 2	84) 2	85) 2	315)2	316) 3	312) 2 317) 2	318) 4	319) 2
86) 4	87) 2	88) 2	89) 2	90) 2	320) 1	321) 4	317) 2 322) 1	510) 4	517)2
91) 4	92) 4	93) 4	94) 1	95) 2	520)1	521) 4	522) 1		
96) 4	97) 2	98) 2	99) 4	100) 4			TEST	ттт	
101) 4	102) 4	103) 2	104) 3	105)4	2222.2	224) 4			227) 4
106) 4	107) 2	108)3	109) 2	110) 3	323) 2	324) 4	325) 2	326) 3	327) 4
111) 2	112) 3	113) 2	114) 1	115) 4	328) 4	329) 1	330) 1	331) 3	332) 1
116) 1	117) 2	118)1	119) 3	120) 2			****		
121) 2	122) 1	123) 2	124) 1	125) 1			TEST		
126) 3	127) 2	128)4	129) 4	130) 4	333) 4	334)4	335) 3	336) 3	337) 2
131) 3	132) 1	133) 2	134) 1	135) 2	338) 1	339) 2	340) 1		
136) 2	137) 2	138)3	139) 1	140) 3					
141) 3	142) 3	143) 2	144) 1	145) 3			TEST	- V	
146) 4	147)3	148)1	149) 1	150) 4	341) 4	342) 1	343) 2	344) 1	345) 4
151) 4	152) 3	153) 3	154) 4	155) 4	346) 2	347) 2	348) 3	349)4	350) 3
156) 1	157) 1	158)2	159) 1	160) 1	351) 3	352)3	353)3	354) 2	355)3
161) 4	162) 1	163) 4	164) 2	165) 2	356) 2	357) 1	358)2	359) 3	360) 4
166) 3	167) 4	168) 4	169) 2	170) 2	361) 2	362) 3	363) 1	364) 1	365) 1
171) 4	172) 1	173) 4	174)3	175) 2	366) 1	367) 1	368) 2	369) 3	370) 1
176)3	177)4	178) 2	179) 1	180) 3	371) 4	372) 2	373) 2	374) 1	375) 3
181) 2	182) 1	183) 1	184) 2	185)2	376) 1	377) 2	378) 1	379) 1	380) 3
186)3	187) 3	188) 2	189)4	190) 3	381) 4	382) 1	383) 2	384) 3	385) 2
191) 2	/	193) 2	194) 4	195) 4	386) 2	387) 3	388) 1	389) 4	390) 1
196)2	197) 2	198) 1	199) 2	200)3	391) 1	392) 3	393) 3	394) 2	395) 4
	202)2	203) 3	204) 2	205) 3		397) 1	398) 1	399) 1	400) 4
,	207) 2	208) 1	209) 1	210) 3	401) 2	402) 1	403)2	404) 3	405) 2
211) 4	,	213) 4	214) 2	215) 4	406) 1	407) 2	408) 2	409) 4	410) 2
216)3		218) 2	219)4	220) 2	411)1	412) 4	413) 1	414) 1	415) 1
221)1	/	223)4	224) 1	225)1	416) 4	417) 4	418) 4	419) 2	420) 2
226) 2	,	228)2	229)2	230) 2	421) 3	422) 1	423) 2	424) 2	425) 4
231)1	/	233) 1	234) 3	235) 4	426) 1	427) 3	428) 4	429) 1	430) 4
236) 2	·	238)2	239) 2	240) 3	431)1	432) 1	433) 4	434) 3	435)1
241) 1	,	243) 2	244) 1	245) 1	436) 2	437) 2	438) 4	439) 2	440) 1
246) 2	,	248) 2	249)1	250) 3	441) 4	442) 2	443) 1	444) 1	445) 3
251) 2	,	253) 3	254) 1	255) 3	446) 1	447) 3	448) 1	,	,
256) 2	/	258) 3	259) 2	260) 2	,	,	/		
261) 4	·	263) 3	264) 1	265) 1					
266) 4	,	268) 1	269) 2	270) 2					
271) 3	,	273) 2	274) 1	275) 4					
276) 2	,	278) 3	279) 4	280) 4					
281) 3	/	283) 2	284) 3	2007 -					
201)5	202) T	20572	207)5		-				

INTRODUCTION

SYNOPSIS

- * Ecology is an inter discplinary branch of biology
- * Ecology deals with the study of distribution and various aspects of life of organisims and their interaction with the environement.
- * Ecology is broadly divided into plant ecology and animal ecology.
- * The term 'Ecology' was coined by Reiter.
- * The term Ecology was derived from Greek word Oekologie. (Oikos = home, logos = study)
- * Ecology is generally defined as the study of plants. and animals reciprocal relationship with their environement.
- * Warming defined ecology as the study of organisms in relation to their environment.
- * Warming actually employed this science to plants.
- * E.P Odum defined ecology as the structure and function of nature.
- * Different levels of organisation in ecology include protoplasm, cells, tissues, organs, organisims, population, community, ecosystem and biosphere
- * A group of similar individuals belonging to the same species found in an area are together called population.
- * An assemblage of all populations of different species occuring in an area is called comunity
- * The interation between the biotic (living organisims) and abiotic (physical environment) components is called ecosystem.
- * The term 'Ecosystem' was coined by A.G Tansley
- * The structural and functional unit of nature is Ecosystem
- * The biologically inhabitated part of the earth consisting of all ecosystem of the world is called biosphere or ecosystem
- * The earth is considered as a 'Giant Ecosystem'.
- Ramdeo Misra is known as the father of ecology in India
- R.Misra worked on tropical communities, Succession, nutrient cycling, Grassland ecosystem etc.
- Plant Ecology is a branch of botany which deals with the study of plants in relation to their environment.

- Ecology is basically concerned with four levels of biological organisation - organisms, populations, communities and biomes.
- Formation of different types of biomes is mainly attributable to variations in seasons and precipitation.
- Desert, Rain forest, tundra, Sea coast deciduous forest are the major types of biomes on the earth.
- Adaptations allow the organism to survive and reproduce in its habitat.
- Opuntia is a succulent xerophyte that stores water in the form of mucilage.
- Adaptations are genetically fixed and are products of long evolutionary process.
- Crassulacean Acid metabolism (CAM) is a speciality of *cacti* that enables them to survive in desert conditions.
- Important adaptations in xerophytes are thick cuticle, sunken stomata, spines/ scale leaves, phyllocaldes and phyllodes.
- Halophytes can tolerate the salinities of the sea. Ex: *Rhizophora*.

PLANT COMMUNITIES :

Adaptation is any attribute of the organism (Morphological, physiological, behavioural) that enables the organism to survive and reproduce in its habitat.

- > Plants growing in desert areas Xerophytes
- Plants growing in salinities of the sea Halophytes
- Plants growing in direct sunlight Heliophytes
- Plants growing in shady places-Sciophytes
- Eugen warming classified plant communities on the basis of the dependence and relation of plants to water into three ecological groups.

1. Hydrophytes 2.Xerophytes 3. mesophytes. HYDROPHYTES :

Plants that grow in water or in very wet places are hydrophytes. they are further subdivided into five categories.

1. Free floating hydrophytes : They have no contact with soil and float freely on water surface Eg :-*Pistia, Lemna, Salvinia.*

- 2. Rooted hydrophytes with floating leaves:-Roots are fixed to substratum (mud) but their long petiolated leaves keep them floating on water surface Eg:-*Nymphaea* and *Victoria regia*.
- 3. **Submerged suspended hydrophytes :** They have contact only with water, not rooted in mud Eg:-*Hydrilla* and *Utricularia*
- 4. Submerged rooted hydrophytes :- They are completely submerged in water and rooted Eg:- Vallisneria
- 5. *Amphibious Plants* :- plant body is partly in water and partly in air

Eg:- Sagittaria, Typha and Limnophila

Ecological adaptations of hydrophytes:

Morphological and Anatomical characteristics are mostly common to all hydrophytes but may differ only in some.

MORPHOLOGICAL ADAPTATIONS:-

Roots:-

Due to surplus of water in the habitat, roots are of secondary importance and less significant. It is very poor in most of the hydrophytes.

- a) **Root system is absent in** *Wolffia*, *Ceratophyllym* and poorly developed in *Hydrilla*.
- b) Roots, if present are generally fibrous, adventitious, reduced in length, unbranched or poorly branched.
- c) Root caps are usually absent. Root pockets replace root caps in *Pistia*.
- d) Well developed root system serving as balancing roots are found in *Pistia*, *Eichhornia* etc. In this system root hairs are reduced or absent.
- e) In plants like *Victoria, Nymphaea, Nelumbium* etc., roots are well developed with root caps. Roots of these plants are fixed to the soil (mud) but their long petiolated leaves float on water surface

Stem:-

- a) Stem is long, slender, flexible and transparent.
- b) In *Nymphaea Nelumbium* etc.,the stem is rhizomatous.

Leaves:-

- a) Leaves are thin, delicate, ribbon like in *Vallisneria*. or Long and linear
- b) Much dissected leaves in *Ceratophyullum*, *Utricularia*.
- c) Floating leaves are large and flat with their upper surfaces coated with wax

Eg:- Nymphaea, Nellumbium, Victoria.

- d) Swollen, spongy petioles, which gives buoyancy to the plant found in free floating plants
- e) The largest simple leaves in the form of plates are found in *Victoria regia*
- f) Heterophyllous plants with two or more kinds of leaves are found in *some hydrophytes* with submerged floating and aerial leaves.

Anatomical adaptations:-

- a) **Cuticle** is totally absent in submerged parts of plant. It may be present exposed part as very fine film.
- b) **Epidermis** is composed of thin walled cells containing chloroplasts, Cutin is absent .
- c) **Stomata** are totally absent in submerged hydrophytes as gas exchange takes place directly through thin cell walls by **diffusion**. In floating leaves the leaves are epistomatous.
- d) All hydrophytes contain **Aerenchyma** that helps in gaseous exchange and buoyancy. Mechanical tissues and xylem are poorly developed.

MESOPHYTES:-

- Mesophytes are plants that normally grow in habitats where water is neither scarce nor abundant.
- In such habitats the pore space in soil is occupied almost equally by water and soil atmosphere.
- Such a balanced condition of water and gases is very suitable for plant growth.
- Mesophytes are very extensive on the surface of land and most crops like eg.:- Wheat, Maize, Barley, Pea, Sugarcane, Species in grass lands, tropical and temperate forests are all mesophytes.

XEROPHYTES:

Xerophytes are characteristic of desert and semidesert regions but can grow in mesophytic conditions also.

Plants growing in soils deficient of water and appear physically dry are called **physical xerophytes.**

Eg: Casuarina, Bryophyllum, Euphorbia

Plants growing in soils having water and appear physically wet but not in a condition to be absorbed are called physiological xerophytes.

Eg: Mangrooves

Based on the degree of resistance to drought xerophytes are of three types

1. Ephemerals 2. Succulent 3. Non-Succulent

- 1. **Ephemerals (Drought escapers) :** These are annuals, mostly found in arid (dry) zones and complete their life cycle within very short period eg. *Tribulus*.
- 2. Succulents (Drought avoiding plants) : These absorb large quantities of water during rainy season and store it in different plant parts usually in the form of mucilage becoming fleshy or succulent in parts like the stem-*Opuntia*, leaf-*Aloe*, *Agave*, *Bryophyllum*, Root-*Asparagus*
- 3. Non-Succulents (True xerophytes) : These are perennial plants which are true xerophytes and can with stand prolonged period of drought

Eg : Casuarina, Zizyphus, Calotropis, Nerium

ECOLOGICAL ADAPTATIONS IN XEROPHYTES:

All the three Ephemerals, succulents, nonsucculent may differ in several ways but share certain common features.

Roots:

- a) Extensively branched deep seated and wide spread root system is found in xerophytes
- b) Root caps and root hairs are well developed.

Stem :

- a) Stems are stunted, woody, hard, reduced in size and covered by thick bark.
- b) Stems are modified into phylloclades
 Eg: *Opuntia, Cactus, Casuarina, Euphorbia* and into cladodes Eg: *Asparagus, Ruscus.*
- c) In Succulent Xerophytes stem store water as mucilage in water storage tissue Eg: *Opuntia, Cactus*

Leaves :

- a) Extent of reduction of leaves in xerophytes depends on the degree of xerophytism.
- b) Leaves are reduced to spines & Scale leaves in Eg.:- Opuntia, Cactus, Euphorbia sps, Asparagus, Casuarina.
- c) Thick, fleshy succulent leaves are found in Eg: *Bryophyllum, Aloe, Agave etc.,*

ANATOMICAL ADAPTATIONS :

- a) Epidermis is covered with thick cuticle and is multilayered *(Nerium)*.
- b) Epidermal cells may have silica crystals
- c) Stomata are confined to lower epidermis (Hypostomatous) present in sunken pits (sunken stomata)
- d) Mechanical and vascular tissues are relatively well

developed.

- e) Xerophytes show well developed cutinized and lignified tissues. Cuticle is very thick to reduce transpiration.
- f) Xerophytes show morphological and anatomical adaptations to reduce the transpiration and to retain the water inside the plant
- g) Calcium oxalate crystals called sphaeraphides are found in *Nerium* leaf epidermis.
- h) Epidermal cells of some grasses may have silica crystals.

PLANT SUCCESSION :

- The composition and structure constantly change in response to changing environmental conditions.
- These changes lead finally to a community that is in near equilibrium with the environment and that is climax community.
- This gradual and fairly predictable change in the species composition of a given area is called *Ecological succession*.
- Succession is hence a process that starts where no living organisms are found. If it starts from areas where no living organisms ever existed eg.: bare rock it is "Primary succession". If it starts from areas that some how lost all the living organisms that existed there Eg: abandoned farm lands, burned or cut forests or lands that have been flooded are " Secondary Succession".
- Secondary succession here occurs faster than primary succession.

SUCCESSION OF PLANTS :

- Based on nature of habitat whether it is water (or very wet) or very dry - succession of plants is called Hydrach or Xerarch.
- Hydrach succession : takes place in wetter areas and succession progress to mesic conditions.
- Xerarch succession : takes place in dry areas and succession progress to mesic conditions.
- Both Hydrach and Xerarch succession lead to the Medium water conditions (mesic) - neither too dry (xeric) nor too wet (hydric)
- The species that invade a bare area are pioneer species.

Terms of community in succession :

Pioneer community : The first community to inhabit an area is called Pioneer community.

Climax community : The last and stable community in an area is called climax community. This is more stable. Usually mesophytes are present in climax community.

Seral communities or seral stage : In succession, communities or stages which comes in between pioneer community and climax community is called transitional or seral communities.

Sere : The entire series of communities is called sere. The name of sere depends on where the succession occurs or takes place.

- Succession in fresh water
- Succession in salty water

Succession in acidic water

- Succession in dry region
- Succession on rocks

Succession on sand Succession at moistured region

Succession of microbes on decomposed matters

Oxaloser Xerosere

Hydrosere

Halosere

- Lithosere
- Psamosere
- Mesosere
 - Serula

HYDROSERE

Stages of hydrosere or hydrach succession in the newly formed pond or lake :

- 1. Phytoplankton stage: It is pioneer community, first coming from minute autotropic organism. These produce organic matter. E.g. Soft mud diatom, Cyanobacteria.
- 2. Rooted submerged stages : E.g. Vallisneria
- 3. Rooted floating stages : E.g. Nymphaea, Nelumbium, Trapa.
- 4. Reed swamp stage (amphibious stage): Most part of these rooted plants remain exposed to air. E.g. Typha, Saggitaria
- 5. Sedge (Meadow stage or marsh meadow stage) : Muddy plants. E.g. Carex, Ipomoea
- 6. Scrub stage: Woody shrubs, tolerates water loggin. E.g. Cornus
- 7. Forest stage : E.g. Tree

LITHOSERE

Stages of lithosere (Succession on rocks)

1. Crustose lichens stage: It is pioneer community, tolerates desiccation, produces organic acid which causes weathering of rocks, so first minerals are released for their own use.

E.g. Rhizocarpon

- 2. Foliose lichens stage : Large lichens with leafy thalli.
- 3. Moss stage : E.g. Polytrichum
- 4. Herb stage : Annual hardy grasses. E.g. Poa, Eleusine, Artistida.
- 5. Shrub stage : E.g. Zizyphus
- 6. Forest stage : E.g. Tree

ECOLOGICAL SERVICES / ECOSYSTEM SERVICES :

- Many valuable goods like air, water, food, fuel, fibre, genetic resources, pharmaceutical products are essential to our survival for natural ecosystem.
- Plants help this by capturing energy of sun and combine it with water and nutrients from soil and carbondioxide from atmosphere and thus manufacture food for use by the organisms.

PRICE TAGS OF ECOLOGICAL SERVICES :

- Our dependence on ecosystem services is complete but poorly understood.
- > Many of these services are non-market services by virtue of their inherent characteristics eg. both the atmospheric ozone layer and climate stability provided by global carbon cycle cannot be owned by anyone who can control their use by others
- > Researchers have put an average price tag of US\$33 million a year on these fundamental ecosystems service, which are largely taken for granted because they are free. This is nearly twice the value of Global gross National Product (GNP) US \$18 trillion
- Ecosystem services are grouped into four broad categories
- Supporting services nutrient cycling, oxygen production soil formation and crop pollinaton
- > **Provisioning services** : food, fibre, fuel and water
- > Regulating services : climate regulation, water purification and flood protection
- > Cultural services education, recreation, aesthetic value.

Out of total cost of various ecosystem services, soil formation accounts for about 50%, the services like recreation and nutrient cycling are less than 10% and climate regulation and habitat for wildlife to about 6%.

ECOSYSTEM SERVICE - POLLINATION :

- Pollination is the transfer of pollen grains to fertilize the ovaries of flowers - is an essential part of healthy ecosystem.
- The pollinators helps in the production of fruits, seeds & most important pollinator is honey bee.
- Predicting the effects of the loss of a particular pollinator is extremely difficult, but it is important to remember that no species exists in isolation. Each is part of an ecological web and as we lose more and more pieces of that web, the remaining structure must eventually collapse.
- Pollination of crops by bees is required for 15-30% of U.S. food production most large - scale farmers import non-native honey bees to provide this service.
- Wild bees alone could provide partial or complete pollination services and enhance it.
- Pollinators come in all shapes & sizes, Over 1,00,000 invertebrate species - such as bees, moths, butterflies, beetles and flies serve as pollinators.
- About 1,035 species of vertebrates birds, mammals, reptiles pollinate many plant species.
- Pesticides are major threat to insect pollinators

MEASURES TO PROTECT POLLINATORS :

- Creating own pollinator friends garden
- Reducing level of pesticide
- Encouraging local cluts, artificial habitats such as butterfly gardens, bee boards, bee boxes.

ECOSYSTEM SERVICE - CARBON FIXATION

- Trees are essential to carbon sequestration, keeping excess carbon from entering the atmosphere.
- The main chemical flow between forest and atmosphere is the exchange of CO₂ and O₂ by photosynthesis.
- CO₂ amount absorbed to produce 1gm dry organic matter can be calculated as per photosynthetic equation 180g. of glucose and 192g of O₂ absorb 264g CO₂ and 108 g water and consume 677.2 k.cal. of solar energy.
- Then 180g glucose can be transformed to 162 g polysachharide inside plants.
- So, whenever 162 g dry organic matter is produced 264 g CO₂ will be fixed i.e. 1g dry organic matter can fix 1.63 g CO₂.

- The economic value of CO₂ fixation can be estimated by total fixed CO₂ amount multiplied by a standard opportunity cost for per unit CO₂ fixation.
- The Natural ecosystem help to stabilize climate and prevent over heating of earth by removing more greenhouse gas carbon dioxide from the atmosphere.

ECOSYSTEM SERVICE-OXYGEN RELEASE:

- Atmosphere of earth has different composition of gases due to the biochemical reactions of earth's organisms.
- A mature leafy tree produces as much O_2 in a season as 10 people inhale a year.
- A single mature tree can absorb carbondioxide at a rate of 48 *l*bs/year and release enough oxygen back into the atmosphere to support two human beings.
- One acre of trees annually consumes the amount of carbon dioxide equivalent to that produced by driving an average car for 26,000 miles. That same acre of trees also produces enough oxygen for 18 people to breathe for a year.
- The plants and planktons are sometimes described as " the lungs of world" taking billions tons of CO₂ from atmosphere and through photosynthesis " exhaling" billions of tons of the atmospheric O₂ that we breathe.
- Microorganisms also contribute to oxygen release in direct and indirect ways
 Eg.: Cyanobacteria releases directly.
- Supporting services include, Nutrient cycling through decomposition of fallen logs in forests, soil formation by bacteria and lichens.
- the provisioning services include providing food Fibre, fuel (Fossil fuels petrocrops).
- Regulating services include, temperature regulation by afforestation, water purification by microbes and flood protection by plants such as mangroves like sunderbans in West Bengal.
- The cultural services can be exemplified by conservation of plant biodiversity and creating natural (Aesthetic) beauty through local gardens.

HOW TO SUSTAIN ECOLOGICAL FUNCTIONS:

Cultivate the following practices in our day to day life as a part of the solution to protect the ecological functions from contemporary threats.

	CH-13: ECOLOGICAL ADAPTATION S	UCCESION AND ECOLOGICAL SERVICES
\triangleright	Choose products which conserve resources,	9. Tribulus an ephemeral plant completes is life cycle
	minimize waste and reduce or eliminate	within
	environmental damage.	1) 6-8 weeks 2) 10-12 days
\triangleright	Prefer products made with methods that reduce or	3) 40-50 weeks 4) 10-12 years
	eliminate the use of pesticides and artificial fertilizers.	10. Mechanical tissues and xylem are well developed
\triangleright	Reduce consumption and waste production	in
\triangleright	Support usage of renewable energy alternatives	1) xerophytes 2) hydrophytes
\triangleright	Use public transit, cycle or walk to conserve natural	3) Mesophytes 4) Sciophytes
	resources and to reduce pollution and enjoy health	11. The correct pair of plants, which can with stand
	benefits.	prolonged period of drought
\triangleright	Participate in developing community garden or tree	1) Casuarina and Tribulus
	plantation programmes	2) Nerium and Tribulus
	Avoid the usage of pesticides and follow methods	3) Ziziphus and Tribulus
	of natural pest control	4) Casuarina and Calotropis
	1	12. Succulent fasciculated roots are found in
	Use native plants in garden and provide habitat for	
	wild life.	1) Aloe 2) Opuntia
		3) Asparagus 4) Agave
	MODEL TEST - I	13. Submerged hydrophytes have
1.	Who classified the plant communities in to three	1) Stomata on both surfaces of leaf
	major ecological groups	2) Stomata on upper leaf surface
	1) Haeckel 2) Hofmeister	3) No stomata
	3) Warming 4) Odum	4) Stomata on lower surface of leaf
2.	CAM plant among the following	14. True xerophytes are
	1) Opuntia 2) Hibiscus	1) Ephemeral plants
	3) <i>Cucurbita</i> 4) All the above	2) Succulent plants
3.	Submerged rooted hydrophyte from the following	3) Non-Succulent plants
	1) Nymphaea 2) Utricularia	4) None of the above
	3) Limnophila 4) Vallisneria	15. The following plant epidermal cells contain silica
4.	The plants which grow in shady places are called	crystals.
	1) Sciophytes 2) Hydrophytes	1) Xerophytic plants 2) Hydrophytes
	3) Xerophytes 4) Mesophytes	3) Sciophytes 4) Mesophytes
5.	Plant floating on water and useful as biofertilizer in	MODEL TEST - II
	rice fields is	
	1) Lemna 2) Azolla	16. Succession on Bare rock is
	3) Wolffia 4) Salvinia	1) Primary succession 2) Secondary succession
6.	Aerenchyma tissues helps in gaseous exchange and	3) Tertiary succession 4) None of the above
	buoyancy in the following plants	17. Succession takes place in fresh water is
	1) All hydrophytes 2) All xerophytes	1) Xerosere 2) Oxalosere
	3) All mesophytes 4) All sciophytes	3) Hydrosere 4) Lithosere
7.	Hydrophytes like Nymphaea and Nelumbo are	18. The species that invade a bare area is
	1) Free floating hydrophytes	1) Climax Species 2) Pioneer species
	2) Amphibious plants	3) Seral communities 4) None of the above
	3) Submerged rooted hydrophytes	19. The succession that takes place on sand is
	4) Rooted plant with free floating leaves.	1) Psammosere 2) Lithosere
8.	Water storage tissue is present in	3) Serula 4) hydrosere
0.	1) Acacia 2) Opuntia	20. The pioneer community in hydrosere is
	3) Calotropis 4) Hydrilla	1) Phytoplanktons
	<i>c, caronopis 1/11yunuu</i>	

				QUESTION BANK
	2) Rooted submerged I			TYPE - I
	3) Amphibious hydroph	nyts	21	
0.1	4) Mesophytes.	, •	51.	Mangrove plant in sunderban-delta are adapted
21.	Succession in cut fores			to tolerate :
	, 1	2) Secondary succession		1) High temperature 2) High salinity
	3) Lithosere	/		3) Temperature extremes 4) None of these
22.		unity in plant succession is	32.	Germination of seeds when the fruits are still at-
	1) Pioneer community	· ·		tached with the mother plant is referred to as :
		4) None of the above		1)Adventive embryony 2) Ovipary
23.	-	s under the following eco-		3) Vivipary 4) None of these
	logical services		33.	The study of organisms is relation to their environ-
	/	2) Provisioning service		ment is the definition of
	3) Regulating service	4) Cultural services		1) Morphology 2) Ecology
24.	Which one of the follow	ving ecological services are		3) Embryology 4) Biome
	come under supporting	services	34.	The term "ecology" was first used by
	1) Climate regulation	2) Recreation		1) Reiter 2) Warming 3) Tansley 4) Odum
	3) Soil formation		35.	Who of the following defined ecology as the study
25.	Most important pollina	tor among the following		of structure and function of nature?
	1) Birds	2) Honeybees		1) Reiter 2) E.P. Odum
	3) Snakes	4) Butterflies		3) Haeckel 4) Warming
26.		pecies involved in pollina-	36.	Organisms of same species living in an area are called
	tion	L I		1) Population 2) Community 3) Fauna 4) Flora
	1) 1, 00,000	2) 10, 035	37.	If you arrange the different levels of organisation
	3) 1, 035			in the table below in a hierarchy, the level of
27.	, · ·	lysaccharide formed from		organisation found three levels below a plant or
	180 grms of glucose	5		an individual
	1) 180g	2) 178g		Organism Community Organs
	3) 162g	4) 18g		(plant or an individual)
28.	Lungs of the world are	/ 0		Ecosystem Population Biosphere
	1) Plants	2) Phyto planktons		Tissue Cell Organ systems
	3) Zooplanktans			1) Organs 2) Biosphere 3) Cell 4) Tissue
29.	Sundarbans in west ber		38.	<i>Hydrilla</i> is a :
		2) Provisioning services		1) Hydrophyte with poorly developed roots
	3) Cultural services	4) Supporting services		2) Rooted and rhizomatous hydrophyte
30.	/	owing is not a measure to		3) Free-floating hydrophyte
201	protect pollinators			4) Attached floating hydrophyte
	1) Creating own polling	ator - friendly gardens	39.	A free-floating hydrophyte which belongs to vas-
	2) Increasing level of p		0.5.	cular cryptogams and is commonly used as
	3) Encouraging bee gat			biofertilizer, is :
	4) Encouraging local cl			1) Salvinia 2) Pistia
	1) Elleouruging local el	405		3) Spirodela 4) Azolla
			40	The insectivorous plant <i>Utricularia</i> grows in ponds
				and lakes as :
				1) Free-floating hydrophyte
				2) Submerged hydrophyte
				3)Attached-floating hydrophyte
				4) Marshy hydrophyte

CII-15. ECOLOGICALADAI TATION SC	
41. The National flower (Lotus) plant is a	53. Submerged plant among of the following
1) fixed floating 2) free floating	1) Hydrilla 2) Pistia
3) amphibious plant 4) submerged plant	3) Lotus 4) Water lily
42. Typha is a	54. Typha is an example of
1) Attached emergent plant	1) Free floating plant 2) Submerged plant
2) Marshy plant	3) Floating and attached 4) Emergent plant
3) Free floating 4) None of the above	55. Hydrophytes like Nymphaea and Nelumbo are
43. Smallest angiosperm with short life span	1) Free floating hydrophytes
1) Utricularia 2) Spirogyra	2)Amphibious plant
3) Lemna minor 4) Wolffia microscopica	3) Submerged rooted hydrophytes
44. Water hyacinth (<i>Eichhornia crassipes</i>) is a hy-	4) Rooted hydrophytes with free floating leaves
drophyte with	56. Heterophylly is found in :
1) Offsets 2) balancing roots	1) Limnophila 2) Ranunculus
3) 1 & 2 4) large peltate leaves	3) <i>Sagittaria</i> 4) All of these
45. Which of the following is amphibious in nature?	57. Leaves are epistomatic in :
1) Vallisneria 2) Trapa	1) Nelumbo 2) Hydrilla
3) <i>Ranunculus</i> 4) Hydrilla	3) Najas 4) Eichhornia
46. Aquatic free-floating plants are :	58. Astomatiferous leaves are seen in :
1) <i>Pteris</i> and <i>Pteridum</i>	1) Free-floating hydrophytes
2) Dryopteris and Adiantum	2) Submerged plants
3) <i>Azolla</i> and <i>Salvinia</i>	3) Emergent plants 4) Marshy plants
4) Lycopodiom and Selaginella	59. In submerged hydrophytes, gaseous exchange
47. Rooted submerged plant is :	takes place through :
1) Wolffia 2) Vallisneria	1) Diffusion from entire body surface
3) Nelumbo 4) Utricularia	2) Leaves having lenticels
48. Suspended hydrophyte leading insectivorus life is	3) Openings developed on stem and leaves
1) Certatophyllum 2) Utricularia	4) None of the above
3) Dionaea 4) Nepenthes	60. Respiratory and floating roots develop in :
49. Plant floating on water and useful as biofertilizer in	1) Nymphaea 2) Jussiaea
rice fields is	3) Trapa 4) Lemna
1) Azolla 2) Lemna	61. Epidermis is chlorophyllous in sterm of:
3) Wolffia 4) Salvinia	1) Hydrilla 2) Bryophyllum
50. The hydrophyte that have contact with water only	3) <i>Mangifera</i> 4) None of these
1) Nymphaea 2) Ceratophyllum	62. In submerged hydrophytes, leaves have :
3) Vallisneria 4) Typha	1) Highly differentiated mesophylls
51. Find the pair of hydrophytes that are niether in	2) Undifferentiated mesophylls
contact with soil nor air	3) Highly developed vascular tissue
1) Vallisneria, Hydrilla	4) Thick layer of cuticle
2) Hydrilla, Utricularia	63. The chief anatomical feature of all hydrophytes is
3) Salvinia, Azolla	1) absence of stomata
4) Limnophila, Ceratophyllum	2) sunken stomata
52. Select the pair of plants that show contact with	3) well developed aerenchyma
soil and water, but not with air	4) well developed xylem
1) Potamogeton, Vallisneria	64. Submerged hydrophytes have
2) Hydrilla, Ceratophyllum	1) stomata on both surface
3) Wolffia, Sagittaria	2) stomata on leaf surface
4) Cyperus, Typha	3) no stomata 4) stomata on lower surface
	631

	UCCESION AND ECOLOGICALISERVICES
65. The stem of submerged water plants is soft and	75. Which one suffers from both external and internal
weak because	dryness
1) they are absolutely devoid of xylem	1) Opuntia 2) Zizyphus
2) they totally lack phloem	3) Tribulus 4) Aloe
3) they do not have stomata	76. The xerophyte with succulent phylloclades
4) the supporting tissue and xylem are poorly de-	1) Casuarina 2) Ruscus
veloped	3) Aloe 4) Opuntia
66. Epidermis is useful for both absorption and as-	77. True xerophytes are
similation in	1) Ephemeral plants of deserts
1) Mesophytes 2) Mangroves	2) Succulent plants
3) Xerophytes 4) Hydrophytes	3) Non-succulent perennials
67. In submerged hydrophytes, gaseous exchange	4) None of the above
occurs through	78. Identify a pair of xerophytes, whose aerial parts
1) Hydathodes 2) Stomata	are succulent
3) General body surface	1) Asparagus and Ceiba
4) Injured parts	2) Ceiba and Aloe
68. Useful adaptation for hydrophytes	3) Opuntia and Bryophyllum
1) large leaves	4) Asparagus and Aloe
2) decrease in mechanical tissue	79. Water storage tissue is present in
3) large mechanical tissue	1) Acacia 2) Opuntia
4) increase in aerenchyma	3) Calotropis 4) Hydrilla
69. Anatomically all hydrophytes are similar in having	80. The ephemeral <i>Tribulus</i> tide over the dry condi-
1)Aerenchyma 2)Collenchyma	tions
3) Stomata 4) Cuticle	1) by its tuberous stem 2) by its aerial stem
70. Ephemerals are :	3) in the form of seeds
1) Annual plants surviving only one year	4) by storing water in different parts of its body
2) Plants of very short life cycle or drought escap-	81. The correct pair of plants, which can withstand
ing plants	prolonged period of drought
3) Amphibians growing commonly on swamps	1) Casuarina, Tribulus
4) Perennial surviving many years	2) Nerium, Tribulus
· · · ·	3) Ziziphus, Tribulus
71. Ephemerals closely resemble morphologically as well as anatomically to a normal	4) Casuarina, Calotropis
•	82. Phylloclade differs from cladode in having :
	1) Spines 2) Many internodes
3) Mesophytes 4) Halophytes	3) Stem modification 4) None of these
72. Ephemerals are placed in xerophytes as they have :	83. Thicky cuticularized epidermis, sunken stomata and
 Needle like leaves to reduce transpiration Leaves modified to spines 	compact mesophylls are found in leaves of :
, I	1) Cycas 2) Pinus
3) Phyllodes or cladodes to protect moisture	1) Cycus2) Finus4) Nerium4) All of these
4) Short life span to escape hot summer period	84. <i>Casuarina</i> lacks well developed :
73. Ephemeral plants are categorised under	1
1) Drought enduring plants	1) Leaves 2) Stem
2) Drought escaping plants	3) Roots 4) Flowers
3) True xerophytes	85. Well developed mechanical tissue and vascular
4) Drought avoiding plants	strands are always found in:
74. Drought avoiding plants are	1) Ephemerals 2) Halophytes
1) Hydrophytes 2) Mesophytes	3) Drought enduring plants
3) Succulents 4) Parasites	4) None of these
	332

			UCCESIONANDECOLO	
86.		odification is best seen in :	99. Reed swamp stage is a	
	1) Nerium	2) Cacti	1) Lithosere	2) Hydrosere
~-	3) Cycas	4) Capparis	3) Psammosere	4) Mesosere
87.	Higher root : Shoot rati		100.Pioneer community of h	
	1) Halophytes	2) Epiphytes		2) Free-floating stage
	3) Psammophytes	4) Oxalophytes		4) Reed swamp stage
88.	Very poor root : shoot		101.A dynamic equilibrium	
	1) Vallisneria	2) Nelumbo	munity and environment	
	3) Hydrilla	4) Opuntia	1) Climax is attained	2) Pioneers are found
89	Sunken stomata are pro	esent in	3) Seral communities a	re growing
	1) Xerophytes	2) Hydrophytes	4) None of the above	
	3) Mesophytes	4) All the above	102.Climax community of	hydrosere is :
90.	Sunken stomata and m	ultiple epidermis occur in	1) Free-floating stage	2) Forest
	1) Hydrilla	2) Mangifera	3) Grass land	4) Marsh stage
	3) Nerium	4) Vallisneria	103. Pioneer community of	psammosere is :
91.	Multiple epidermis, sur	ken stomata, with stomatal	1) Crustose lichen stag	ye
	hairs in Nerium leaf rep	present	2) Foliose lichen stage	
	1) Xerophytic adaptati	on	3) Blue-green algae	
	2) Mesophytic adaptat	ion	4) sedges and grasses	
	3) Hydrophytic adapta	tion	104.Crustose lichens are pi	oneers of :
	4) Halophytic adaptatio	on	1) Halosere	2) Hydrosere
92.	An adaptation usually for	ound in many xerophytes is	3) Lithosere	4) Psammosere
	1) Thin epidermis	2) Stomata in pits	105.Heterotrophic success	ion occurs on :
	4) Waxy coating	4) Thick spines	1) Barren soil	2) Sand dunes
93.	A feature useful to min	nimise water loss in xero-	3) Decaying debris	4) Climax community
	phytes is		106.Find out the correct se	quence of seral communi-
	1) Extensive root syste	m 2) Thick cuticle	ties in hydrosere :	
	3) Well developed wat	er storage parenchyma	1) Submerged stage, f	loating leaved stage, reed
	4) Undivided lamina		swamp stage.	
94.	Succession starts in a :		2) Free-floating stage, s	submerged stage, emergent
	1) Barren pond or lake	e 2) Forest range	stage.	
	· · · · · · · · · · · · · · · · · · ·	4) Grassland ecosystem	3) Marsh stage, floatin	g leaved stage, submerged
95.	Succession is a :		stage, floating stage.	
	1) Long term process	2) A very slow process	4) None of the above	
	3) Law of nature	4) All of these	107. Eichhornia, Salvinia,	Azolla, Wolffia, Spirodela
96.	Succession is related w	vith :	and <i>Lemna</i> grow in po	nds and lakes during :
	1) Migration of taxa	2) Origin of species	1) Pioneer stage of suc	cession
	3) Extinction of certain	n species during interactio	2) Free-floating stage	
	with environment	4) All of the above	3) Attached emergent	stage
97.	A succession which s	tarts in a forest area after	4) Reed swamp stage	
	deforestation is :		108.Bryophytes have some	e ecological importance as
	1) Heterotrophic succe	ession	they are the first to cold	onized.
	2)Allogenic succession	n 3)Autogenic succession	1) In a barren pond	2) In a barren forest
	4) Secondary succession		3) On a barren rock	
98.	Ecesis refers to :		109. In hydrosere reed swar	
	1) Migration	2) Invasion	1) Marsh stage	2) Shrub stage
	3) Establishment	4)Aggregation	3) Woodland stage	4) Free-floating stage
				ý č č

CH-I3: ECOLOGICALADAPIATION S		
110. In hydrosere <i>Hydrilla</i> and <i>Vallisneria</i> appear af-	121. Inside the plant 180g of glucose ca	
ter the :	transformed tog of polysaccharid	e.
1) Floating leaved stage 2) Free-floating stage	1) 165g 2) 180g	
3) Phytoplankton stage 4) Herbaceous stage	3) 162g 4) 264g	
111. 'Struggle for existence' and 'survival of fittest' occur in	122. For the production of every 1g dry org	ganic
1) Pioneers 2) Seral communities	matter, plants can fix $g of CO_2$	
3) Aggregation and ecesis process	1) 1.63g 2) $2.\overline{63g}$	
4) All of the above	3) 3.63g 4) 0.63g	
112. In plant succession when climax is reached the net	123. The following is considered as greenhouse	egas
productivity:	1) N ₂ 2) O ₂	. 9
1) Continues to increase 2) Becomes half	$1) 1_{2} = 2) 0_{2}$ 3) CO, 4) H ₂ S	
3) Becomes stable 4) Becomes zero	124. The amount of oxygen produced by a	tree
113. Primary succession takes much longer time than	depends on the	tice
secondary succession takes inter longer time than	1) species of tree 2) its age	
•		
1) Colonization by organisms	3) its health and the surrounding trees	
2) Development of soil	4) all the above.	,
3) Development of seeds bank 4) All the above	125. One acre of trees annually consume the am	
114. Primary succession refers to development of com-	of carbon dioxide equivalent to that prod	
munities on a	by driving an average car for mile	S:
1) Newly exposed habitat with no record of ear-	1) 36,000 miles 2) 26,000 miles	
lier vegetation.	3) 16,000 miles 4) 46,000 miles	
2) Pond freshly filled with water after a dry phase	126. Oxygen produced by the plants in 1acre	area
3) Forest clearing after devastating fire	sufficient to breath how many people	
4) Freshly cleared crop field.	1) 10 people 2) 5 people	
115. An orderly sequence of community development	3) 15 people 4) 18 people	
on an area is called	127. The following are considered as the lungs of	ofthe
1) Succession 2) Cover	world.	
3) Establishment 4) Diversity	1) plants and planktons 2) plants only	
116. The terminal stage of a successional process is	3) panktons only	
called	4) plants and animals.	
1) Final stage 2) Climax stage	128. The following microorganism release ox	vgen
3) Seral stage 4) Pioneer stage	directly	<i>75</i> •11
117. A community that is in near equilibrium with the	1) Nostoc 2) Anabaena	
environment during ecological succession is	3) Bacteria 4) a & b	
1) Trophic level 2) Food chain	129. According to Millennium Ecosystem Assess	ment
3)Climax community 4) Food web	ecosystem services are grouped into this r	
•		nany
118. Succession starts on the large rock is called	categories	
1) Secondary succession	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>.</i> .
2) Primary succession 3) Climax community	130. One of the following is not a support	rting
4) Ecological pyramids	ecosystem services	
119. How much of CO_2 absorb for the production	1) Nutrient cycling 2) Oxygen produ	
of 180g of glucose in plants	3) Soil formation 4) Climate regula	
1) 193g 2) 264g 3) 180g 4) 162g	131. Ecosystem services such as education, recre	
120. How much solar energy consume when plants	and aesthetic value comes under this categories	
release 193 g of O_2	1) Regulating services 2) Supporting ser	vices
1) 677.2 k.cal 2) 877.2 k.cal	3) Cultural services	
3) 777.2 k.cal 4) 776.2 k.cal	4) Provisioning services	
·	, -	334

	CH-I3: ECOLOGICALADAP			
132.	Identify the correct statement		-	of all the population belonging
	1) cost of soil formation account for	r about 10	to different speci	es occuring in an area is called
	percent		1) Population	2) Ecosystem
	2) food, fibre are regulating services		3) Biosphere	4) Community
	3) recreation and nutrient cycling ac	counts for 143.	The bilogically in	nhabited part of earth consist-
	less thatn 10 percent		ing of all ecosyst	ems of the world as
	4) water purification and food produ	ction are	1) Population	2) Biometry
	supporting services		3) Biosphere	4) Community
133.	The most important pollinator for ag	gricultural 144.	Structural and fu	nctional of nature is called
	purposes is		1) Ecosystem	2) Ecology
	1) Flies 2) Mosquit	oes	3) Biome	4) Biosphere
	3) Cockroaches 4) Honey b	ees 145.	Which is conside	ered as a giant ecosystem?
134.	To produce 1 gm dry organic matter t	he amount	1) Pond	2) Grass land
	of CO_2 fixed is		3) Forest	4) Earth
	1) 1.98 gm 2) 20 gm	146.	Classification of	plant communities was given
	3) 1.63 gm 4) 40 gm		by	
135.	Natural ecosystem may have helped t	o stabilize	1) Warburg	2) Wareing
	climate and prevent overheating of th	e Earth by	3) Haeckel	4) Warming
	removing more of	147.	The correct sequ	ence of levels of organization
	1) The green house gases from atmo	sphere	present in the bo	dyofevovled
	2) CO_2 from the atmosphere		A) Cells	B) Organs
	3) ground water 4) a and b		C) Tissue system	D) Tissue
136.	The purpose of developing a carbon	ax system	1) D,A,B,C	2)A,B,C,D
	in many countries is to		3)A,D,C,B	4) C,B,D,A
	1) reduce green house gases	148.	Arrange the follo	wing in ascending order of
	2) cut down CO_2 in atmosphere		complexity	
	3) cut down CO in atmosphere 4) All	the above	I) Biosphere	II) Community
137.	An effective measure to prevent globa	lwarming	· •	IV) Population
	is		1) I, III, II,IV	2) III, I, II, IV
	1) Drip-irrigation 2) afforesta		3) IV, II, III, I	
	3) to provide growth chambers	149.		c hydrophyte which floats
	4) none		freely on the sur	
138.	Submerged suspended hydropytes a		1) Victoria	2) Wolffia
	1) Potamogeton 2) Cyperus		3) Ranunculus	4) Cyperus
	3) Lemna 4) Hydrilla		U	suspended hydrophyte is
139.	The study of organisms in relation to t	heir	1) Salvinia	2) Ceratophyllum
	environment is known as		3) Wolffia	4) Potamogeton
	1) Morpholgoy 2) Ecology	151.	U	ed hydrophyte with ribbon
	3) Embryology 4) Biome		shaped leaves	
140.	Who among the follwoing defined ec	ologyas	1) Valisneria	2) Nymphaea
	structure and function of nature		3) Hydrilla	4) Utricularia
	1) Warming 2) Haeckel		-	tact neither with soil nor air is
	3) Odum 4) Tanskey		1)Hydrilla	2) Cyperus
141.	Organism of same species living in an called	n area are	3) Potamogeton	4) Trapa
	1) Population 2) Commun	nity		
	3) Fauna 4) Flora			
		I		335

153.	Suspended hydrophyte	leading insectivorous		3) Leaves with stomata	absent or only on
	lifeis			upper side	
	1)Ceratophyllum	2) Utricularia		4) Epidermal cells are th	hin walled
	3) Drosera	4) Nepenthes	165.	The type of parenchym	a well developed in
154.	Which of the following i	is an amphibious plant?		hydrophytes is	
	1)Hibiscus	2) Cyperus		1) Xylem parenchyma	
	3) Dolichos	4) Ceratophyllum		2) Water storage parent	chyma
155.	A hydrophyte which can	n survive even in dry		3)Aerenchyma	
	periods for some time is	5		4) Phloem parenchyma	
	1) Nymphaea	2) Cyperus	166.	Pneumatophores are for	und in
	3) Nelumbo	4) Vallisneria		1) Hydrophytes	2) Xerophytes
156.	Rooteless suspended hy	vdrophyte is		3) Mangrooves	4) Mesophytes
	1) Nelumbo	2) Wolffia	167.	Stomatal condition in N	lympheae is
	3) Utricularia	4) Ceratophyllum		1) Epistomatous	2) Hypostomatous
157.	The stem of submerged	plant is soft and weak		3) Non functional	4) Amphistomatous
	because		168.	Very well developed me	echanical tissues and
	1) They are abosultely a	devoid of xylem		vasuclar tissues are see	n in
	2) Totally lack phloem			1) Hydrophytes	2) Mesophytes
	3) Do not have stomata			3) Xerophytes	4) Halophytes
	4) The supporting tissue	es and xylem are freely	169.	The plants which grow	in extremely dry
	developed			conditions generally she	ow the following adap-
158.	Identify the set constitue	ed by submerged		tation?	
	suspended hydrophytes			1)Aerenchyna	2) Thin cuticle
	1) 77 / 77 11 /	~		\mathbf{a}	
	1) Victoria, Vallisneria, O	Ceratophyllum		3) Sunken stomata	
	2) Ceratophyllum, Utric	ularia		3) Sunken stomata4) Poorly developed xy	lem
	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 	ularia eton, Typha		4) Poorly developed xy	lem
	2) Ceratophyllum, Utric3) Utricularia, Potamog4) Hydrila, Cyperus, Sa	ularia eton, Typha lvia		4) Poorly developed xy TYPE - II	
159.	2) Ceratophyllum, Utric3) Utricularia, Potamog4) Hydrila, Cyperus, SaHydrophyte showing hy	ularia eton, Typha lvia drophilly is	170.	4) Poorly developed xy TYPE - II Identify the incorrect sta	
159.	2) Ceratophyllum, Utric3) Utricularia, Potamog4) Hydrila, Cyperus, SaHydrophyte showing hy1) Vallisneria	ularia eton, Typha lvia drophilly is 2) Typha	170.	4) Poorly developed xy TYPE - II	
	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sa Hydrophyte showing hy 1) Vallisneria 3) Sagittaria 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea	170.	4) Poorly developed xy TYPE - II Identify the incorrect sta Nerium I) Leaves are leathery a	atements regarding nd whorled phyllotaxy
	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sa Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea	170.	 4) Poorly developed xy TYPE - II Identify the incorrect stance Nerium I) Leaves are leathery a II) Sunken stomata and 	atements regarding nd whorled phyllotaxy multiple epidermis
	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sa Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe	170.	 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery at II) Sunken stomata and III) Leaf succulent and 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme
160.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha	170.	 4) Poorly developed xy TYPE - II Identify the incorrect stands Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme l herbaceous stem
160.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sa Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by	170.	 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and IV) Tap root systm and I) I & III 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV
160.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sa Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 1) Adventitious buds 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves		 4) Poorly developed xy TYPE - II Identify the incorrect stands Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and IV) Tap root systm and I) I & III I) I & III 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV
160. 161.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 1) Adventitious buds 3) Root pockets 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs	170.	 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and I) I & III I) I & III I) I & II 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV
160. 161.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sa Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 1) Adventitious buds 3) Root pockets A hydrophyte with disting 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery at II) Sunken stomata and III) Leaf succulent and IV) Tap root systm and I) I & III 3) I & II Identify the correct state Bryophyllum 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the
160. 161.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 1) Adventitious buds 3) Root pockets A hydrophyte with distin 1) Typha 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and I) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproducti 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves
160. 161. 162.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 1) Adventitious buds 3) Root pockets A hydrophyte with disti 1) Typha 3) Lemna 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia 4) Pistia		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and IV) Tap root systm and I) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproduction II) Every leaf produce of 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves
160. 161. 162.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are re 1) Adventitious buds 3) Root pockets A hydrophyte with disti 1) Typha 3) Lemna Heterophyllous plant with 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia 4) Pistia		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and I) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproduce of bud 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves only one epiphyllous
160. 161. 162.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 1) Adventitious buds 3) Root pockets A hydrophyte with distin 1) Typha 3) Lemna Heterophyllous plant wito ovule is 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia 4) Pistia th hemi anatropous		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and I) I & III I & III I & II Identify the correct state Bryophyllum I) It contain reproduction II) Every leaf produce of bud III) Leaves are succulent 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves only one epiphyllous nt
160. 161. 162.	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are reference 1) Adventitious buds 3) Root pockets A hydrophyte with distifultion 1) Typha 3) Lemna Heterophyllous plant wito ovule is 1) Selaginella 2) Lime 	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia 4) Pistia th hemi anatropous		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery at II) Sunken stomata and III) Leaf succulent and III) Leaf succulent and III) Leaf succulent and III) Leaf succulent and III) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproduction II) Every leaf produce of bud III) Leaves are succuler IV) It is a drought evade 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves only one epiphyllous nt ler
 160. 161. 162. 163. 	2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sa Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are r 1) Adventitious buds 3) Root pockets A hydrophyte with disti 1) Typha 3) Lemna Heterophyllous plant wi ovule is 1) Selaginella 2) Lim 3) Ranunculus 4) Aca	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia 4) Pistia th hemi anatropous		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and I) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproduct of bud III) Leaves are succuler IV) It is a drought evad I) I & II only 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves only one epiphyllous nt ler 2) I & IV only
 160. 161. 162. 163. 	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hyd 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are referentiation of the second second	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs net root caps is found in 2) Eichhornia 4) Pistia th hemi anatropous miphila acia melanoxylon ytic character?		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery at II) Sunken stomata and III) Leaf succulent and III) Leaf succulent and III) Leaf succulent and III) Leaf succulent and III) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproduction II) Every leaf produce of bud III) Leaves are succuler IV) It is a drought evade 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves only one epiphyllous nt ler
 160. 161. 162. 163. 	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hy 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are referentiation of the second s	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia 4) Pistia th hemi anatropous miphila acia melanoxylon ytic character? umbers		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and I) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproduct of bud III) Leaves are succuler IV) It is a drought evad I) I & II only 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves only one epiphyllous nt ler 2) I & IV only
 160. 161. 162. 163. 	 2) Ceratophyllum, Utric 3) Utricularia, Potamog 4) Hydrila, Cyperus, Sai Hydrophyte showing hyd 1) Vallisneria 3) Sagittaria Root caps are absent in 1) Cyperus 3) Eichhornia In Pistia root caps are referentiation of the second second	ularia eton, Typha lvia drophilly is 2) Typha 4) Nymphaea 2) Aloe 4) Typha eplaced by 2) Leaves 4) Root hairs nct root caps is found in 2) Eichhornia 4) Pistia th hemi anatropous miphila acia melanoxylon ytic character? umbers		 4) Poorly developed xy TYPE - II Identify the incorrect state Nerium I) Leaves are leathery a II) Sunken stomata and III) Leaf succulent and p IV) Tap root systm and I) I & III 3) I & II Identify the correct state Bryophyllum I) It contain reproduct of bud III) Leaves are succuler IV) It is a drought evad I) I & II only 	atements regarding nd whorled phyllotaxy multiple epidermis polychasial cyme herbaceous stem 2) II & IV 4) III & IV ements regarding the ve leaves only one epiphyllous nt ler 2) I & IV only

172.	Which of the following		1/8.		tation perispermic seeds and
	1) Epidermal cells of xe	prophytes possess thick		rhizomatous stem i	
	walls			1) Nymphaea	2) Nelumbo
	2) Dead simple tissue is	abundant in sub-		3) Piper	4) Zinger
	merged and suspended		179.	If a Nerium plant of	consists of 33 leaves on its
	3) Root hairs and root c			stem (there leaves	at each node) how many
	oped in physical xeroph				des are presents respectivley
	4) In xerophytes the sur			1) 10,11	2) 11,10
	, <u> </u>			3) 11,11	4) 33,32
172	generally shiny and glaz		1801	· · ·	statements among the
1/3.	Choose the correct state	_		following	statements among the
	xerophytic evidence in (1	-	lanhata
	I) Leaves are modified i	-	1	I. Rhizophora is a ha	
	II) Stem is modified phy		1	-	rect sunlight are sciophytes
	III) Succulent stem				aline areas are halophytes
	1) II and III	2) III and IV		IV. <i>Opuntia</i> is a CA	
	3) I and III	4) I and II		1) I & III	2) II & III
174.	Identify the incorrect sta	atements		3) I & IV	4) I, III & IV
	I) Salvinia is a free floati	ing plant	181.	Identify the incom	rect statements among the
	II) Hydrilla is rooted and	d submerged plant		following	
	III) Utricular is submerg	ged and suspended		I. Limnophila is an a	amphibious, heterophyllous
	plants			hydrophyte	
	IV) Cyperus lives partly	in water partly in air		• • •	a hydrophyte with root
	1) I and III	2) II only		pockets	
	3) III and IV			III. Sagittaria is a n	nesonhyte
175.	Identify the correct state	· · · · · · · · · · · · · · · · · · ·			tomata open during day time
	to Hydrilla		1	1) I only	2) I & IV only
	I) Stem is long, slender a	and flexible		· •	· ·
	II) Submerged suspend		1	3) II & III	4) II, III & IV
	III) Leaves are linear		1	•	tatements from the following
	IV) Reproduces by offs	ets	1	•	n about 40% of sand particals
	1) I and II	2) III and IV	1		n 20% clay, 40% sand and
	3) II and IV	4) II and III		40% silt.	
176	Elongated petiole, aggre	/		III. The range of Gra	avel in soil is 1-2 mm
170.		-		IV. Sandy soils cont	tain 80% clay, 20% sand
	waxycoating on the up	per surface of fear		and 20 silt	
	lamina are present in	$2 \mathbf{C} 1 \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{t} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} c$		1) I and IV	2) II and III
	1) Nymphaea	2) Clematis	1	3) I & III	4) I, II & III
1	3) Salvinia	4) Nelumbo	1	Identify the correct	
177.	Choose the correct state			I. Bryophyllum is an	
	I) Hydrilla stem is long s			II. <i>Opuntia</i> is a leaf	
	II) Aerenchyma helps fo		1	-	
		shoot system is several		III. <i>Casuarina</i> is a p	-
	times longer than the ro			IV. <i>Tribulus</i> is a xer	1 •
	IV) Multiple epidermis	is present in Nerium		1) I & II	2) II & III
	1) I & II only	2) II & III only		3) III & IV	4) I, II & III
	3) III & IV only	4) I, II & IV			
	-				

CH-13: ECOLOGICAL ADAPTATION	SUCCE	SIONA	ANDEC	OLOGI	CALS	SERVIC	CES
184. Identify the correct statements		89. Plant name mode of living in wa					ter
I. Thick cuticle is present in hydrophytes		A. Lir	nnophyll	a I. Floa	ting fre	e in wat	er
II. Stomata are completely absent in Hydrilla		B. Pis	stia	II. Pte	ridophy	/ta	
III. Mechanical tissues are well developed in		C. Vic	toria regi	aIII. Ro	ots are f	ixed sub	ostratum
xerophytes		D. <i>Ut</i> .	ricularia	IV.Co	mpletel	y subme	erged
IV. Epistomatous leaves are present in		E. Sel	vinia	V.Am	phibiou	ıs plant.	
Potamogeton			Α	В	С	D	Ε
1) I & II 2) II & III		1)	II	IV	\mathbf{V}	III	Ι
3) I & IV 4) III & IV		2)	Ι	III	II	V	IV
185. The group of plants which are in contact with		3)	V	Ι	III	IV	II
soil, water & air are		4)	III	II	IV	Ι	V
I. Nelumbo II. Potamogeton	190.		n the follo	wing			
III. Typha IV. Lemna		Colu			Colu		
1) I & III 2) II & IV		-	istomatou			siaea	
3) I, II & III 4) I only			ltiple epie		II. Pi		
186. In photosynthesis to produce 180g of glucose &	;		spiratory			erium	
193 g of O_2 , plant will absorb g of CO_2 &		D.Ro	ot pocket			agittari	
				D		mphae	а
$\underline{\qquad}$ g of water & consume $\underline{\qquad}$ K cal of		1)	A	B	C	D	
solar energy		1)	III	II	IV	I	
1) 264,108,677.2 2) 260,106,677.2		2)	V	III	I	II	
3) 264,106,677.2 4) 264,108,667.2		3)	I II	IV I	II	III IV	
187. Arrange the following communities of hydrosere	191.	4) Matal			III	IV	
in a correct sequence.	191.	Colu	the follo	wing	Colu	mΠ	
I) Scrub stage II) Submerged plant stage			omatal hai	irc		dermal o	all of
III) Forest stage IV) Marsh meadow stage		A. Sit	nnatai na	115	-	ophytes	
V) Reed swamp stage		R Ae	renchyma			opnytes erium)
1) II, V, IV, I, III 2) III, I, IV, V, II			ica crysta			ydrilla	
3) II, IV, V, III, I 4) IV, V, II, I, III			nemerals	15		ribulus	
		D.Lpi	iennerais			mphaea	1
TYPE - III			Α	В	C	D	•
188. Plant name mode of living in water		1)	I	IV	V	II	
A. <i>Hydrilla</i> I. Free floating hydrophyte		2)	III	I	II	IV	
	1	,					

	2)	III	Ι	II	IV		
	3)	II	III	Ι	V		
	4)	IV	V	III	Ι		
192.	List -I		List-II	[
	A. Hydr	rilla	I. clado	phylls			
	B.Nerium		II.cutic	II.cuticle absent			
	C.Asparagus		III. multiple epidermis				
	D. Eichhornia		IV. Spongy petiole				
			V. Aerenchyma				
		Α	В	С	D		
	1)	Ι	IV	III	II		
	2)	II	III	Ι	IV		
	3)	III	II	IV	Ι		
	4)	IV	Ι	II	III		

100.	1 1411	t name	mode of hving in water					
	А. <i>Н</i>	ydrilla	I. Free floating hydrophyte					
	В. Ту	pha	II. Rooted hydrophyte with					
			floating leaves					
	C.Ny	rmphaea	III. Submerged suspended					
			h	ydroph	yte			
	D. <i>Le</i>	emna	IV.A	mphibio	us plant			
	E.Val	llisnaria	V. Mesophyte					
			VI. Submerged Rooted					
			hydrophyte					
		А	В	С	D	Е		
	1)	III	IV	II	Ι	VI		
	2)	IV	III	II	V	Ι		
	3)	Ι	II	IV	III	V		
	4)	II	IV	III	Ι	V		

	CH-1	3 : ECO	LOGI	CALAI	DAPTATION S	UCCES	SIONA	NDECO	OLOGI	CALS	ERVICE	S
193.	List -I		List-I	Ι		197.	List -I		List-I	[_	
	A. Hyd	lrophytes	s I. Ner	ium			A. Popu	ilation	I. Part	of the e	arth consi	sting
	B. Xer	ophytes	II. Lei	mna			_		ofal	l the ec	osystem ii	n
		sophytes			ra				thew	vorld	•	
		ophytes	IV. Ba	-			B. Com	munity	II.Asse	mblag	e of all the	
		Ă	В	Ć	D			-	indiv	viduals	belonging	; to
	1)	IV	III	Ι	II				diffe	rent sp	ecies beco	ming
	2)	Ι	II	III	IV				area	-		-
	3)	I	I	IV	III		C.Ecos	ystem	III. Gro	upofsi	milar indiv	iduals
	4)	III	IV	II	I				belong	ingtot	he same	
194.	List -I		1 4	List-I					-	-	l in a aera	
174.		an Fathe	rof	L15t-1	1		D. Ecos	sphere			n between	the
	Ecolog		1 01	I Pob	oert constanza			1			nism and	
	-	sy sified pla	nt	I. Kot II. Ha						physic		
	Comm	-	1111		amdeo Misra						tal compo	nents
			-1								on of organ	
		ner of Eco			Igen Warming						the type of	
		-		s v. A.	P. de candole					vironm		
	ine sup	port serv		C	D			А	В	C	D	
	1)	A	B	C	D		1)	IV	I	III	V	
	1)	IV	II	I	III		2)	I	III	II	ĪV	
	2)	I	III	V	IV		3)	III	II	IV	I	
	3)	III	IV	II	I		3) 4)	III	II IV	V	I	
105	4)	II	V	III	IV	198.	List - I		1 V	v List -		
195.	List -I		List-I		2	190.			acion		ren lake	
	-				te forests			ary succe		I. Dal II. Fo		
	B. Suce		II. Tril					l swamp	-	II. FO		
		n-succule		-			C. Chin	ax stage				~
	D. Mes	sophytes			a		ם ח				ydrophyte	S
			V. Hyc		D		D. Pion	eers			nall phyto	
	• `	A	B	C	D				D	-	anktons	
	1)	l	II	III	IV U		1)	A	B	C	D	
	2)	II	III	IV	II		1)	Ι	III	II	IV	
	3)	III	IV	II	I		2)	III	II	IV	I	
100	4)	IV	I	V	III		3)	II	IV	I	III	
196.	List -I		List-I				4)	IV	Ι	III	II	
		enchyma										
	B. Muc	0	-	otosyntł				EXE	RCIS	E - 1	IV	
		erenchym				199.5	Study the	followir	g table			
	D. Chl				al support		•		C	evaders	s - Tribulu	5
	1)	A	B	C	D		-		e		voiding p	
	1)	I	II	III	IV		Dpuntia		210	0-11 u	- 8 P	
	2)	IV	III	II	I		-	ucculer	t - True	xeropł	yte - Zizip	ous
	3)	III	I	IV	II					-	caper - Ag	
	4)	II	IV	Ι	III		dentify th			-		
) I & II			II & I	п	
							5) II & IV	7		I&I		
							,		(۲	10.10		

C

	CCESION AND ECOLOGICAL SERVICES
200. Study the following table	208. Which of the following weed must be removed
I. Nerium - Hypostomatic - Scale leaves	from the field before cropping? AFMC-2002
II. Calotropis - Epistomatic - Rhizome	1) Eichhornia 2) Euphorbia
III. Nymphaea - Epistomatic - Rhizome	3) Agave 4) Azolla
IV. Vallisneria - Astomatic - Ribbon Like leaves	209. An example of physiological xerophyte :
Which two taxes show the correct combination	1) Salvinia 2) Euphorbia
1) I & II 2) II & III	3) Agave 4) Salicornia
3) I & IV 4) III & IV	210. Which one of the following does not have sto-
	-
201. Study the following table and identify the correct	mata? AFMC-2002
combination	1) Eichhornia 2) Nelumbo
Plants Nature of leaf Ecological type	3) Nymphaea 4) Hydrilla
I. Tribulus Highly reduced Drought avoider	211. Heterophylly of <i>Limnophila</i> is : BHU-2002
II. Opuntia Phylloclade Drought avoider	1) Environmental 2) Developmental
III. AsparagusScale leaf(or)spine Drought avoider	3) Habitual 4) Adaptive
IV. Nerium Fleshly, Succulent Non succulent	212.One internode long phylloclade is found in :
1) I & II 2) III & IV	1) Ruscus 2) Opuntia BHU-2007
3) III only 4) IV only	3) Asparagus 4) Calotropis
	213. The plant of this group are adopted to live partly
	in water and partly above substratum and free from
EXERCISE - V	
202. Special kind of roots called pneumatophores are	
characteristics of plants growing in :	1) Xerophytes 2) Thallophytes
1) Sandy soils of deserts CBSE2000	3) Halophytes 4) Hydrophytes
2) Saline and waterlogged soils found near sea	214.Cactaceae stores water in leaves, it implies :
shore	ORISSA-JEE-2008
3) Dry soils of user land	1) Ephemerals 2) Drought resistants
4) Waterlogged soils of ponds and lakes	3)Annuals 4) Non-succulents
203. Velamen is found in : CPMT-2001	215.Sunken stomata are found in :
	ORISSA-JEE-2008
, , , , , , , , , , , , , , , , , , , ,	1) Xerophytes 2) Hydrophytes
3) Orchid flowers 4) Halophytes	3) Mesophytes 4) Halophytes
204. Stem of submerged hydrophytes is highly reduced	216.Pneumatophores are characteristics of :
or elastic or even absent because :CPMT-2000	ORISSA-JEE-2008
1) The Vascular bundle are absent	
2) Mechanical tissues and vascular strands are	1) Halopytes 2) Xerophytes
poorely developed	3) Hydrophytes 4) None of these
3) Stomata are absent	217. Which is not an adaptive feature in plants growing
4) None of the above	in physiologically dry soil? ORISSA-JEE-2008
205. Which is an amphibious plant? CPMT-2000	1) Pneumatophores 2) Vivipary
1) Casuarina 2) Hydrilla	3) Sunken stomata
3) Polygonum 4) Wolffia	4) Conductive tissue rudimentary
206. Velamen tissue is found in : BCECE-2001	218. Sucking roots are present in the plant :
	PB-PMT-2008
1) Mesophytes 2) Epiphytes	1) Betel 2) Cuscuta
3) Hydrophytes 4) Xerophytes	3) Mangifera 4) Solanum
207. Which of the following is having both hydrophytic	
as well as aerophytic character? CPMT-2001	219. Insectivorous plants live in a soil deficit in :
1) Typha 2) Ranunculus	PB-PMT-2008
3) Ceratophyllum 4) Nerium	1) Nitrate 2) Chloride
	3) Potassium 4) Magnesium
	340

	GICALADAI IAIION S		
220.Sunken stomata are f	ound in : BV-PUNE-2008	233.Green leaf aerial ster	m or branches with a single
1) Nerium	2) Hydrilla	intermode is called :	AMU-2010
3) Mango	4) None of these	1)Bulbils	2) Cladodes
221. Velamen tissue is fou	and in : BHU-2008	3) Phylloclade	4) Phyllode
1) Mesophytes	2) Epiphytes	234.Hydrophytes are cha	racterised by:
3) Hydrophytes			ORISSA-JEE-2011
222.Cuticle is absent in :	DPMT-2009	1) Leaves reduced to	
1) Mesophytes	2) Xerophytes	2) Well developed va	-
3) Young seedlings	/ I •	3) Well developed me	
223.Halophytes are grow	· · · · · · · · · · · · · · · · · · ·	4) Increase in aerencl	
	e water 2) Near the rivers	-	erophytic plant leaves are :
3) Deserts	4) Rainy water	1) Leathery surface	ORISSA-JEE-2011
224.Roots cap is absent ir	· ·	2) Large surface area	
-		3) Waxy cuticle layer	
1) Mesophytes	2) Hydrophytes		
3) Xerophytes	4) Epiphytes	4) Sunken stomata of $22(1.1)$	
	tissue, mechanical tissue and	-	vegetation on which succes-
cuticle is characterstic		sion?	BHU-2011
1) Hydrophytes	2) Xerophytes	1) Hydrosere	2) Halosere
3) Epiphytes	4) Mesophytes	3) Psammosere	4) Xerosere
226.Insectivorous plants a		· · ·	onging to reed swamp stage
1) Water rich soil	AFMC-2009	in hydrach successior	
2) Soil deficit in nitrog	gen	1) Juncus	2) Sagittaria
3) Soil rich in trace ele	ements	3) Salix	4) Trapa
4) Soil deficit in sugar	S	238. Which are the first or	ganism to colonize on a bar-
227.Ephemerals are droug	ght: ORISSA-JEE-2009	ren rock?	CPMT-2011
1) Loving plants	2) Enduring plants	1)Fungi	2) Lichens
3) Escaping plants		3) Diatoms	4) Mosses
228.Xerophytes are mostl		239. The geographical limit	its within which a population
1) Secculents	•	exists is :	BV-PMT2011
3) Mesophytes	4) None of these	1) Niche	2) Ecosystem
229.Pneumatophores are	/	3) Biomes	4) Habitat
	ORISSA-JEE-2009	,	y in ecological succession is :
1) Mesophytes	2) Halophytes	1) Pioneer	2) Sere AFMC-2011
3) Sciophytes		3)Climax	4) Carnivores
/ 10	which depend on other plants	241.Niche is defined as th	,
for:	BHU-2010		in a community in relation to
1) Food	2) Mechanical support	other species	In a community in relation to
		≜	iana liwaa
3) Shade	4) Water	2) Place where organ	
231.Pneumatophores are			ism is living and performing
1) Hydrilla	2) Typha (1) (1)	its duties	
3) <i>Rhizophora</i>		· · · · ·	ation perform their duties
	<i>ria</i> are classical example of :		owing has maximum genetic
1) Marshy plants	CPMT-2010	diversity in india?	BHU-2010
2)Angiospermic subr		1) Tea	2) Teak
3) Free-floating plants		3) Mango	4) Wheat
4) Attached emergent	plants		
		I	841

243.A progressive series o	f changes in plant and ani-					
	mal life of an area from initial colonization is known					
as :	as : BV-PUNE-2008					
1) Evolution	2) Succession					
3) Speciation	4) Selection					
244. An association betwee	en two individuals or popu-					
lation where both are	benefitted and neither can					
survive without the oth	ner is: CBSE-2007					
1)Commensalism	2)Amensalism					
3) Proto-cooperation						
245.In primary succession	· • • •					
cies are usually :	CBSE-2008					
1)Algae	2) Fungi					
3) Lichens	4) Bryophytes					
246. Alpine tundra is found	in: CBSE-2009					
1) Siberia	2) Green land					
3) Both (1) and (2)	4) Himalayas					
247.Select the correct mate						
A. Sedimentary nutrier						
B. Pioneer species	: Lichens					
C. Secondary successi						
D. Pyramid of biomass	s in sea : Upright					
1) A, B and D only						
2) A and C only						
3) B and C only						
4) B and D only						
e) A, B and C only	_					
248. Which one of the follow						
for secondary successi						
1) It is similar to primary succession						
, i i						
2) It begins on a barre	n rock					
, I	n rock sted site					

KEY MODEL TEST - I

1) 3	2) 1	3) 4	4) 1	5) 2
6) 1	7) 4	8) 2	9)1	10) 1
11)4	12) 3	13) 3	14) 3	15) 1
	MODE	el test	Г - II	
16) 1	MODE 17) 3	2 L TES 18) 2	Г - II 19)1	20) 1
16) 1 21) 2				20) 1 25) 2

QUESTION BANK

TYPE - I 31) 2 32) 3 33) 2 34) 1 35)4 36) 1 37) 2 38) 1 39)4 40) 2 41) 1 42) 1 43)4 44) 3 45) 3 46) 3 47) 2 48) 2 49)1 50) 2 51) 2 52) 1 53) 1 54) 2 55)4 60) 2 56) 4 57) 1 58) 2 59)1 62) 2 63) 3 65)4 61) 1 64) 3 68) 4 70) 2 66) 2 67) 3 69) 1 71) 3 72) 4 73) 2 74) 3 75) 2 76) 4 77) 3 78) 3 79) 2 80) 3 84) 1 82) 2 83)4 81)4 85) 3 88) 3 86) 2 87) 3 89) 1 90) 3 91)1 92) 2 93) 2 94) 1 95)1 96) 1 97)4 98) 3 99) 2 100) 1 101)1 102) 2 103) 4 104) 3 105) 3 106) 1 107) 2 108) 3 109) 1 110) 3 111)4112) 3 113)4 114) 1 115) 1 116) 2 117) 3 118) 2 119) 2 120) 1 122) 1 123) 3 124) 4 125) 2 121) 3 127) 1 128) 4 126) 4 129) 3 130) 4 131) 3 132) 3 133) 4 134) 3 135) 4 137) 2 138) 4 139)2 140)3 136) 4 141)1 142)4 143)3 144)1 145)4 147)3 148)3 149)2 150)2 146)4 154)2 155)2 151)1 152)1 153)2 156)3 157)4 158)2 159)1 160)3 164)2 165)3 161)3 162)1 163)3 169)3 166)3 167)1 168)2 **TYPE - II** 172)2 170)4 171)4 173)3 174)4 175)1 176)4 177)4 178)1 179)2 180)4 181)4 182)2 183)3 184)2 185)1 186)1 187)1

188)1	189)3	190)2	. 191)3	192)2	2		
193)3	194)3	195)2	. 196)3	197)3	3		
198)1								
	ΤY	(PE - 1	V					
199)3	200)4	201)3	5					
	TYPE - V							
202)2	203)2	204)2	205)3	20	6)2			
207)2	208)1	209)4	210)4	21	1)4			
212)3	213)3	214)2	215)1	21	6)1			
217)4	218)2	219)1	220)1	22	1)2			
222)3	223)1	224)2	225)1	22	6)2			
227)3	228)1	229)2	230)2	23	1)3			

TYPE - III

	 ()			_ J
232)2	233)2	234)4	235)3	236)4
237)2	238)2	239)4	240)3	241)1
242)4	243)2	244)4	245)3	246)3

247)3 248)3